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Abstract
Learning with limited labeled data is a long-standing prob-
lem. Among various solutions, episodic training progres-
sively classifies a series of few-shot tasks and thereby is as-
sumed to be beneficial for improving the model’s general-
ization ability. However, recent studies show that it is even
inferior to the baseline model when facing domain shift be-
tween base and novel classes. To tackle this problem, we pro-
pose a domain-independent task-level self-supervised (TL-
SS) method for cross-domain few-shot learning. TL-SS strat-
egy promotes the general idea of label-based instance-level
supervision to task-level self-supervision by augmenting mul-
tiple views of tasks. Two regularizations on task consistency
and correlation metric are introduced to remarkably stabi-
lize the training process and endow the generalization abil-
ity into the prediction model. We also propose a high-order
associated encoder (HAE) being adaptive to various tasks.
By utilizing 3D convolution module, HAE is able to gener-
ate proper parameters and enables the encoder to flexibly to
any unseen tasks. Two modules complement each other and
show great promotion against state-of-the-art methods exper-
imentally. Finally, we design a generalized task-agnostic test,
where our intriguing findings highlight the need to re-think
the generalization ability of existing few-shot approaches.

Introduction
Learning effective prediction model with limited labeled
data is a long-standing problem. As a significant ad-
vance, few-shot learning (FSL), which generalizes the meta-
knowledge in base classes (sufficient samples) to novel
classes (few labeled data), has attracted considerable atten-
tion. With the prevalence of meta-learning training strategy
“episode” (Vinyals et al. 2016), the baseline of few-shot
learning has been continuously improved. However, recent
studies (Chen et al. 2019b; Tseng et al. 2020; Triantafillou
et al. 2020; Guo et al. 2019) show that, when there exists do-
main shift between training and test data, episodic training
will be greatly affected or even inferior to the primary model
(i.e., frozen the ConvNet and fine-tune the fully-connected
layer with few target data).

Intuitively, “episode” strategy is naturally assumed to be
beneficial for the cross-domain problem. By establishing
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Figure 1: The motivation. Traditional few-shot methods are
greatly affected by domain shift. Some task-specific meth-
ods initially show some potential, but still have a gap with
the baseline (b). We attribute it to its “unstable concept”. Our
insight is to propose a task-level self-supervised strategy to
improve generalization (c). By constraining the task consis-
tency (c1) and metric alignment between different views of
the same task, the stability and discrimination (c2) of the
subspace are guaranteed respectively.

continuous heterogeneous tasks (i.e., N-way K-shot tasks),
episode emulates the process that progressively classifies a
series of datasets, each including disjoint categories. It is ex-
pected that the learned representation can generalize to novel
classes. However, as indicated by (Su et al. 2019), episode
technique might discard semantic information that is irrele-
vant for base classes but critical for novel classes. Despite
the data availability, training for base class classification on
the source data would not be reflective.

To tackle this issue, we find recent proposed “task-specific
adaptation” (Ye et al. 2020; Oreshkin et al. 2018; Li et al.
2019; Guo et al. 2020) methods show a promising direction.
A key point lies on that these methods raise their focus on
the concept of “task”, instead of instance-level classification.
They utilize the task statistics, e.g., mean and variance in a
episode, to abstract a specific task with a brief context de-
scription. It allows the model to generate task-specific en-
coder parameters, and therefore encourages the model to fo-
cus on current task. Since various task descriptions results in
various task-specific encoders, it provides great diversity for
training, and is more in line with the essence of the episodic
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strategy. As a result, their generalization ability would be re-
markably improved. LGM (Li et al. 2019) in Fig. 1(b) also
shows a great promotion on the cross-domain task, which
consistently support our claims.

Despite their large potential, existing task-specific ap-
proaches still haven’t achieved satisfactory results under
the cross-domain setting. We attribute it in two aspects: 1)
Unstable subspace distribution (Fig. 1(c1)). Existing task-
specific adaptation methods often use the task statistics as
the task abstraction, but it is less robust in the context of
few-shot learning (a task only contains very few samples).
Since the task context modeling is always ambiguous, the
task context would drift with the domain shift. 2) Lack of lo-
cal feature discrimination (Fig. 1(c2)). Current task-specific
approaches, only dependent on instance-level supervision,
are easy to overfitting due to the huge domain discrepancy.

In this paper, we propose a novel Task-Level Self-
Supervised strategy (TL-SS). Our observation is that the
label-based supervision is easily influenced by the observa-
tion domain, and the instance-level self-supervision is insuf-
ficient to handle the domain discrepancy problem. Hence,
following the episodic training and task-specific methods,
we promote the idea of instance-level to task-level super-
vision under the assumption that each episode can be con-
sidered as a specific domain1. A key difference between
instance-level and task-level supervision lies on we pay
more attention on the task itself rather than the instance. To
do so, multiple views of task are constructed via instance-
level augmentation and class-level permutation. We force
task context modeling results of different views to be sim-
ilar (Fig. 1(c1)). Thus when episode is coming one by one,
we continually train the model on various domains, and this
task-level consistency supervision allows us to learn stable
concept and can promote more transferable knowledge to-
wards model generalization.

To extract more robust task context, we adopt the method-
ology of “learning-to-learn” from meta-learning and con-
struct a high-order associated encoder (HAE). Different
from previous methods (Li et al. 2019), we utilize a 3D con-
volutional network to abstract task context by capturing the
intrinsic data structure within a task. It not only highlights
the discrepancy between tasks and enables the encoder to
flexibly adapt to any unseen task, but also complement to
TL-SS (e.g., class-level permutation). Finally, we introduce
a novel weight generator to adaptively generate variable pa-
rameters according to the context modeling (Fig. 2(b)).

We evaluate our method on standard benchmarks and de-
sign a new task-agnostic test to show the effectiveness of our
approach. Our contributions are summarized as:
• We propose a novel task-level self-supervised (TL-SS)

training strategy. Two task-level regularizations are used
to promote the training stability and discriminative rep-
resentation.
• A high-order associated encoder (HAE) is proposed

whose parameters can adapt to any unseen domain ac-
cording to the robust task context modeling.

1This class-difference-caused distribution shift among hetero-
geneous tasks can be considered as a special case of domain shift.

• Finally, we evaluate our method on several standard
benchmarks and design a more generalized task-agnostic
test. Sufficient experiments clearly prove the effective-
ness of our proposed method.

Problem Definition and Related Work
Classification tasks usually contain a set of dataDs (source),
typically large-scale, to train the base model. For testing,
there is also a set of data Dt (target), which includes labeled
samples (support data) and unlabeled ones need to be classi-
fied (query data). In the following, C(·) and P (·) denote the
categories and distributions of a dataset respectively.
Traditional Cross Domain Classification: C(Ds) =
C(Dt), P (Ds) 6= P (Dt). The main motivation is to extract
“domain invariant” features of samples with the same cate-
gories but different domains. Most of them are only valid for
homogeneous tasks.
Few-shot Learning (FSL): C(Ds)∩C(Dt) = ∅, P (Ds) ≈
P (Dt), and the support data is few. MatchingNet (Vinyals
et al. 2016) proposed the “episode” training strategy and
several milestones have emerged after this, including metric
based (Snell et al. 2017; Sung et al. 2018; Satorras and Es-
trach 2018; Kim et al. 2019), optimization based (Finn et al.
2017; Andrychowicz et al. 2016; Lee et al. 2019; Li et al.
2019) and others (Santoro et al. 2016; Sung et al. 2017).
Cross Domain Few-shot Learning (CD-FS)2: C(Ds) ∩
C(Dt) = ∅, P (Ds) 6= P (Dt), and support data is in-
sufficient. (Chen et al. 2019b) that current FSL methods
degraded significantly when encountering domain shifts.
(Dong and Xing 2018) is the first study to address this issue
in the one-shot learning setting, but they assume they can ac-
cess unlabeled data in target domain. Recently, (Tseng et al.
2020) utilized feature-wise transformation layers to reduce
feature distribution shift.
Task-specific & Weight generating Based Methods: Re-
cently, task-specific methods (Oreshkin et al. 2018; Ye et al.
2020) and weight generating (Guo et al. 2020; Li et al. 2019)
based methods have shown great potential for CD-FS. They
aim to adapt the model dynamically according to the current
task. The most inspirational work to us is (Li et al. 2019),
which generates encoder parameters according to task con-
text. However, as mentioned above, its task context is un-
stable. Instead, we design a more reasonable task modeling
module and introduce self-supervised regularization to make
it suitable for CD-FS task.
Self Supervised learning: Predicting the colors (Larsson
et al. 2016), position (Noroozi and Favaro 2016), rotation
(Gidaris et al. 2019) and the missing part (Pathak et al.
2016) of the images are some of the many methods for self-
supervised learning. Recently, these methods have been pro-
posed for solving FSL (Chen et al. 2019a; Gidaris et al.
2019; Su et al. 2019) and cross-domain (Xu et al. 2019; Car-
lucci et al. 2019) tasks. But they are all concentrating on
instance-level self-supervision. To our best knowledge, we
are the pioneer’s work for task-level self-supervision. It is

2CD-FS in our work is limited to heterogeneous task. Homoge-
neous task (Motiian et al. 2017; Teshima et al. 2020) which weak-
ens the FSL requirements is not within the scope of this work.
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Figure 2: Illustration of the proposed overall framework. We construct a high-order associated encoder via task-level self-
supervision to solve CD-FS task. (a) The task-level self-supervised (TL-SS) strategy proposed in this paper varies Taski
sampled by the episode strategy into multi-views (red and blue data flow). (b) The parameters of high-order associated encoder
(HAE) are adaptively generated by a weight generator according to task context modeling results. (c) TL-SS introduce two
constraints: TL-SS task consistence loss Lc and TL-SS metric learning loss Lm.

expected that these task consistency can largely stabilize the
meta-learning process and hence improve the generalization
ability of the trained model.

Methodology
Overview
Under the cross-domain few-shot context, we are given a
collection of data X s from a specific domain, where we at-
tempt to train a model with these data, but expect it could
be generalized to other domains X t, especially the scale of
X t is small (e.g., N-way K-shot). Furthermore, we follow
the general FSL setting that ignores X t in the training phase
and does not require any fine-tuning processes, enabling fast
model deployment to the unseen task.

Concretely, we follow the ”episode” sampling strategy
to simulate a N-way K-shot task, which randomly selects
N categories from the training set, with K random sup-
port samples for each category and Q query samples in one
episode. That is:

T j =
{
{(xi, yi)}NKi=1 , {xNK+1, . . . ,xNK+Q}

}
, (1)

where xi ∈ X s denotes the training samples and yi de-
notes the corresponding labels. In our task-level supervision
framework (Fig. 2), it consists of two key components: 1)
A High-order Associated Encoder (HAE)). 2) A Task-Level
Self-Supervised regularization (TL-SS).

High-order Associated Encoder (HAE)
We propose a High-order Associated Encoder (HAE) for
extracting domain-adaptive features. Motivated by meta-
learning, we concretize the meta-knowledge as the ability
to generate the suitable parameters for a given domain/task.
Thus the encoder is adaptive to various tasks and yields
task-specific subspace. Task-Level Self-Supervised regular-
ization is then used to make these subspace stable, discrimi-
native, and hence improve the generalization ability.
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Figure 3: Illustration of the High-order Associated Encoder
(HAE). For simplicity, one sample shows only one channel
of feature map.

HAE is divided into a set of shallow layers fθ and a
set of deep layers gω , where fθ are the traditional convolu-
tional layers with trainable parameters. For aN -wayK-shot
task, fθ first transforms all samples into the feature maps{
fθ (xi) ∈ RH×W×C

}NK+Q

i=1
, where H,W and C denote

the height, width and channel number, respectively. Then,
the parameters of gω are generated by the Weight Generator
based on the results of Task Context Modeling.

Task Context Modeling: We design a task context mod-
eling module M(·;φ) to abstract a specific task Tj with
a fixed-size feature τ j ∈ Rd, d = 128 in our case. The
main role of τ j is to thoroughly reflect differences among
tasks. From this perspective, we propose to utilize the rela-
tionship among samples as the task context rather than the
instance-level representations. In particular, we splice the
feature maps of all support samples into a video-like for-
mat, where each category serve as a specific action unit. We
summarize the task context as a multivariate Gaussian dis-
tribution N (µj ,σ

2
j ). We use a 3D CNN to jointly learn the
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statistics µj ∈ Rd/2 and σj ∈ Rd/2 of task Tj (Fig. 3(a)):

µj ,σj = M
(
{fθ (xi)}NKi=1 ;φcon3d

)
, (2a)

τ j =
⌈
µj ,σj

⌉
, (2b)

where φcon3d indicates the parameters of the 3D CNN. d·e
indicates the concatenate operation. τ j , obtained by con-
catenating µj and σj , refers to task context feature. Intu-
itively, 3D convolution network enjoys the primary advan-
tages: 1) The input of 3D CNN is the combination of all
samples which treats episodic training from a task-level as-
pect; 2) 3D CNN captures the correlations not only in spa-
tial dimension but also among sample relationships, referred
to ”high-order association”. 3) As indicated previously, 3D
CNN is able to extract the order information, a unique task-
level characteristic. Thus 3D CNN facilities our task aug-
mentation and task-level self-supervision3 (in Sec.TL-SS).

Weight Generator: Given current task context feature
τ j , the weight generator aims to generate parameters of gω
in which we suppose there are V layers, and use Gv(·;ψ) to
denote the v-th layer generator. In order to ensure the gra-
dient could be back-propagated properly, we refer to the re-
parameterization trick in VAE (Kingma and Welling 2014)
to make the whole process differentiable (Fig. 3(b)). For-
mally, for the v-th layer generator, we first define a re-
sampling variable :

zvj = µj + σj × εv, with εv ∼ N (0, 1), (3)

where εv ∈ Rd/2 is an auxiliary noise variable, zvj denotes
the v-th re-sampling instance of task context features. Fi-
nally, the parameters of v-th layer in gω(·) corresponds to
the v-th layer in Gv(·;ψ) is given as:

ωvj = Gv(z
v
j ;ψ

v), (4)

where ψv indicates the parameters of Gv , and ωv represents
the generated parameters of v-th layer in gω().

To stabilize the training process, we apply L2 weight nor-
malization like (Li et al. 2019) on the generated parameters
ω. Besides, to reduce the amount of parameters, the weight
generator only produces parameters of deep layers gω , based
on the assumption that shallow layers fθ are used to extract
low-level features, which is invariant to various tasks.

Task-level Self-supervision (TL-SS)
Although HAE allows our model to quickly adapt to various
tasks, as discussed before, the learned subspace for each task
is always ambiguous and not ensured to be discriminative.
This leads the learned metric can not easily accommodate to
novel categories. In the following, we propose a task-level
self-supervised (TL-SS) training strategy.

Task Variant: For a N -way K-shot task T j , TL-SS first
constructs multiple views for T j according to the following
steps. 1) Instance-level Augmentation. Every sample is ran-
domly rotated, flipped or slightly scaled and cropped. It al-
lows the network to learn diverse representations of the same

3We do not think there is a sequence among samples. On the
contrary, we will constrain the contexts of different task variants to
be consistent in the subsequent TL-SS

instance. 2) Class-level Permutation. Scramble the class or-
der, as well as the sample order from a specific category, to
construct diverse representations of the same task. Note that
different sample and class orders result in different outputs
of 3D CNN, and therefore these preparations provide vari-
ant versions of certain task for conducting self-supervision.
For simplicity, we take two views as an example to clearly
introduce our method (red T ′j and blue T ′′j data streams in
Fig. 2(a)).

TL-SS Task Consistency Loss: With multiple views of
T j , we design a regularization term, i.e., TL-SS task con-
sistency loss Lt, with the observation that different views of
the same task should present the same task context. So, we
adopt cross-entropy loss:

Lt =
∑
−τ ′j log τ ′′j , (5)

where τ ′j and τ ′′j denote the task context features of dif-
ferent views of T j in Eq.(2). Eq.(5) directly imposes task
context self-supervision, and therefore task context model-
ing and task consistency loss complement each other (Fig.
2(b)), which significantly stabilize the subspace distribution.

TL-SS Metric Learning Loss: Previous (Dou et al.
2019) have shown that, relationships among class concepts
purely exist in semantic space, independent of changes in
the observation space. In this work, “relationships between
classes” is naturally expanded to “correlation among sam-
ples”. Inspired by instance discrimination (Wu et al. 2018),
we propose to force the relative position among samples to
be consistent in different views, allowing variants of task to
supervise each other.

Specifically, for a task T j , after task augmentation, we ex-
tract the multi-view task embeddings e′(i) = g(fθ(x

′
i), ωj)

and e′′(i) = g(fθ(x
′′
i ), ωj), where x′i ∈ T

′
j and x′′i ∈ T

′′
j .

Then, we calculate their relative positions by Cosine and Eu-
clidean distance:

R′j(m,n) = dcos(e′(m), e′(n)), D(e′(m), e′(n))e , (6)

R′′j (m,n) = dcos(e′′(m), e′′(n)), D(e′′(m), e′′(n))e ,

where m 6= n, Rj ∈ R2×NK×NK . cos(·) and D(·) in-
dicate the Cosine and Euclidean distance, respectively. Fi-
nally, we propose to align these two matrices between dif-
ferent views R′j and R′′j by minimizing their symmetrical
Kullback–Leibler (KL) divergence:

Lm =
1

2

[
DKL

(
R′j‖R

′′
j

)
+DKL

(
R′′j ‖R

′
j

)]
, (7)

where DKL(p‖q) =
∑
r pr log pr

qr
denotes the KL diver-

gence. In this way, the local discrimination is much robust
by adding this self-supervised regularization.

In addition, for each query sample x̃, we also calculate
the classification loss Lc for supervised learning:

Lc =
∑
i

−pi log(yi), (8)

where y denotes the ground-truth and p is the predicted dis-
tribution:

p =

N×K∑
i=1

ed(x̃,xi)

W
yi, (9)
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Figure 4: The combination of HAE and TL-SS ensures con-
sistency among different views of a specific task. The results
are directly obtained from our experiments.

where W =
∑N×K
i=1 ed(x̃,xi), d(·) is Cosine distance. xi

represents support sample. Overall, the total loss is:
Ltotal = Lt + Lm + Lc. (10)

Experiments
For simplicity, we call our framework Task-Specific Self-
Supervised Learning as T3S. We validate the effectiveness
of the proposed T3S under two cross-domain few-shot set-
tings. First, we train the few-shot classification model on the
miniImageNet and test the trained model on other four dif-
ferent benchmarks. Second, we design a generalized task-
agnostic test, where we re-think the generalization ability of
existing FSL methods.

Experimental Settings
Source Dataset: miniImageNet (Vinyals et al. 2016), a sub-
set of the ILSVRC-12 (Deng et al. 2009), is a standard
benchmark for few-shot image classification. It consists of
60,000 color images of size 84×84 with 100 classes. We fol-
low the splitting introduced by (Ravi and Larochelle 2017),
with 64, 16, and 20 classes for training, validation and test-
ing, respectively. We take the training set as source domain
and select the model on the validation data.

Target Dataset: CUB (Welinder et al. 2010), “Caltech-
UCSD Birds-200-2011” is a fine-grained dataset containing
200 classes and 11,788 bird images in total. Cars (Krause
et al. 2013) contains 196 classes and 16,185 car images in
total. Places (Zhou et al. 2018) “places365standard” con-
tains more than 10 million real-world scenes from 365 cat-
egories. EuroSAT (Helber et al. 2019) contains 10 classes
and 27,000 satellite images in total. With standard splitting,
the test set of CUB, Cars and Places as well as the whole
EuroSAT serve as the target domain.

Evaluation: To evaluate our approach, all the results are
obtained under standard few-shot classification task: 5-way
1-shot/5-shot task. Also, as recommended in (Triantafillou
et al. 2020), we analyze the effect of different “way” and
“shot” on mini→ CUB experiments in Supplementary Ma-
terial. We use classification accuracy as the evaluation met-
ric and present the average results over 1000 trials.

Implementation Details
Baseline Clarification. The baseline model follows prior
work (Chen et al. 2019b) simply including a ResNet-10

backbone and a fully-connected layer. It is trained from
scratch with a batch size of 32 by minimizing the standard
cross-entropy loss on 64 base classes. Before testing on the
target domain, we train a new linear classifier using N ×K
support samples to fine-tune the model. We find this baseline
beats almost all the episodic training method.

Training T3S. We take first eight layers of baseline as
the initialization for shallow layers fθ. We take C3D (Tran
et al. 2015) as our task context model but replace the FC
layers with a global average pooling (details in supplemen-
tal material). The weight generator contains two single per-
ceptrons, each of which corresponds to a specific layer in
gω . We totally train 1,000K episodes for our model using the
Adam optimizer with initial learning rate 10−3 and exponen-
tially decayed by 50% every 50k episode. In each episode,
we sample N × K support samples and 16 query samples.
The mini-batch size is empirically set to be 64 for 5-way
1-shot/5-shot task.

Main Results
In this section, we demonstrate the effectiveness of our ap-
proach against state-of-the-art methods. The competitors are
implemented by official code or our re-implementation if the
results are not reported on papers4.

Cross-domain few-shot results (Table 1). We conduct
5-way 1-shot/5-shot task on four cross-domain experiments:
miniImageNet→CUB/Cars/Place/EurSAT. As shown in Ta-
ble 1, our method nearly achieves the best performance. Es-
pecially on the 5-shot task, we evidently outperform other
methods with around 3% improvement, which demonstrates
the good generalization ability of our approach. Note that
the improvement on 1-shot setting is less obvious than the
5-shot task due to there is less correlation information can
be utilized by HAE in 1-shot task. Also, as indicated pre-
viously, it appears that most few-shot methods are inferior
to the baseline model. We conjecture that fine-tuning with
only a few target samples is also effective, but this process
is tedious and time-consuming (Detailed analysis in supple-
mental material).

Comparison with Related SOTA Methods (Table 2).
We also compare the proposed method with related tech-
nologies in Table 2. It turns out that the proposed T3S
not only achieves the highest accuracy (69.16%) in cross-
domain tasks (in 5th column), but also is least affected by
domain shift (in 6th column). Compared with other task-
specific and weight generated methods (1th to 4th rows), T3S
is superior in both accuracy and robustness. It is notewor-
thy that traditional instance-level self-supervision (5th to
8th rows) is not friendly to heterogeneous generalization task
due to excessive attention to the seen categories and distri-
butions.

Ablation Study
We now present experiments confirming our main claims:
1) TL-SS strategy is able to learn stable concepts and hence

4The priority of results presented in this paper: open
source models >reported results >open source code >our re-
implementation.
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5-way 1-shot (%) 5-way 5-shot (%)
miniImageNet→ CUB Cars Places EuroSAT CUB Cars Places EuroSAT

MatchingNet (Vinyals et al. 2016) 35.89 30.77 49.86 56.61 51.37 38.99 63.16 64.45
MAML (Finn et al. 2017) 37.81 28.52 44.96 51.14 51.34 37.98 60.44 71.70
ProtoNet (Snell et al. 2017) 37.50 29.50 46.24 57.34 62.02 43.53 67.83 73.29
RelationNet (Sung et al. 2018) 42.44 29.11 48.64 50.598 57.77 37.33 63.32 61.31
GNN (Satorras and Estrach 2018) 45.69 31.79 53.10 54.48 62.25 44.28 70.84 70.35
MetaOpt (Lee et al. 2019) 44.09 32.39 49.61 61.65 54.67 45.90 65.83 64.44
LEO (Rusu et al. 2019) 43.33 29.80 48.14 51.89 61.34 46.80 70.05 67.24
Baseline w/ FT 44.37 31.20 52.38 61.30 64.97 47.77 71.82 75.69
LGM (Li et al. 2019) 44.57 31.66 53.72 60.34 60.85 39.20 66.72 70.15
TADAM (Oreshkin et al. 2018) 40.15 29.67 50.42 55.85 60.22 43.67 70.83 66.12
FEAT (Ye et al. 2020) 42.37 30.83 53.99 57.93 64.78 45.42 71.53 76.00
LFT-GNN (Tseng et al. 2020) 47.47 31.61 55.77 64.00 66.98 44.90 73.94 73.40
T3S (Ours) 45.92 33.22 55.83 65.73 69.16 49.82 76.33 79.36 8

Table 1: Classification accuracy on four cross domain experiments. The best and the second one are in bold. CUB/Cars/-
Places/EurSAT means using miniImageNet to train and CUB/Cars/Places/EurSAT to test. FT means fine-tuning process.

Keywords Methods mini CUB ↓ ∆%
1 TS-FS TADAM 76.70% 60.22% 16.48
2 FEAT 82.05% 64.78% 17.27
3 WG-FS LGM 71.18% 60.85% 10.39
4 AWGIM 78.40% 57.69% 20.71
5 SS-FS BF3S 79.87% 48.04% 31.83
6 InfoMax 81.15% 62.73% 18.42
7 SS-CD Rotation 74.62% 49.35% 25.27
8 Jigsaw 77.89% 42.98% 34.91
9 TL-SS T3S(Ours) 78.66% 69.16% 9.50

Table 2: Comparison with related SOTA on 5-way 5-shot
tasks. TS/WG/SS means task-specific/weight generating/
self-supervision based methods; CD/FS represents cross-
domain/few-shot task. ↓ ∆% represents the degradation.

Encoder TL-SS mini EpisodeVariant Loss →CUB

Matching - - 51.37% 50K
IA Lm 57.40% 50K

LGM - - 60.85% 240K
IA Lm 63.41% 240K

HAE

- - 64.87% 1,650K
IA Lm 66.55% 1,650K

IA+CP Lm 68.30% 1,650K
IA+CP Lm + Lt 69.16% 850K

Table 3: Ablation studies: the influence of TL-SS. IA/CP
represent IA/CP represent Instance-level Augmentation and
Class-level Permutation respectively in Task Variant.

Encoder Task context modeling mini→ CUB3D CNN Average
MatchingNet - - 57.40%

LGM -
√

63.41%
HAE

√
- 68.30%

Table 4: Ablation studies: the influence of 3D CNN in HAE.

achieves better generalization. 2) HAE can generate suit-
able parameters according to current task context. Note
that all ablation studies are conducted on 5-way 5-shot
miniImageNet→CUB task.

The effectiveness of TL-SS (Table 3). When adding task-
level self supervisionLm, a significant progress (average 3.5
percents) could be observed by using various encoder ( 2th,
4th and 6th rows). At the same time, class-level permutation
in task variant can bring additional improvements (7th row).
However, as a byproduct, our meta-learning framework with
3D CNN also brings additional training cost (last column).
But it should also be emphasized that the task consistency
loss Lt can greatly accelerate the convergence speed (almost
cut in half), and slightly improve the performance (8th row).

The effectiveness of HAE (Table 4). Compared with
MatchingNet, the task-specific method LGM shows a huge
promotion on the cross-domain task. Furthermore, our HAE
arrives at 64.87%@accuracy, outperforming LGM with a
4% improvement by learning robust task context.

Visualizing local discrimination. To demonstrate our as-
sumptions and claims, we also conduct a visualization ex-
periments using t-SNE and take “Baseline” as comparison.

We can draw following conclusion from this figure: 1)
Under traditional FSL scope, models enjoy the benefit of
pre-training process. They are able to distinguish different
classes (left in the figure) due to the absence of domain shift.
2) When testing on another domain, the features from base-
line are confused, indicating that without T3S, the model
can’t mitigate the domain discrepancy and hence leads to in-
ferior performance (Fig. 5(a), (b)). 3) When we project the
data from multi target domains together (Fig. 5(c)), T3S is
able to preserve local feature discrimination without losing
domain information. 4) We also track the subspace changing
of three certain tasks during training (Fig. 5(c1,c2)). We can
observe TL-SS can maintain the stability (fainter subspace
drift) and discrimination of each task subspace, and hence
shows better generation ability.
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Figure 5: In (a,b), different colors represent different classes. In (c), three colors represent three datasets. In (c1,c2), We track
the subspace changing of three certain tasks (3 colors) during training. “1K-th” indicates the thousandth episode.

Task 1: Region

Task j: Gender

Task i: Age, ……
？

？
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European

Female

Male

(Child, Adult, Elder)

Figure 6: A generalized task-agnostic test. Because the clas-
sification angles of unseen tasks are uncertain, specific sam-
ples are classified into different clusters in different tasks.

A Generalized Task-agnostic Test
Typically speaking, few-shot learning is a task-agnostic test.
That is the categories and distribution of test samples are
unpredictable. But from a broader perspective, we argue the
classification criterion should also be unpredictable and this
problem setting is very usual in real-world applications. For
example in Fig. 6, an “Asian grandpa” should be classified
into upper (Asian) in task 1 but bottom (Male) in task 2 due
to different classification criteria 5

To mimic this situation, we construct a new few-shot
dataset for testing (release later). Each sample in this dataset
have three labels in terms of “age, region and gender”. For
each test episode, we only classify the sample according to
a random criterion. There are totally 918 images resized as
84×84 in the test dataset. We design this exam to mainly il-
lustrate two points: 1) Task-level self-supervision avoids the
model overfitting to the seen categories/domain. 2) The task
context modeled by HAE is more robust.

5This task is completely different from the multi-label classifi-
cation. In the multi-label task, classification criteria are multiple,
but known and determined. However, in our task, each classifica-
tion is carried out from only one criterion, but it is unknown and
never seen in the training phase.

5-shot Age
(3 way)

Region
(3 way)

Gender
(2 way)

Random 33.33% 33.33% 50.00%
Baseline 60.88% 49.52% 61.67%
Baseline++ 57.36% 50.79% 57.81%
MatchingNet 51.80% 48.93% 54.79%
ProtoNet 55.57% 51.47% 55.30%
MAML 49.62% 45.31% 52.11%
RelationNet 56.52% 49.26% 55.63%
LGM 57.39% 47.65% 55.28%
LFT-GNN 60.94% 50.15% 56.84%
T3S (Ours) 63.42% 56.09% 69.52%

Table 5: Results of the generalized task-agnostic test.

We conduct 5-shot experiments for evaluation and the re-
sult is unexpected (Table 5). Taking gender classification
(2-way) as an example, most FSL methods can only reach
55%@accuracy, seeming that there is no improvement to
random guessing. More importantly, none of them can stand
out in all three exams simultaneously. It appears that a fixed
feature extractor would embed a sample into a fixed loca-
tion, regardless of its task-specific conditioning. This will
result in significant over-fitting phenomena. Although LGM
(Li et al. 2019) also employs a weight generator, due to its
simple task context modeling method (average), it appears to
produce the changeless parameters in this experiments. This
also verifies the advantages of our T3S and hence it achieves
the best results in all these three tasks.

Conclusion
In this paper, we for the first time propose a task-level self-
supervised framework to solve cross-domain few-shot learn-
ing. The core idea of our approach lies in constructing adap-
tive feature subspace and ensure the stability and discrimi-
nation of each subspace via task-level self-supervision. To
that end, a high-order associate encoder is proposed to make
task context more robust. Extensive experiments demon-
strate that the proposed T3S have obvious improvement over
the state-of-the-arts methods.
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