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Abstract

Human-Object Interaction (HOI) detection is an essential
task to understand human-centric images from a fine-grained
perspective. Although end-to-end HOI detection models
thrive, their paradigm of parallel human/object detection and
verb class prediction loses two-stage methods’ merit: object-
guided hierarchy. The object in one HOI triplet gives di-
rect clues to the verb to be predicted. In this paper, we
aim to boost end-to-end models with object-guided statisti-
cal priors. Specifically, We propose to utilize a Verb Seman-
tic Model (VSM) and use semantic aggregation to profit from
this object-guided hierarchy. Similarity KL (SKL) loss is pro-
posed to optimize VSM to align with the HOI dataset’s pri-
ors. To overcome the static semantic embedding problem, we
propose to generate cross-modality-aware visual and seman-
tic features by Cross-Modal Calibration (CMC). The above
modules combined composes Object-guided Cross-modal
Calibration Network (OCN). Experiments conducted on two
popular HOI detection benchmarks demonstrate the signif-
icance of incorporating the statistical prior knowledge and
produce state-of-the-art performances. More detailed analysis
indicates proposed modules serve as a stronger verb predictor
and a more superior method of utilizing prior knowledge. The
codes are available at https://github.com/JacobYuan7/OCN-
HOI-Benchmark.

Introduction
Human Object Interaction (HOI) detection has recently be-
come a thriving research topic as it provides a fine-grained
understanding to human-centric images. HOI detection aims
to detect triplets formulated as ⟨human, verbs, object⟩. Elab-
orate HOI detection can boost the results of image caption-
ing (Yao et al. 2018), image retrieval (Johnson et al. 2015),
activity recognition (Yuan, Ni, and Wang 2021), etc..

Recently proposed end-to-end methods (Liao et al. 2020;
Kim et al. 2021; Tamura, Ohashi, and Yoshinaga 2021)
for HOI detection have achieved notable results without
two-stage processing. Unlike two-stage methods that deal
with human/object detection and verb prediction sequen-
tially, end-to-end methods run these two processes in par-
allel. Since two-stage methods identify object class first, it
is more effective than end-to-end methods in leveraging the
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object class information for verb prediction. Objects can re-
veal direct clues to the interactiveness of HOI triplets (Li
et al. 2019) and furthermore the specific interactions of HOI
triplets. Although those unlikely object-verb pairs can be re-
jected by introducing a post-processing (e.g. applying a bi-
nary mask (Tamura, Ohashi, and Yoshinaga 2021)), a better
choice is to inject statistical prior information during train-
ing, thus producing better ranking results (Chen et al. 2019).
In this paper, we take a step further to implant the prior
knowledge into an end-to-end model.

To profit from the object-guided hierarchy, we propose to
utilize the semantic space (Rahman et al. 2020; Xu et al.
2019). Semantic embeddings are intialized from word em-
beddings (Pennington, Socher, and Manning 2014; Mikolov
et al. 2013). Several attempts on utilizing semantic space in
HOI constrained in vanilla pretrained embeddings or their
independent projections (i.e. MLPs) (Zhong et al. 2020; Gao
et al. 2020; Bansal et al. 2020; Peyre et al. 2019). However,
semantic space tends to have a domain discrepancy towards
visual space (Zhu et al. 2021), which can not be overcome
by such transformations. Some works (Xu et al. 2019; Peyre
et al. 2019) incorporate semantic space to push visual space
closer to it, which will cause negative effects when visual
features are strong and robust. Inspired by (Wu et al. 2018;
You et al. 2020), we propose a Verb Semantic Model (VSM)
that outputs a set of semantic features that fit in with the
HOI dataset’s verb co-occurrence priors. This procedure is
optimized by the proposed Similarity KL (SKL) loss with-
out entry relaxation. Then, we inject object-verb hierarchical
priors via semantic aggregation, which generates a set of se-
mantic features corresponding to a set of visual features. By
proper utilization of two-modal features, performance can
still be boosted under strong vision models.

As VSM is shared across all images for a given dataset,
semantic aggregation gathers static verb semantic embed-
dings given an object class. This static property is identical
to previous methods (Liu, Chen, and Zisserman 2020) and
lacks cross-modality-aware representation. As two modali-
ties provide complementarity, we manage to solve the prob-
lem by cross-modal one-to-one calibration: mutually cali-
brating features from one modality via excitation from the
other modality. By this mutual calibration, our model can
generate a vision-aware semantic feature set and a semantic-
aware visual feature set. Specifically, we propose to do
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Cross-Modal Calibration (CMC), which includes i) calibrat-
ing each modality’s features by the other modality via Inter-
modal Calibration (InterC), ii) furthermore utilizing Intra-
modal Enhanced Calibration (IntraEC) (Vaswani et al. 2017;
Lin et al. 2020) to achieve intra-modal global reasoning.

In order to apply the proposed VSM and CMC into prac-
tice, we select an end-to-end vision model (VM) (Zou et al.
2021; Tamura, Ohashi, and Yoshinaga 2021) as our VM and
compose Object-guided Cross-modal Calibration Network
(OCN). To conclude, our contributions are three-fold:
• We introduce the object-guided statistical priors to fa-

cilitate end-to-end HOI detection. We introduce a Verb
Semantic Model and use semantic aggregation to profit
from this object-guided hierarchy. SKL loss is proposed
to optimize VSM to align with the HOI dataset’s priors.

• To overcome the problem of static semantic embeddings,
we propose to generate cross-modality-aware visual and
semantic features by Cross-Modal Calibration, which
consists of Inter-modal Calibration and Intra-modal En-
hanced Calibration.

• Equipped with proposed modules, our end-to-end HOI
detection model OCN achieves state-of-the-art results on
two popular benchmarks. More detailed analysis indi-
cates proposed modules serve as a stronger verb predictor
and a more superior method of utilizing prior knowledge.

Related Work
Human-Object Interaction Detection Since the proposi-
tion of visual semantic role labeling and V-COCO dataset
(Gupta and Malik 2015), HOI detection has been a research
hotspot. The methods to tackle with this problem can be cat-
egorized into two-stage methods and one-stage methods.

Two-stage methods follow a pipeline of detecting ob-
jects first and then use cropped features to infer one HOI
triplet’s multi-label verb interactions. The inference usu-
ally contain multiple streams (Chao et al. 2018): an object
stream, a human stream and an interaction stream, which is
the key stream. InteractNet (Gkioxari et al. 2018) is propose
to predict action-specific density maps. Contextual attention
(Wang et al. 2019a) is proposed to select contextual interac-
tion information. IDN (Li et al. 2020) is proposed to learn
interactions by pair integration and decomposition. Various
graph-based models like GPNN (Qi et al. 2018), RPNN
(Zhou and Chi 2019), VSGNet (Ulutan, Iftekhar, and Man-
junath 2020), DRG (Gao et al. 2020), CHG (Wang, Zheng,
and Yingbiao 2020) are proposed to capture the interaction
pattern from different aspects. Other cues like poses (Gupta,
Schwing, and Hoiem 2019; Li et al. 2019), spatial layouts
(Gao, Zou, and Huang 2018), action co-occurrence (Kim
et al. 2020b) and language features (Liu, Chen, and Zisser-
man 2020; Xu et al. 2019; Peyre et al. 2019; Zhong et al.
2020) are utilized to augment HOI detection.

One-stage methods can be categorized into three types:
i) point-based methods (Liao et al. 2020; Zhong et al.
2021) which infers heuristically-defined interaction points,
ii) anchor-based methods (Kim et al. 2020a) which detects
union boxes, iii) DETR-based (Carion et al. 2020) methods.
Thanks to DETR and its ability to extract contextual cues

(Vaswani et al. 2017), several customized end-to-end models
(Kim et al. 2021; Zou et al. 2021; Chen et al. 2021; Tamura,
Ohashi, and Yoshinaga 2021) originated from DETR have
achieved promising results. However, there has not been an
end-to-end method to incorporate semantics or explicitly uti-
lize object-guided hierarchical relation priors.
Language Semantics for Vision The language semantics
has been widely exploited in many vision subareas includ-
ing zero-shot object detection (Bansal et al. 2018), zero-
shot recognition (Wang, Ye, and Gupta 2018), few-shot ob-
ject detection (Zhu et al. 2021) and HOI detection (Peyre
et al. 2019; Xu et al. 2019). A typical method that the
above works adopt is to push vision space closer to seman-
tic space, which fails to provide positive results when the
vision model is strong. In this paper, we present a method
that utilizes language semantics with dataset-specific prior
knowledge, which is better than the supervision from vanilla
multi-modal joint embeddings (Xu et al. 2019).
Cross-Modal Interaction Cross-modal interaction is
widely studied in cross-modal retrieval (Wang et al. 2019b;
Liu et al. 2019) and VQA (Gao et al. 2019; Jiang et al. 2020).
A typical practice of cross-modal interaction is to use the at-
tention mechanism (Vaswani et al. 2017) to achieve cross-
modal global context aggregation. While in our framework,
the features in one modality will be dominated by back-
ground class (Carion et al. 2020), which may degrade the
quality of cross-modal context aggregation. Hence, we drop
this paradigm. Instead, we introduce Cross-Modal Calibra-
tion to better incorporate cross-modal supervision for HOI.

Methodology
In this section, we detail Object-guided Cross-modal Cali-
bration Network (OCN) by introducing its overall pipeline,
details of Verb Semantic Model (VSM) and Cross-Modal
Calibration (CMC), and the training and inference strategy.

Overall Pipeline
The overall pipeline of OCN is shown in Figure 1, which
is mainly composed of three parts: a Vision Model (VM), a
Verb Semantic Model (VSM) and CMC that benefits from
two-modal features. For VM, we refer to the DETR-based
HOI models (Zou et al. 2021; Tamura, Ohashi, and Yoshi-
naga 2021) due to their compact structure. Given an input
image, VM adopts a backbone (e.g. ResNet-50 (He et al.
2016)) to extract image features. We add fixed positional en-
coding (Gehring et al. 2017) to the reduced features. Then
the features are flattened and fed to a Transformer encoder
(Vaswani et al. 2017). We define a set of learned HOI queries
Q = {qi ∈ RD}Nq

i=1 to perform decoding, producing de-
coded query features Q̄ = {q̄i ∈ RD}Nq

i=1, where Nq, D de-
note the number of queries and the dimension of queries re-
spectively. Note that one HOI query is responsible for the de-
tection of one HOI triplet ⟨human, verbs, object⟩. Thus, the
decoded feature q̄i is then fed to independent Feed-Forward
Networks (FFN) to predict a human box, an object box and
an object class.

VSM mainly consists of a verb semantic reasoning mod-
ule. The inputs of VSM are word embeddings. To partly
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Figure 1: The overall pipeline of OCN. Generally, it consists of VM, VSM and CMC. Input word embeddings are shared across
different images for a given dataset.

close the gap between initial word embeddings and the HOI
dataset, a newly-proposed SKL loss is used to optimize the
embeddings with verb co-occurrence priors. To benefit the
verb prediction, we use object-guided verb semantic aggre-
gation to generate a set of semantic embeddings P̄ . Com-
bined with Q̄ and P̄ , we can perform CMC. After fusing
features from two modalities, another FNN is applied to pre-
dict verb classes.

Verb Semantic Model
VSM aims to create a semantic space that is aligned with
the training set. Word embeddings from pretrained models
e.g. GloVe (Pennington, Socher, and Manning 2014) inher-
ently contain co-occurrence priors aligned with certain data
e.g. Google News, which may not fit in with our dataset.
In VSM, we explicitly inject dataset-specific co-occurrence
priors via verb semantic reasoning and SKL Loss.

To facilitate the semantic space to better close the discrep-
ancy, we adopt a graph formulation for projection. Suppose
the initialized word embeddings are P = {pi ∈ RDp}Np

i=1,
where Np, Dp denote the number of verbs in the HOI dataset
and the dimension of word embeddings. Note that word em-
beddings are ℓ2-normed. We obtain P̃ = {p̃i ∈ RD}Np

i=1
after verb semantic reasoning by

rij =
θ(pi)

Tϕ(pj)√
D

; r
′

ij = softmaxj(rij) (1)

p̃i = σ

(∑Np

j=1
r
′

ijWp1pj

)
+Wp2pi (2)

where σ is the non-linear activation function ReLU; θ, ϕ
are both linear projections that embed pi into D-dimension
space; rij denotes pairwise relation; softmaxj denotes
softmax function conducted along index j; Wp1,Wp2 ∈
RD×Dp are linear projections for value embedding and
residual connection.

Similarity KL To inject priors into the semantics P̃ , SKL
is designed to optimize the adjacency matrix of P̃ to obey

the co-occurrence distribution for a given HOI dataset. Due
to the verb imbalanced problem, the naive joint distribution
of verb pairs will be dominated by head classes. Inspired by
(You et al. 2020), we generate a symmetrized conditional
distribution. We define the verb from the training set as a
set V = {vi}

Np

i=1 and its conditional probability as C =
{cij = P(vj |vi)|i, j = 1, 2, ...Np; i ̸= j}. The symmetrized
conditional distribution Ĉ can be obtained by

ĉij =
cij + cji
2Np

(3)

where ĉij denotes the symmetrized probability for cij . Note
that the denominator 2Np is a normalizing factor to make Ĉ
sum to one. We use ℓ2-norm to normalize p̃i. The adjacency
matrix A = {aij |i, j = 1, 2, ...Np; i ̸= j} of the semantics
P̃ can be obtained by

aij =
exp(p̃Ti p̃j/τ)∑Np

k=1

∑Np

l=1,l ̸=k exp(p̃
T
k p̃l/τ)

(4)

where τ is a temperature parameter that scales the softmax
distribution of inner products of the normalized semantics
(Wu et al. 2018). Our aim is to push close distribution A to
distribution Ĉ. We utilize the KL-divergence to achieve this
purpose, which is formulated as

LSKL = EĈ [log(Ĉ)− log(A)] (5)
By the utilization of LSKL, the semantics are forced to obey
the co-occurrence priors.

Semantic Aggregation To facilitate the verb prediction,
we propose object-guided verb semantic aggregation. The
basic intuition is that given an object class for one spe-
cific HOI triplet, it indicates what the verb might be or
might not be based on the object-verb co-occurrence pri-
ors. To realize this, we first collect the conditional priors
S = {sij = P(vj |oi)|i = 1, 2, ..., No + 1; j = 1, 2, ..., Np}
from the training set, where oi ∈ O = {oi}No+1

i=1 , No de-
notes the number of object classes and the additional 1 de-
notes the background class. Note that sij |i=No+1 is manu-
ally set to be a uniform distribution, as the background class
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Figure 2: Example visualizations for yi = InterC(p̄i, q̄i)
and ȳi = IntraEC(y). softmax is used along index j.

gives no clue about the verb classes. To overcome the effect
caused by false prediction of object classes and to allevi-
ate the long-tailed distribution of verbs, we use Laplacian
Smoothing (Zhai and Lafferty 2004) to smooth the condi-
tional distribution sij as

ŝij =
sij + β/Np∑Np

k=1 (sik + β/Np)
=
sij + β/Np

1 + β
(6)

where ŝij denotes the smoothed object-verb priors for sij ;
β is a hyper-parameter for smoothing.

Given a decoded HOI query set Q̄, we predict their ob-
ject classes by FFN. Combined with object-verb priors, we
manage to aggregate a set of P̄ = {p̄i ∈ RD}Nq

i=1, which in-
dicates a verb guess based on the smoothed priors. Note that
Q̄ and P̄ are one-to-one match, and the cardinalities of P̃
and P̄ are different. The verb semantic aggregation process
can be formulated as

q̄
(o)
i = FFN(q̄i); p̄i =

∑Np

j=1
ŝ
q̄
(o)
i j
p̃j (7)

where q̄(o)i denotes the object class of query q̄i predicted us-
ing FFN. ŝ

q̄
(o)
i j

is the smoothed P(vj |oq̄(o)i
). Eq.7 utilizes

the object class as a cue, to aggregate verb semantic embed-
dings based on the smoothed priors ŝ

q̄
(o)
i j

.

Cross-Modal Calibration
The obtained set Q̄ and P̄ contain visual cues and seman-
tic cues for HOI verbs respectively. To overcome the static
semantic embedding problem, we propose to calibrate one
modality guided by the other modality. Previous work glob-
ally aggregate features from the other modality (Gao et al.
2019) but both modality in our framework is dominated by
background class, which will not result in a fine cross-modal
aggregation. Inspired by (Hu, Shen, and Sun 2018; Vaswani
et al. 2017), we propose to perform cross-modal feature cal-
ibration in multiple subspaces, which includes InterC and
IntraEC illustrated in Figure 2. Below we will exemplify
using p̄i to calibrate q̄i, denoted as yi = InterC(p̄i, q̄i)
and performing intra-modal reasoning, denoted as ȳi =
IntraEC(y). The generation of xi = InterC(q̄i, p̄i) and
x̄i = IntraEC(x) is similarly conducted.

Inter-Modal Calibration To perform InterC, we project
p̄i into a subspace and then excite other modality’s feature
q̄i in the subspace. We formulate it as

ei = δ(Wt1σ(Wt2p̄i)) ◦Wt3q̄i (8)

where Wt2,Wt3 ∈ RD
H ×D project p̄i and q̄i into D

H -
dimension subspaces; Wt1 ∈ RD

H ×D
H projects the σ-

activated feature into D
H -dimension subspaces; δ is the sig-

moid function; ◦ denotes Hadamard product. We project the
q̄i in rather low dimension in order to perform multi-head
calibration with acceptable computational cost. We can per-
form the calibration as

yi = q̄i +Wt4σ(LN(Wt5Cat(e
(1)
i , ..., e

(H)
i ))) (9)

where H denotes the number of independent InterC heads;
superscript is added to ei, denoted as different heads; LN
denotes LayerNorm (Ba, Kiros, and Hinton 2016); Cat de-
notes concatenation;Wt4,Wt5 ∈ RD×D.

Intra-Modal Enhanced Calibration Since InterC cali-
brates the features, it is intuitive to incorporate a global rea-
soning module IntraEC to restore the global context. In prac-
tice, we adopt bilinear pooling (Kim et al. 2016; Yuan and
Ni 2021) to infer intra-modal relation as

fij = w
T(Wb1yi) ◦ (Wb2yj) (10)

f
′

ij = softmaxj(fij); gij = f
′

ijWb3yj (11)

where w ∈ RD, Wb1,Wb2 ∈ RD×D and Wb3 ∈ RD
H ×D.

Also, we extend IntraEC into a multi-head manner for better
representation ability:

ȳi = yi +Wb4σ(LN(Wb5

∑Nq

j=1
Cat(g

(1)
ij , ..., g

(H)
ij )))

(12)
where Wb4,Wb5 ∈ RD×D; H denotes the number of inde-
pendent IntraEC heads, which is identical to InterC.

Modality Fusion After CMC is conducted, we obtain two
sets of verified features from two modalities. We adopt the
fusion strategy (Zhang, Hare, and Prügel-Bennett 2018) to
fuse x̄i and ȳi as

zi = σ(Wxx̄i +Wyȳi)− (Wxx̄i −Wyȳi)
2 (13)

where Wx,Wy ∈ RD×D. The obtained feature set Z =

{zi}
Nq

i=1 serves as the feature for predicting verbs by FFN.

Training and Inference Strategy
Similar to all DETR-based methods, we formulate HOI de-
tection as a set prediction problem (Carion et al. 2020). To
train the end-to-end model, we need to i) match ground truth
(GT) HOI triplets with the predicted HOI triplets, ii) calcu-
late losses for VM and VSM. The matching process is con-
ducted with Hungarian algorithm (Kuhn 1955). If we de-
note GT HOI triplet set as G = {gi}

Nq

i=1 (padded with no
HOI triplets in order to match) and the predicted HOI set as
M = {mi}

Nq

i=1, the bipartite matching can be formulated as

ψ̂ = argmin
ψ∈ΨNq

∑Nq

i=1
Hcost(gi,mψ(i)) (14)
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LSKL VSM InterC IntraEC Full Rare Non-Rare
Base VM 29.15 22.20 31.23

✓ ✓ ✓ ✓ 30.91 25.56 32.51
✓ ✓ ✓ 30.54 24.33 32.39

✓ ✓ 29.88 23.50 31.79
✓ ✓ ✓ 30.51 25.15 32.12
✓ ✓ ✓ 30.40 24.71 32.10

(a) Ablation study of proposed modules and loss.

#Heads H Full Rare Non-Rare
1 30.58 25.65 32.05
2 30.91 25.56 32.51
4 30.82 24.45 32.73
8 30.65 24.93 32.36

(b) Effect of head numbers for both
InterC and IntraEC.

τ Full Rare Non-Rare
0.025 30.70 25.03 32.39
0.050 30.91 25.56 32.51
0.100 30.54 24.67 32.29
0.200 30.72 25.59 32.25

(c) Effect of varying choices for
temperature τ in LSKL.

Table 1: Ablation study on HICO-DET.

where ΨNq
is the solution space for bipartite matching. The

matching cost Hcost follows (Tamura, Ohashi, and Yoshi-
naga 2021) and is detailed in the Supplementary Material.
The loss to train the model can be denoted as

L = λ1LSKL + λ2Lbox + λ3LGIoU + λ4Lo + λ5Lv (15)

where Lbox denotes ℓ1 loss for box regression; LGIoU de-
notes GIoU loss (Rezatofighi et al. 2019); Lo denotes Cross-
Entropy loss for object class; Lv denotes loss for verbs. We
mainly study Binary Cross-Entropy (BCE) and Focal loss
(Lin et al. 2017) as Lv . λ balances these losses by setting
different weights.

During inference, the object class and the bounding boxes
(bbox) of the human and the object for one HOI triplet is
simply generated from q̄i. The object score is the maximum
object confidence score. The verb score is the multiplication
of the object score and the verb score predicted by zi. A
binary mask is used by default to filter out object-verb pairs
that are not in the training set.

Experiments
Datasets and Metrics
In this paper, we use two widely-adopted datasets dubbed
HICO-DET (Chao et al. 2015) and V-COCO (Gupta and
Malik 2015). HICO-DET contains 37,536 training images
and 9,515 testing images, in which 600 ⟨verb, object⟩ unique
interaction types are defined out of 117 verb classes and
80 object classes. We evaluate on the test set by interac-
tion mAP (%) over three sets: i) Full set (all 600 interac-
tions), ii) Rare set (138 interactions with less than 10 train-
ing samples), iii) Non-Rare set (462 interactions with 10 or
more training samples). We evaluate our model under De-
fault setting for the 3 sets. One HOI triplet is rightly lo-
calized when the predicted bboxes of the human and object
have Intersection-over-Union (IoU) greater than 0.5 with GT
bboxes.

V-COCO contains 2,533 training images, 2,867 validating
images and 4,946 testing images, in which interactions are
defined upon 25 interactions and 80 object classes. We eval-
uate on the test set by verb mAP (%) under two scenarios
following (Kim et al. 2021; Tamura, Ohashi, and Yoshinaga
2021): i) In Scenario1, we need to report when there is no
object in the GT HOI triplet, denoted as AP#1

role; ii) In Sce-
nario2, we can ignore the prediction of the object bbox when
the GT HOI triplet is without object, denoted as AP#2

role.

Implementation Details
For VM, we use Transformer with a 6-layer encoder and a
6-layer decoder following (Carion et al. 2020). We use pa-
rameters of DETR trained on COCO (Lin et al. 2014) as
VM’s initialization. We adopt AdamW (Loshchilov and Hut-
ter 2018) to optimize OCN for 80 epochs with a weight de-
cay of 10−4. The learning rate (lr) of the backbone is fixed
to 10−5. The lr of other parts starts from 10−4 and decays
to 10−5 after the 60th epoch. We use basic data augmenta-
tion to train a robust model, including random crop, random
horizontal flipping, image scale and color augmentation fol-
lowing (Carion et al. 2020; Liao et al. 2020). During evalu-
ation, the most confident K = 100 HOI triplets are selected
to compute mAP.

By default, we use following parameters if not otherwise
stated. We set number of queries Nq = 100 and the dimen-
sion of queries D = 256. The head number H for InterC and
IntraEC is set to 2. The temperature τ of LSKL is set to 0.05.
The smoothing parameter β is set to 0.1. Np is the number
of verb classes. The verb loss is Focal loss and the back-
bone is ResNet-50 by default. We use 300-dimension GloVe
word embedding (Pennington, Socher, and Manning 2014)
asP . The hyper-parameters λ1, λ2, λ3, λ4, λ5 in L are set to
1, 2.5, 1, 1, 1 respectively.

Model Analysis
Ablation Study We conduct model analysis on HICO-
DET. Note that because VM’s structure does not change,
the ability to localize HOI triplets stays nearly unchanged.
The boost purely comes from better verb-inferring ability.

Module and Loss Ablation To demonstrate the efficacy
of our proposed module, we first conduct ablation experi-
ments as shown in Table 1a. By applying our full model,
the Rare set can gain 3.36% and the Non-Rare set 1.28%,
producing a more balanced result. If removing LSKL, the
model trusts the implicit co-occurrence containing in the
initialized word embedding, which is not aligned with our
dataset, thus causing performance decline. By applying the
VSM together with LSKL, the performance can be boosted
by basic semantic aggregation, indicating that the object-
verb prior based semantic aggregation helps to better rank
the verbs. By using InterC, two modal features can cali-
brate features based on the other modality, bringing in per-
formance boost. By using IntraEC, intra-modal features, es-
pecially semantic aggregated features p̄i, can have better
global-dependent representations (Vaswani et al. 2017). By
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Smoothing β Full Rare Non-Rare
0 30.50 25.00 32.15

0.1 30.91 25.56 32.51
1 30.85 25.43 32.47
10 30.81 25.40 32.43

100 30.36 24.86 32.01
∞ 30.18 23.33 32.22

Table 2: Effect of varying β in Eq.6. β = ∞ denotes ŝij =
1/Np, without any prior knowledge.

Verb Loss Model Full Rare Non-Rare

BCE
VM 20.13 13.16 22.22

VM + MMJE 20.60+0.47 13.66+0.50 22.67+0.45

OCN 26.42+6.29 20.79+7.63 28.11+5.83

Focal
VM 29.15 22.20 31.23

VM + MMJE 28.83−0.32 22.09−0.11 30.84−0.39

OCN 30.91+1.76 25.56+3.36 32.51+1.28

Table 3: Performance analysis on HICO-DET with different
verb losses and semantic models.

appending IntraEC to InterC, features in identical modality
can restore the global context after calibration, bringing ad-
ditive performance boost to InterC.

Sensitivity Analysis of Head Numbers InterC and In-
traEC are designed to be multi-head. We vary the head num-
bers for both modules, the results of which are shown in
Table 1b. The best choice for the head number is 2.

Sensitivity Analysis of the Temperature Parameter For
the optimization of VSM, we vary the temperature τ in
LSKL which is shown in Table 1c. A low value of τ will
sharpen the distribution of Ã and thus ease the optimization
of LSKL. The table indicates the optimal value is 0.05.

Sensitivity Analysis of the Smoothed Distribution An
appropriate probability smoothing hyper-parameter β in
Eq.6 can balance the HOI detection result by smoothed se-
mantic aggregation. We try varying β and results are in Table
2. The table indicates that, i) compared to non-smoothed se-
mantic aggregation, properly smoothing the object-verb dis-
tribution can slightly boost the performance; ii) the smooth-
ing operation is not sensitive to the choice of β, with β rang-
ing from 0.1 to 10 producing similar results. Hence we set
β = 0.1 by default; iii) by setting β = ∞, the model loses
the verb prediction orientation, which damages the perfor-
mance and proves our claim.

OCN Helps More for Poor Verb Predictor Since our
model relies on object-verb and verb-verb priors, it injects
verb prediction guessing information given an object. We
have reasonable speculation that adding proposed modules
on a model with a poor verb predictor will have more signif-
icant improvements due to this object-guided structure. We
conduct an experiment with a loss that has more trouble in
inferring verbs (BCE), shown in Table 3. BCE suffers from
the problem of imbalanced positive-negative samples. OCN
with BCE loss improves upon VM by 6.29%, suggesting that
OCN greatly ameliorates the imbalance problem. Even with
Focal loss, our model can also make its contribution. More-

Model Mask Full Rare Non-Rare mR@100

VM
28.89 21.76 31.02 57.83

✓ 29.15+0.26 22.20+0.44 31.23+0.21 65.10+7.27

OCN
30.82+1.93 25.48+3.72 32.42+1.40 63.86+6.03

✓ 30.91+2.02 25.56+3.80 32.51+1.49 67.64+9.81

Table 4: Performance analysis on HICO-DET with different
methods of utilizing prior knowledge. ”Mask” denotes bi-
nary mask used to filter out impossible object-verb pairs.

Method Backbone Time #Params Full
PPDM (Liao et al. 2020) HOG104 56ms 194.9M 21.94
HOTR (Kim et al. 2021) R50 61ms 51.2M 25.10
ASNet (Chen et al. 2021) R50 56ms 52.5M 28.87

QPIC R50 38ms 41.5M 29.07
OCN R50 43ms 43.4M 30.91

Table 5: Computational cost analysis on HICO-DET with
Tesla V100. HOG and R are short for Hourglass and ResNet.

over, the Rare set benefits more than the Non-Rare set thanks
to our object-guided structure.

Superiority over Multi-Modal Joint Embeddings A
common practice of utilizing word embeddings is Multi-
Modal Joint Embedding (MMJE) (Xu et al. 2019), which
maximizes the similarity between positive vision-semantic
pairs and keep negative pairs to a predefined margin. We
reimplement MMJE by VSM and Lsim in (Xu et al. 2019)
and add MMJE to VM, results of which are shown in Table
3. Comparing VM and VM+MMJE, MMJE will cause neg-
ative effects when VM is already strong because it trusts the
underlying verb relations in word embeddings which have a
discrepancy towards the HOI dataset. However, our method
with priors will constantly bring in positive effects.

Superiority over Binary Mask The binary mask can be
treated as a stiff way to utilize relation prior knowledge by
applying a hard mask to the predicted object-verb pair. Our
method can be considered as a more fine-grained method
which considers object-verb priors and verb co-occurrence
priors. The results are shown in Table 4. In this table, we
also provide results with a metric: mean Recall@K (%)
(Tang et al. 2020) (mR@K), which averages the recall of
HOI interactions with top K evaluation. K is set to 100 in
this paper. By applying a stiff method utilizing object-verb
prior, although mR@100 goes up by 7.27%, the result of the
Full set can only be boosted by 0.26%. While OCN w/o bi-
nary mask can boost the Full set by 1.93% and the Rare set
by 3.72%, with mR@100 merely going up by 6.03%. It in-
dicates that OCN improves the ranking of HOI interactions
greatly while the binary mask struggles to do so, demonstrat-
ing the significance of mining the object-guided verb predic-
tion structure. If adding binary masks to OCN, the mAP im-
provement will be very trivial but with an obvious mR@100
boost, which reemphasizes the binary masks’ poor ability.

Computational Cost Analysis We compare the compu-
tational cost with competitive one-stage methods, shown in
Table 5. It can be seen from the table that our method does
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Method Backbone Full Rare Non-Rare AP#1
role AP#2

role

Two-stage
InteractNet R50-FPN 9.94 7.16 10.77 40.0 -

GPNN R152-DCN 13.11 9.34 14.23 44.0 -
iCAN R50 14.84 10.45 16.15 45.3 52.4

No-Frills* R152 17.18 12.17 18.68 - -
PMFNet R50-FPN 17.46 15.65 18.00 52.0 -
DRG* R50-FPN 19.26 17.74 19.71 51.0 -
IPNet HOG104 19.56 12.79 21.58 51.0 -

FCMNet* R50 20.41 17.34 21.56 53.1 -
PD-Net* R152-FPN 20.81 15.90 22.28 52.6 -

IDN R50 23.36 22.47 23.63 53.3 60.3
One-stage

UnionDet R50-FPN 17.58 11.72 19.33 47.5 56.2
PPDM HOG104 21.94 13.97 24.32 - -
GGNet HOG104 23.47 16.48 25.60 54.7 -
DIRV ED-d3 21.78 16.38 23.39 56.1 -
HOTR R50 25.10 17.34 27.42 55.2 64.4

HOITransformer R50 23.46 16.91 25.41 52.9 -
QPIC† R50 29.07 21.85 31.23 61.8 64.1
ASNet R50 28.87 24.25 30.25 53.9 -

Ours-OCN*
R50 30.91 25.56 32.51 64.2 66.3

R101 31.43 25.80 33.11 65.3 67.1

Table 6: Comparisons with state-of-the-arts on HICO-DET
and V-COCO. Full, Rare and Non-Rare columns are re-
ported on HICO-DET and AP#1

role, AP
#2
role on V-COCO. R,

HOG and ED are short for ResNet, Hourglass and Efficient-
Det respectively. * denotes utilization of word embeddings.
† denotes reproduction using COCO pre-trained parameters.

well in speed-performance trade-off. To be more specific,
VM takes 38ms to run that is identical to QPIC. VSM takes
0.6ms to run. InterC and IntraEC take 4.3ms to run. Note
that during inference, we can slightly speed it up by infer-
ring VSM once and storing P̃ in the memory for a given
dataset. Our model achieves the best performance with ac-
ceptable cost adding to VM.

Object-Conditioned Verb Distribution Analysis To an-
alyze how the object-guided hierarchy helps the verb predic-
tion, we conduct a case study with different methods’ verb
distribution on the rightly localized HOI triplets whose ob-
jects are predicted as toaster, the figure of which is illus-
trated in Figure 3. Note that VM and OCN have the same
vision structure, thus having identical detection abilities.
VM predicts the verb more uniformly. OCN, equipped with
object-guided priors, predicts the verb distribution aligned
more with the distribution of the training set. We also
measure the mean Pearson Correlation Coefficient (mPCC)
(Benesty et al. 2009) of the predicted object-conditioned
verb distribution to the training object-conditioned verb dis-
tribution (”mean” averages different objects). It turns out
that OCN has a higher mPCC (0.636) than VM does (0.476),
indicating the object-guided priors help the verb prediction.

t-SNE Visualization of the Semantic Space To observe
SKL loss’s role, we use t-SNE (Maaten and Hinton 2008)
to visualize the input Glove Embedding set P and the opti-
mized set P̃ , illustrated in Figure 4. In Figure 4, we high-

0 20 40 60 80 100 120

verb 
class
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OCN results
VM results

Figure 3: A case visualization of toaster-conditioned verb
distribution with different methods. Better view in color.
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Figure 4: Visualization of the semantic space on HICO-DET.

light four word pairs with different colors that highly co-
occur in HICO-DET. The original GloVe embedding spreads
in the space while the optimization of SKL loss pushes se-
mantically similar verbs closer, which decreases the discrep-
ancy between the implicit priors in GloVe and the verb co-
occurrence prior in HICO-DET.

Comparisons with State-of-the-Arts

We compare our results with previous state-of-the-arts on
HICO-DET in Table 6. The table indicates that i) All previ-
ous models trail our model by a considerable margin. None
of the one-stage models possesses the object-guided struc-
ture, which shows its superiority. ii) Comparing with pre-
vious methods that utilize word embeddings, our method
greatly surpasses them by a considerable margin and main-
tains an end-to-end manner. iii) Comparing to other DETR-
based models e.g. HOTR, HOITransformer and QPIC, our
method is a more balanced detector thanks to the smoothed
prior knowledge.

We compare our results with previous state-of-the-arts on
V-COCO in Table 6. The table indicates our method’s more
superior performances compared to methods w/ or w/o word
embeddings. Our method surpasses previous best AP#1

role by
2.4% mAP and best AP#2

role by 1.9%.

Conclusions and Future Work
In this paper, we propose to facilitate end-to-end HOI de-
tection models with object-guided priors. In practice, we re-
sort to a more aligned semantic space and propose to per-
form cross-modal calibration. Similar thoughts can also fa-
cilitate other visual relation detection problems like scene
graph generation and video HOI. However, our method can
run into trouble when extending to scenarios like zero-shot
HOI detection, which is left for future exploration.
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