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Abstract

In unconstrained scenarios, face recognition remains chal-
lenging, particularly when faces are occluded. Existing meth-
ods generalize poorly due to the distribution distortion in-
duced by unpredictable occlusions. To tackle this problem,
we propose a hierarchical segmentation-based mask learning
strategy for face recognition, enhancing occlusion-robustness
by integrating segmentation representations of occlusion into
face recognition in the latent space. We present a novel multi-
scale segmentation-based mask learning (MSML) network,
which consists of a face recognition branch (FRB), an occlu-
sion segmentation branch (OSB), and hierarchical elaborate
feature masking (FM) operators. With the guidance of hierar-
chical segmentation representations of occlusion learned by
the OSB, the FM operators can generate multi-scale latent
masks to eliminate mistaken responses introduced by occlu-
sions and purify the contaminated facial features at multiple
layers. In this way, the proposed MSML network can effec-
tively identify and remove the occlusions from feature rep-
resentations at multiple levels and aggregate features from
visible facial areas. Experiments on face verification and
recognition under synthetic or realistic occlusions demon-
strate the effectiveness of our method compared to state-of-
the-art methods.

Introduction
Deep convolutional networks have achieved great success
in extracting discriminative features for face recognition.
Many related architectures (Parkhi, Vedaldi, and Zisser-
man 2015; Schroff, Kalenichenko, and Philbin 2015; Li
et al. 2020; Ding et al. 2020; Yu et al. 2020), loss func-
tions (Wang et al. 2018; Deng et al. 2019; Wen et al. 2016),
and datasets (Martı́nez and Benavente 1998; Huang et al.
2007; Yi et al. 2014; Kemelmacher-Shlizerman et al. 2016;
Liu et al. 2015; Ding et al. 2020; Geng et al. 2020; Chen
et al. 2020) have been proposed. However, in realistic un-
constrained scenarios where faces could be occluded, most
existing deep models are not sufficiently robust.

Previously, straightforward solutions have been proposed
in (Liu et al. 2016; Trigueros, Meng, and Hartnett 2018;
Zhong et al. 2020) to train deep models with occluded im-
ages to improve the robustness. Osherov et al. (Osherov and
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Figure 1: Occlusion-robust face representations through
multi-scale segmentation-based mask learning. Column 1 &
6: Input faces with various possible occlusions. Column 2 &
5: Occlusions detected by the proposed occlusion segmenta-
tion branch (OSB) in our method. Column 3 & 4: Occlusion-
robust face representations learned by our MSML network.
MSML can handle various occlusion cases, i.e. none occlu-
sion, geometric shapes, synthetically added objects, realistic
face masks. (Best viewed in color.)

Lindenbaum 2017) proposed to constrain the filter support
of deep networks to improve robustness. Although these so-
lutions can recover some performance on occluded samples,
the discriminative ability of deep models on non-occluded
samples is suffered. In essence, these methods did not appro-
priately handle the distribution distortion between occluded
and non-occluded samples in the embedding space.

Distribution distortion comprises missing responses and
mistaken responses. Missing responses mean that feature
extractors cannot capture valid facial parts from occluded
faces. Mistaken responses mean that unexpected responses
induced by occlusions occur in the output space. These two
error responses increase intra-class distance and decrease
inter-class distance. To tackle the missing response prob-
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lem, some GAN-based methods have been proposed to re-
construct the occluded parts (Li et al. 2017; Xie et al. 2018;
Ren et al. 2019). Despite their performance in recovering
visual patterns, the recognition accuracy is limited due to
the challenge of preserving identity (Mathai, Masi, and Ab-
dAlmageed 2019). How to eliminate the mistaken responses
becomes the focus problem for occluded face recognition.

Learning masks is a key idea to eliminate the mistaken
responses and improve the robustness to occlusion. Such a
strategy reduces the negative effect of occlusions in feature
extraction (Wan and Chen 2017; Song et al. 2019). Once the
mask of occlusion is obtained, pixels that may lead to mis-
taken responses can be excluded from feature extraction and
a more reasonable embedding space can be obtained. How-
ever, previous methods only adopt mask learning in a middle
layer. Due to challenges in real-world applications, the gen-
erated mask may still contain erroneous responses, which
further result in mistaken responses in the subsequent lay-
ers. As the features flow deeper, the mistaken responses may
accumulate in the latent space, leading to more severe dis-
tribution distortion in the embedding space. In addition, the
shallower layers without mask learning still suffer from dis-
tribution distortion, with mistaken responses primarily dis-
tributed around the locations of occlusions due to the small
receptive fields. In the deep layers, the features get entan-
gled. The simple masks that lack deep semantics cannot
block mistaken responses effectively. To this end, for the fa-
cial features at different layers, we generate latent masks of
different scales.

In this work, we propose a multi-scale segmentation-
based mask learning (MSML) face recognition network
which can alleviate the distribution distortion hierarchically
and boost the performance of occluded face recognition.
The proposed MSML network consists of a face recognition
branch (FRB), an occlusion segmentation branch (OSB),
and hierarchical feature masking (FM) operators. The OSB
consists of an encoding stage and a decoding stage, which
aims to predict the precise occluded pixels, as shown in Fig-
ure 1. Hierarchical segmentation representations of occlu-
sion are generated in all decoding stages of the OSB. After
fed to the hierarchical FM operators, these segmentation rep-
resentations of occlusion will be transformed to the multi-
scale latent masks. Finally, the hierarchical FM operators
use the latent masks to purify the contaminated facial fea-
tures in all corresponding layers. To realize optimal trans-
forming and purifying process, we experimentally explore
various architectures of the FM operators. Consequently, the
purifying process can effectively eliminate the mistaken re-
sponses induced by occlusions in the embedding space. Fig-
ure 1 visualizes the extracted 512-D features in a 2D space,
which shows that our method can extract occlusion-robust
face representations under various occlusion cases. The ma-
jor contributions of our work are three-fold:

1) We propose a deep occlusion-robust face recognition
framework with multi-scale segmentation-based mask learn-
ing1. The end-to-end framework does not require extra man-
ual annotations or substantial samples of occlusion.

1The code is available at: https://github.com/ygtxr1997/MSML.

2) We present the hierarchical feature masking (FM) oper-
ators to transform the hierarchical segmentation representa-
tions into the latent masks and purify the contaminated facial
features at the corresponding layers effectively.

3) The proposed method achieves state-of-the-art robust-
ness to both synthetic and realistic occlusions on various
benchmarks (Huang et al. 2007; Martı́nez and Benavente
1998; Kemelmacher-Shlizerman et al. 2016; Li et al. 2020).

Related Works
Traditional methods. Various traditional machine learning
methods have been developed to tackle occlusion encoun-
tered in face recognition. Based on sparse representation,
Wright et al. (Wright et al. 2008) reconstructed clean faces
through a sparse linear combination of gallery images. With
sparsity properly harnessed, the proposed framework can be
robust to occluded faces. Stringface (Chen and Gao 2010)
matched two faces through a string-to-string scheme to find
the most discriminative substrings. Some works aimed to
recognize partial faces based on feature set matching (Weng
et al. 2013; Weng, Lu, and Tan 2016). Following the idea
of sparse representation (Wright et al. 2008), McLaughlin
et al. (McLaughlin, Ming, and Crookes 2016) proposed to
find the largest matching area (LMA) in testing images that
can be represented by training images. Yang et al. (Yang
et al. 2016) converted the rank minimization problem into
the nuclear norm minimization problem for optimization.
Laplacian-uniform mixture-driven iterative robust coding
(LUMIRC) (Zheng et al. 2020) modeled the distribution of
the reconstruction residuals with a Laplacian-uniform mix-
ture function. Although their theoretical contributions are
sound, the practical values are limited by the complexity in
real-world scenarios.

Deep learning-based methods. Recently, deep learning
has been widely used in occlusion-robust face recognition.
Wan et al. (Wan and Chen 2017) proposed MaskNet for
learning different weights for spatial locations of the feature
maps in the medial layer of a deep face network. Song et
al. (Song et al. 2019) proposed learning masks by comparing
feature maps extracted from an occluded face and its coun-
terpart through the pairwise differential siamese network
(PDSN). A Light CNN framework was developed in (Wu
et al. 2018) to learn a robust face representation on noisily
labeled datasets by introducing Max-Feature-Map (MFM),
which is able to separate noisy and informative signals. For
the face de-occlusion task, Zhao et al. (Zhao et al. 2017) pro-
posed a LSTM-autoencoder model to detect occlusions and
restore natural faces. Ding et al. (Ding et al. 2020) collected
two datasets named MFV and MFI for evaluating masked
face recognition models and proposed a latent part detec-
tion (LPD) model to locate the latent facial part. Li et al. (Li
et al. 2020) proposed a de-occlusion distillation framework
showing the efficacy of the amodal completion mechanism.
Geng et al. (Geng et al. 2020) introduced an identity aware
mask GAN (IAMGAN) to obtain sufficient training data in
masked face recognition and proposed a domain constrained
ranking (DCR) loss to tackle the large intra-class variation
between masked faces and full faces. Previous single-layer
mask learning methods (Wan and Chen 2017; Song et al.
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Figure 2: Hierarchical feature masking (FM) operators bridge the FRB and the OSB. Sharing the similar architecture, each FM
operator receives the facial features and occlusion segmentation representations at the corresponding layer, and outputs purified
facial features.

2019) and attention-based method LPD (Ding et al. 2020)
only eliminate noises in the first processing layer or a middle
layer, which cannot sufficiently remove the noise and suffer
from the distribution distortion in the embedding space. In
contrast, we present multi-scale segmentation-based mask
learning to generate optimal latent masks and eliminate mis-
taken responses at multiple levels to correct facial semantic
representations.

Proposed Method
Network Architecture

Figure 2 shows the overall framework of the proposed multi-
scale segmentation-based mask learning (MSML) network,
where the FRB and the OSB are bridged by k FM operators.
In our method, k is set to 4, which is consistent with the
number of the stages (excluding the stem stage) in the FRB.

FRB is a regular face recognition network supervised by
an identification loss. An embedded facial feature vector
v is extracted by the first fully-connected layer (FC 1) of
the FRB. For the OSB, we adopt an encoder-decoder struc-
ture (Long, Shelhamer, and Darrell 2015) to generate hierar-
chical occlusion segmentation representations. The OSB is
supervised by a semantic segmentation loss. Each FM op-
erator transforms the segmentation representations into the
latent mask and purifies the contaminated facial features at
the corresponding layer.

Previous mask learning methods (Wan and Chen 2017;
Song et al. 2019) only adopt a single layer of segmenta-
tion representation to generate a single scale of mask. But in
real-world challenging situations, facial features at different
layers need masks of different scales. Embracing this hierar-
chical principle, our method eliminates mistaken responses
in multiple layers with multi-scale latent masks guided by
segmentation representations.

In the training stage, one of the various types of occlu-
sions as shown in Figure 2 is synthetically added to the
original input face. Supervised by the binary mask of the
synthesized occlusion, the decoder of the OSB can gen-
erate hierarchical occlusion segmentation representations
Ys = {Y1

s ,Y2
s , ...,Yk

s }, where Yj
s is the output of the j-

th transpose convolutional layer. Similarly, the multi-layer
facial features generated by the FRB can be denoted as
Yf = {Y1

f ,Y2
f , ...,Yk

f }, where Yi
f is output at the i-th con-

volution stage FRBi (excluding the stem stage). After fed
to the hierarchical FM operators, the segmentation represen-
tations are converted to the multi-scale latent masks. Sub-
sequently, the generated latent masks can purify the con-
taminated facial features, alleviating the mistaken response
problem at multiple layers. In our method, Yi

f and Yj
s share

the same height h and width w, where i = 1, 2, ..., k and
j = k + 1− i.

Occlusion Segmentation Branch
The OSB is a fully convolutional network with an encoder-
decoder structure (Long, Shelhamer, and Darrell 2015). Su-
pervised by the occlusion segmentation loss, the OSB can
learn to predict pixel-wise occlusions. The hierarchical oc-
clusion segmentation representations {Y1

s ,Y2
s , ...,Yk

s } are
generated by the decoder of the OSB. Yi

s output by the
deeper transpose convolutional layers contains more precise
location information about the occlusion. In Yi

f extracted
from a shallower layer, the mistaken responses primarily dis-
tribute near the location of the occlusion due to the smaller
receptive field. In addition, Yi

f at a shallower layer lacks se-
mantic information. Yi

s at a deeper layer complements Yi
f at

a shallower layer due to larger receptive field and more se-
mantic information. This means it is more reasonable to use
deeper occlusion representations to generate latent masks for
purifying shallower facial features. So we bridge the FRB
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and OSB in a reverse fashion. Without requiring extra labor-
consuming annotations, we adopt the binary masks of syn-
thetically added occlusions as the training labels of the OSB.

Compared to the PDSN (Song et al. 2019) which uses
an independently trained fully convolutional network, our
method uses an end-to-end multitask learning framework
where the OSB and the FRB are trained simultaneously.
Moreover, the single-layer feature masks in MaskNet (Wan
and Chen 2017) and PDSN are generated from manually
predefined coarse-grained N × N(N < 10) grids, which
leads to poor generalization on diverse unseen occlusions. In
contrast, with the pixel-wise predicting ability of the OSB,
the FM operators can generate fine-grained latent masks
which adapt to the shape of occlusions. Also, the FM opera-
tors can adapt the levels of generated latent masks to those of
{Y1

s ,Y2
s , ...,Yk

s }, which contain different levels of semantic
information.

Feature Masking Operator
Ys are fed to the hierarchical FM operators which can gen-
erate multi-scale latent masks M = {M1,M2, ...,Mk} and
output purified facial features Zf = {Z1

f ,Z2
f , ...,Zk

f }. Let
FMi denote the i-th FM operator in the MSML network.
The facial feature Yi

f in each layer is extracted from the pu-
rified output Zi−1

f of FMi−1 as shown in Figure 2.
The k FM operators share the similar architecture and

generate multi-scale M. Specifically, the generation of Mi

can be formulated as:

Mi = F (Φs(Yj
s ;Wi)), (1)

where Φs(·;Wi) is a 2D filter with the weight matrix Wi

and kernel size s× s, i = 1, 2, ..., k, and j = k+1− i, F (·)
indicates the mask scheme function (binarization, sigmod,
or tanh). Then the purified facial feature Zi

f is generated as:

Zi
f = Mi ◦ Yi

f , (2)

where ◦ denotes Hadamard product, i = 1, 2, ..., k.
Since Yi

f provides auxiliary facial patterns which can help
the generation of the latent masks, we concatenate Yj

s and
Yi

f before transmitted to the 2D filter Φs. We also insert a
residual learning module Θr which consists of r residual
blocks (He et al. 2016) after the filter to adjust the com-
plexity of FM operator. In this way, Equation 1 for the mask
generation can be reformulated as:

Mi = F (Θr(Φs([Yj
s ,Yi

f ];Wi))), (3)

where [·] denotes the concatenation.
The detailed architecture of FMi is shown in Figure 2.

Considering the pixel labels of synthetic occlusions are suf-
ficient to supervise the OSB in the training stage, we add a
detach link before the concatenation to avoid the gradients
of the FRB impacting the optimization of the OSB. In some
generative adversarial networks (GANs) (Goodfellow et al.
2014), the detach link is used to avoid the gradients of the
discriminator to be propagated to the generator.

Optimization
The proposed network can be trained through the joint op-
timization. Two losses are used for training: occlusion seg-
mentation loss Locc, and face classification loss Lcls. The
total loss Ltotal can be formulated as follows:

Ltotal = Lcls + λLocc (4)

where λ is a weighing factor. Experimentally, we found that
the training process of the proposed model is not sensi-
tive to the value of λ. Therefore, λ is set to 1 for conve-
nience. Cross-entropy loss or other SOTA face recognition
losses (Wang et al. 2018; Deng et al. 2019) can be selected
as Lcls. Considering the continuation of realistic occlusions,
we choose a consensus segmentation loss (Masi, Mathai,
and AbdAlmageed 2020) as Locc.

Experiments
Implementation Details
Models. We select two state-of-the-art face recognition net-
works as the baselines: LightCNN-29 (L29) (Wu et al. 2018)
and ArcFace-18 (A18) (Deng et al. 2019). The lightweight
model L29 replaces the ReLU activation function with Max-
out activation function and drops the Batch Normalization
layers. A18 shares the similar structure with ResNet18 (He
et al. 2016) and replaces the cross entropy loss with an
Additive Angular Margin Loss. The MSML network using
L29 (or A18) as the FRB is denoted as MSML(L29) (or
MSML(A18)). Following the architecture of U-Net (Ron-
neberger, Fischer, and Brox 2015), the skip connections
bridge the encoder and the decoder of the OSB. The encoder
adopts ResNet18 as the backbone. The subsequent decoder
comprises 5 transpose convolutional layers.

Face preprocessing. All faces are detected, aligned and
cropped based on 5 landmarks with MTCNN (Zhang et al.
2016). The aligned faces are resized to 128× 128 pixels for
L29 and 112× 112 for A18. Three types of occlusions (ran-
dom connected geometric shapes, realistic objects collected
from the web, and synthetic face masks rendered through
3D scheme (Zhu et al. 2016, 2015)), as shown in Figure 3,
are synthetically added to the faces during training. All the
baseline models and our models use the same augmentation
scheme if there is no other specific instruction.

We use these occlusions for the following four reasons.
First, a realistic occlusion is often simply connected (Masi,
Mathai, and AbdAlmageed 2020). Simply connected geo-
metric shapes contain this basic characteristic. Second, the
selected real objects are common in real life, such as sun-
glasses, scarves, hands, fruits, and cups. Third, masked face
recognition has received much attention in recent years (Li
et al. 2020; Geng et al. 2020; Ding et al. 2020). We perform
3D synthetic face mask augmentation to make the models
generalize well to the faces wearing masks. Finally, the var-
ious occlusions avoid the over-fitting of the OSB.

Training. L29 is pretrained on MS-Celeb-1M (Guo et al.
2016) and trained on CASIA-WebFace (Yi et al. 2014),
while A18 is trained on MS1MV2 (Deng et al. 2019) from
scratch. We employ stochastic gradient descent (SGD) as the
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Figure 3: The training inputs and the occlusions detected by
the OSB.

Positive Pair Negative Pair

Figure 4: In 1:1 verification, the compared pair might con-
tain block occlusions of different positions and sizes.

optimizer. The weight decay is set to 10−5 and the momen-
tum is set to 0.9. For MSML(L29), the initial learning rate
of FRB and OSB are 0.001 and 0.01 respectively and are
divided by 3 every 15 epochs. For MSML(A18), the initial
learning rate of FRB and OSB are 0.1 and 0.01 respectively
and are divided by 10 at 11, 16, 21 epochs. We set the batch
size of 64 for MSML(L29) and 512 for MSML(A18). The
embedded feature vectors are 128-D for MSML(L29) and
512-D for MSML(A18).

Testing. We conduct the experiments on multiple com-
monly used datasets as follows:
▲ The LFW dataset (Huang et al. 2007) contains 13,233

images from 5,749 identities and provides 3,000 matched
image pairs and 3,000 mismatched image pairs for 1:1
verification testing.

▲ The MegaFace dataset (Kemelmacher-Shlizerman et al.
2016) includes over 1 million face images and provides
a common testing benchmark consisting of a probe set
called Facescrub and 1 million face distractors.

▲ The AR dataset (Martı́nez and Benavente 1998) contains
over 4,000 face images of 126 subjects with variations in
expression, illumination, and occlusion.

▲ The MFV dataset (Ding et al. 2020) contains over 6,000
pairs of realistic faces wearing masks and non-occluded
faces. The face images vary in pose, illumination, and
background.

Considering the randomness of synthetic occlusions in the
evaluation on the LFW and MegaFace datasets, we repeat
the experiments for 10 times and show the average results.

Experiments on the LFW Dataset
Following the testing protocol of LFW (Huang et al. 2007),
we performed a 1:1 face verification evaluation. We occlude
the testing images with random black blocks of 0% to 100%
input size forming LFWblock. The random blocks vary in po-
sitions and sizes, as shown in Figure 4. The accuracy and the
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Figure 5: The 1:1 verification results (%) on LFWblock.
The proposed MSML(A18) achieves prominent occlusion-
robustness.

Method Data LFW MF1 MF1occ

CenterFace (2016) 0.7M 99.28 65.49 -
CosFace (2018) 3.9M 99.73 77.11 -
TrunkCNN (2019) 0.5M 99.20 74.40 51.86
PDSN (2019) 0.5M 99.20 74.40 56.34
L29 (2018) 0.5M 99.33 71.31 54.63
L29+MSML 0.5M 99.40 75.35 62.53
A18 (2019) 5.8M 99.77 76.92 64.50
A18+MSML 5.8M 99.83 79.63 68.33

Table 1: The 1:1 verification results (%) on the LFW dataset
and the 1:N identification results (%) on MF1 and MF1occ.

true acceptance rate when the false acceptance rate is below
1e-3 (TAR(@FAR=1e-3)) are reported in Figure 5 to com-
pare the performance of the proposed MSML(A18), A18 us-
ing same augmentation scheme, and A18 without augmen-
tation scheme. MSML(A18) achieves prominent occlusion-
robustness. The results in Table 1 show that the proposed
method does not compromise its performance on regular
non-occluded face recognition tasks.

Experiments on the MegaFace Dataset
In the 1:N face identification experiments on the MegaFace
dataset (Kemelmacher-Shlizerman et al. 2016), the Face-
scrub dataset merges with over 1,000,000 face distractors
forming the large probe set (MF1). We follow (Song et al.
2019) and add realistic object occlusions to the probe set of
MegaFace (MF1occ). These realistic object occlusions dif-
fer from those used in the training stage. Figure 6 (a) shows
some examples of the testing images and the predicted oc-
clusions. As shown in Table 1, the performance of L29 and
A18 drops after we add the occlusions. The proposed model
shows strong robustness to synthetically occluded samples
compared to PDSN.

Experiments on the AR Dataset
We verify the robustness of the proposed method to realistic
disguise by conducting 1:N face identification experiments
on the AR dataset (Martı́nez and Benavente 1998). Protocol
1 uses multiple images per subject in the gallery for identifi-
cation. Protocol 2 uses only one gallery image per subject for
identification, which is more challenging. All gallery images
are holistic frontal face images. The probe set comprises the
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(a) (b) (c)

Figure 6: The input images and the predicted occlusions on
(a) MegaFace, (b) MFV, and (c) AR datasets.

Method Sunglass Scarf
NMR (2016) 96.90 73.50
LUMIRC (2020) 97.35 96.70
MLERPM (2013) 98.00 97.00
SCF-PKR (2013) 95.65 98.00
RPSM (2016) 96.00 97.66
MaskNet (2017) 90.90 96.70
Trunk CNN (2019) 98.19 99.72
PDSN (2019) 99.72 +1.53 100.00 +0.28
L29 98.02 98.78
L29+MSML 99.84 +1.82 100.00 +1.22

(a) Protocol 1
Method Sunglass Scarf
VGGFace2 (2018) 88.30 78.20
ArcFace (2019) 85.50 76.40
RPSM (2016) 84.84 90.16
Stringface (2010) 82.00 92.00
LMA (2016) 96.30 93.70
DDF (2020) 98.00 94.10
Trunk CNN (2019) 95.14 96.53
PDSN (2019) 98.19 +3.05 98.33 +1.80
L29 96.44 96.76
L29+MSML 98.80 +2.36 99.37 +2.61

(b) Protocol 2

Table 2: Face identification performance on the AR dataset.
Sunglass and scarf denote the probe faces are occluded by
realistic sunglasses and scarves, respectively.

faces occluded by scarves or sunglasses. The experimental
results are shown in Table 2. The proposed method achieves
the best robustness with scarf and sunglass occlusions un-
der two testing protocols. Whether using one or multiple
gallery images of each subject, our method improves the
performance beyond that of the baseline model. Compared
to PDSN, the proposed method yields better performance,
even if our baseline L29 underperforms that (Trunk CNN)
of PDSN.

Experiments on the MFV Dataset
We conduct the 1:1 face verification experiment on the MFV
dataset to compare the proposed MSML network and the
state-of-the-art models, as shown in Table 3. To calculate
TAR(@FAR=1e-3), we use a larger number of testing pairs
compared to LPD (Ding et al. 2020) (6,000 vs. 400). The
results show MSML is robust to unseen realistic occlu-
sions and achieves impressive performance. Compared with
A18, the proposed MSML boosts the accuracy by 3.5% and

Method #Pairs Acc. TAR
CosFace (2018) 400 86.86 -
PDSN (2019) 400 87.40 -
R50 (2020) 400 95.37 -
LPD (2020) 400 97.94 -
A18 (2019) 6000 95.40 81.10
A18+MSML 6000 98.90 91.93

Table 3: The 1:1 verification results (%) on the MFV dataset.
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Figure 7: The visualized intermediate feature maps.

TAR(@FAR=1e-3) by 10.83%, achieving the highest perfor-
mance among all the methods.

Visualization
To verify our analysis about distribution distortion and show
the efficacy of our method, we conduct a series of visualiza-
tion experiments.

Embedded feature vector. After fed with a face under
one of various occlusion cases, the MSML network gen-
erates an embedded feature vector. As shown in Figure 1,
we visualize the 512-D embedded feature vectors of our
MSML(A18) by normalizing the values into a heat map.
The visualization results show that our method can extract
occlusion-invariant embedded feature vectors.

Feature maps in the latent space. We visualize the fea-
ture maps at certain channels of Yi

f , Mi, and Zi in Figure 7.
The hierarchical FM operators generate multi-scale latent
masks Mi to purify the contaminated facial features Yi

f and
obtain the cleaned facial features Zi. The FM operators sub-
stantially eliminate the mistaken responses induced by the
occlusion.

Distribution of the embedding space. As shown in Fig-
ure 8, we map the 512-D embedding space of 10 identities
under various occlusion cases onto the 2D space through
t-SNE (van der Maaten and Hinton. 2008). Each point de-
notes an embedded feature vector extracted from a face un-
der one of the various occlusions. The points of the same
color share the same identity. Compared to the baseline A18,
the proposed MSML(A18) extracts embedded features with
smaller intra-class distance and bigger inter-class distance.
The t-SNE results demonstrate the distribution distortion is
alleviated with our method.

Ablation Study
Variations of FM operators. We compare the 1:1 face ver-
ification accuracy using the FM operators with different ar-
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(a) A18 (b) A18+MSML

Figure 8: Distributions of the embedding space mapped onto
2D space. (Best viewed in color.)

Model Layers Accuracy(%)
v0: L29 (2018) 1,2,3,4 88.37
v1: (Seg, 1, 0, Bin) 1,2,3,4 93.00
v2: (Seg, 1, 0, Tan) 1,2,3,4 93.88
v3: (Seg, 1, 0, Sig) 1,2,3,4 94.43
v4: (Seg, 3, 0, Sig) 1,2,3,4 94.13
v5: (Seg, 1, 1, Sig) 1,2,3,4 94.96
v6: (Seg, 1, 2, Sig) 1,2,3,4 95.07
v7: (Cat, 1, 0, Sig) 1,2,3,4 95.27
v8: (Cat, 3, 0, Sig) 1,2,3,4 95.87
v9: (Cat, 3, 1, Sig) 1,2,3,4 96.20
v10: (Cat, 3, 2, Sig) 1,2,3,4 96.30
v11: (Cat, 3, 2, Sig) 2,3,4 91.73
v12: (Cat, 3, 2, Sig) 1,3,4 95.40
v13: (Cat, 3, 2, Sig) 1,2,4 95.35
v14: (Cat, 3, 2, Sig) 1,2,3 90.27

Table 4: Variations of the hierarchical FM operators.

chitectures on the LFW dataset. In the evaluation, we oc-
clude the samples by random blocks ranging from 1% to
40% of the input size. The architecture of the FM operators
is denoted as (T, S,R, F ). Specifically, T = Seg indicates
Yj

s is not concatenated with Yi
f , while T = Cat indicates the

opposite case. S indicates the kernel size of Φs. R indicates
the number of the ResBlocks in Θr inserted after the fil-
ter. F ∈ {Bin, Sig, Tan} indicates the activation function,
where Bin, Sig and Tan denotes the binarization, sigmoid,
and tanh function respectively.

As shown in Table 4, compared to the occlusion-free eval-
uation result (99.33%) in Table 1, the baseline model v0 ex-
hibits a considerable performance drop (−10.96%). But the
accuracies of the models v1 ∼ v10 are not less than 93%.
The results of models v1, v2 and v3 show that the sigmoid
activation function yields better results than binarization and
tanh. The sigmoid activation function generates a soft mask
rather than a hard one. The improvement of the models v3
∼ v6 highlights the efficacy of Θr. The models with con-
catenation (v7 ∼ v10) show higher accuracy compared to
those without concatenation (v3 ∼ v6). The model v10 with
3 × 3 2D filter kernel size and two residual blocks achieves
the highest accuracy.

Mask learning on different layers. The results of models

Model MFV LFWpoly MF1occ

Acc. IOU Acc. IOU Acc.
A18 (w/o aug.) 91.77 - 99.47 - 59.60
A18 95.40 - 99.53 - 64.50
+MSMLO18 98.90 97.67 99.82 93.47 68.33
+MSMLO34 98.43 97.90 99.72 93.80 69.04

Table 5: Variations of the OSB. Whether using R-18 or R-34
in OSB improves the performance under various occlusions.

Module #Params GFLOPs
ArcFace-R18 24.02M 2.60

OSB-R18 11.43M 0.94
FM@Layer1 0.07M 0.23
FM@Layer2 0.28M 0.22
FM@Layer3 1.06M 0.21
FM@Layer4 3.00M 0.15

Table 6: The #Params and GFLOPs of various modules of
MSML(A18).

v10 ∼ v14 in Table 4 verify the effectiveness of the hierar-
chical architecture of MSML. Erasing any one of the FM
operators causes a performance degradation.

Variations of the OSB. Table 5 compares the perfor-
mance of the models with different encoders in the OSB. We
adopt MFV, LFW occluded by random polygons (LFWpoly),
and MF1occ for evaluation. The OSB using ResNet-34 (O34)
shows a higher IOU than the OSB using ResNet-18 (O18).
Adopting stronger backbone as the encoder of the OSB can
further improve the performance on MF1occ for 1:N iden-
tification, which is harder than 1:1 verification. Overall, no
matter which backbone is used as the encoder of the OSB,
our methods improve the recognition performance.

Model complexity. We provide the #params and FLOPs
of the modules of MSML(A18) in Table 6. The model size
and FLOPs are largely determined by the FRB and OSB.

Conclusion
In this paper, we propose a multi-scale segmentation-based
mask learning (MSML) face recognition network, which
tackles the mistaken response problem for occluded face
recognition. With the guidance of hierarchical occlusion
segmentation representations generated by the occlusion
segmentation branch (OSB), the feature masking (FM) op-
erators can generate multi-scale latent masks to purify the
contaminated facial features in the face recognition branch
(FRB). The purifying process can substantially eliminate
mistaken responses induced by occlusions. In this way, the
MSML network can effectively identify and remove the oc-
clusions from feature representations and aggregate features
from visible facial areas. Experimental results show that
our method outperforms other methods under various oc-
clusion scenarios while achieving competitive performance
on regular face recognition tasks. The visualized results
demonstrate the alleviation of distribution distortion with
our method.
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