
Improving 360◦ Monocular Depth Estimation
via Non-local Dense Prediction Transformer

and Joint Supervised and Self-Supervised Learning

Ilwi Yun1 , Hyuk-Jae Lee 1, Chae Eun Rhee 2

1 Seoul National University, Korea
2 Inha University, Korea

yuniw@capp.snu.ac.kr, hjlee@capp.snu.ac.kr, chae.rhee@inha.ac.kr

Abstract

Due to difficulties in acquiring ground truth depth of equirect-
angular (360◦) images, the quality and quantity of equirectan-
gular depth data today is insufficient to represent the various
scenes in the world. Therefore, 360◦ depth estimation stud-
ies, which relied solely on supervised learning, are destined
to produce unsatisfactory results. Although self-supervised
learning methods focusing on equirectangular images (EIs)
are introduced, they often have incorrect or non-unique so-
lutions, causing unstable performance. In this paper, we pro-
pose 360◦ monocular depth estimation methods which im-
prove on the areas that limited previous studies. First, we
introduce a self-supervised 360◦ depth learning method that
only utilizes gravity-aligned videos, which has the potential
to eliminate the needs for depth data during the training pro-
cedure. Second, we propose a joint learning scheme realized
by combining supervised and self-supervised learning. The
weakness of each learning is compensated, thus leading to
more accurate depth estimation. Third, we propose a non-
local fusion block, which can further retain the global infor-
mation encoded by vision transformer when reconstructing
the depths. With the proposed methods, we successfully ap-
ply the transformer to 360◦ depth estimations, to the best of
our knowledge, which has not been tried before. On several
benchmarks, our approach achieves significant improvements
over previous works and establishes a state of the art.

Introduction
Recently, research interest in processing equirectangular
(360◦) images has increased as virtual reality enters the
limelight. Equirectangular images (EIs) have advantages
over traditional rectilinear images (RIs) in that they enable
a 360° field of view. This benefit, however, complicates the
acquisition of ground truth depths. Aside from the technical
difficulties associated with 360° depth scanners, one practi-
cal difficulty is that sensors would be visible from the 360°
RGB cameras, leading to partially obscured images (Matzen
et al. 2017; Zioulis et al. 2018). Moreover, to acquire diverse
and realistic synthesized data, numerous things should be set
exquisitely, which often requires professional designers and
tools (Zheng et al. 2020). Due to such problems, the qual-
ity and quantity of equirectangular depth data today is in-
sufficient to represent fully the various scenes in the world.
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Figure 1: The effect of joint learning. Unlike the network
trained via supervised learning only (middle row), the net-
work trained via joint learning is able to distinguish win-
dows from the walls (bottom row)

Therefore, learning 360◦ depths in a supervised manner is
destined to produce unsatisfactory results because the per-
formance of supervised learning is highly dependent on the
dataset. To overcome the lack of data, learning 360◦ depths
in a self-supervised manner has been attempted. However,
previous methods require either calibrated stereo EI pairs
(Payen de La Garanderie, Atapour Abarghouei, and Breckon
2018; Zioulis et al. 2019; Wang et al. 2020b) or conver-
sion to cubemap projection (Wang et al. 2018a), both of
which have limitations with regard to further improvements.
Moreover, self-supervised learning often delivers incorrect
or non-unique solutions (e.g., light reflected object), which
cause unstable performance.

In this paper, we propose 360◦ monocular depth estima-
tion methods which improve on the areas that limited previ-
ous studies. First, we propose a self-supervised method for
the learning of depth that only utilizes gravity-aligned video
sequences, which has the potential to eliminate the needs
of depth data during the training procedure. Similar to prior
work (Zioulis et al. 2019), we utilize the relationships be-
tween consecutive scenes but improve it through consistency
between depths. Second, we propose a joint learning scheme
realized by combining supervised and self-supervised learn-
ing. Despite the limitations of each learning scheme, all pre-
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vious works on the 360◦ depth estimation, to the best of
our knowledge, have relied solely on either supervised or
self-supervised learning. We show that the joint learning im-
proves the unstable performance of self-supervised learn-
ing as well as the incorrect prediction of supervised learn-
ing caused by data scarcity, as visualized in Figure 1. Third,
we propose a non-local fusion block which improves on the
areas missed by vision transformers for dense prediction.
Through non-local operations, global information encoded
by a transformer can be further retained when reconstruct-
ing the depths. Under a challenging environment for a trans-
former (i.e., lack of a large-scale dataset), we were able to
train the vision transformer successfully using the features
learned from depth of RIs. To the best of our knowledge,
this is the first work applying transformers successfully to
360◦ depth estimation. Our approaches achieve significant
improvements over previous works on several benchmarks,
thus establishing a state of the art.

Background and Related Work
EI Geometry
Although EIs appear to be two dimensional (2D) images,
EIs and RIs are different in many ways. EIs are generated
by flattening the rays projected on a three dimensional (3D)
sphere, whereas RIs are generated by directly projecting rays
on a 2D plane. Therefore, EIs are 3D images despite their 2D
structure. The spherical coordinates (θ, φ, ρ) are often used
instead of the pixel coordinates (x, y) for this reason, and
relationship between them is illustrated in Figure 2. Each
value of θ ∈ (0°, 360°) and φ ∈ (0°, 180°) represents the
latitude and longitude of an EI, and ρ denotes the radius of
the sphere. Further, the spherical coordinates can be con-
verted to Cartesian coordinates (Xc, Yc, Zc) by Eq.1

Xc = ρ · sin(φ) · cos(θ)
Yc = ρ · sin(φ) · sin(θ)
Zc = ρ · cos(φ)

(1)

(a) Sphere (b) Equirectangular

Figure 2: Equirectangular geometry

Meanwhile, rotations on EIs are defined as the yaw, pitch
and roll. Due to undesirable visual changes (Sun, Sun, and
Chen 2021; Davidson, Alvi, and Henriques 2020), a gravity-
aligned structure (i.e., with the roll and pitch set to 0◦)
is generally assumed in equirectangular depth benchmarks
(Armeni et al. 2017; Chang et al. 2017; Zioulis et al. 2018;
Zheng et al. 2020) and in recent studies (Pintore et al. 2021;
Sun, Sun, and Chen 2021). If captured images/videos are
not gravity-aligned, they can be calibrated afterwards (Xian
et al. 2019; Davidson, Alvi, and Henriques 2020).

Supervised 360◦ Depth Estimation
Omnidepth (Zioulis et al. 2018) presents a 3D60 dataset
(Matterport3D, Stanford3D and SunCG) by re-rendering
previous 360◦ data [e.g., Matterport (Chang et al. 2017),
Stanford (Armeni et al. 2017)], which are now commonly
used for training 360◦ depths. Bifuse (Wang et al. 2020a)
jointly uses cubemap projected images with EIs to improve
the performance. SliceNet (Pintore et al. 2021) splits the
inputs and recovers them through long short-term mem-
ory (Xingjian et al. 2015) to retain the global information.
HoHoNet (Sun, Sun, and Chen 2021) improves the perfor-
mance and computational efficiency by focusing on the per-
column information of the gravity-aligned EIs. Recently,
multi-task learning among the depth, layout and semantics
was attempted to improve performance outcomes. (Jin et al.
2020) regularizes the depth considering the layout, while
(Zeng, Karaoglu, and Gevers 2020) train the layout, seman-
tic and depth simultaneously.

Self-Supervised 360◦ Depth Estimation
Self-supervised depth learning has been widely attempted
for RIs based on the following intuition: The closer the ob-
ject is to the camera, the greater the change in the object’s
position when the camera moves (Garg et al. 2016; Godard,
Mac Aodha, and Brostow 2017; Godard et al. 2019; Gor-
don et al. 2019). However, that intuition is not applied to EIs
due to the different geometry, as shown in Figure 3. When
the camera moves forward (denoted by the red arrows), the
relative movements of objects in the scenes of RIs are repre-
sented by the dotted arrows in Figure 3 (a). The movement
of objects only depends on the camera movements (direc-
tion) and corresponding depths (magnitude). The movement
of objects in EIs, however, is also affected by the positions
of the objects in EIs. As the camera moves forward, the ob-
jects in front of the camera become closer, while those of
opposite side become further away, as shown in Figure 3 (b).
Because more variables control the objects of EIs, learning
360◦ depths using a self-supervision becomes more difficult.

(a) Rectilinear (b) Equirectangular

Figure 3: Difference in movements of a scene

In addition, self-supervised depth learning often has in-
correct or non-unique solutions in some cases. Light re-
flected objects, which are not predictable using only the
depth and camera motion, is one such example. These ob-
jects cause the network to output wrong depth values be-
cause the light reflection is controlled by light sources, not
depths (Refer to Technical Appendix for more examples).
Although several attempts have been made to remove those
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kinds of intractable objects during the training process (Go-
dard et al. 2019; Gordon et al. 2019; Tan et al. 2021), there
remain objects controlled by numerous variables and, not
merely by depth and camera motions, which makes self-
supervised learning a challenge.

360SD-Net (Wang et al. 2020b) and SvSyn (Zioulis et al.
2019) use stereo EI pairs as input for EI depth training
data to simplify the relationship between the depth, image
and camera motions. However, 360◦ field of view makes
it difficult to acquire stereo EIs using two 360◦ cameras
given that each camera is captured by others, which limits
the use of this method. EBS (Payen de La Garanderie, At-
apour Abarghouei, and Breckon 2018) proposes the method
that uses relatively abundant RI stereo pairs. They distort
RIs considering the EI geometry, and use them as training
data. However, distorted data has a restricted field of view
(< 90°), which cannot replace the EIs fundamentally. (Wang
et al. 2018a) transforms EIs into cubemap-projected images
to alleviate the difference in the geometry. However, cube
map projection not only leads to discontinuity between each
of the cubemap faces which results in large errors, but also
requires additional computations (Cheng et al. 2018; Wang
et al. 2020a).

Vision Transformer
Recently, the vision transformer (ViT) network architecture
was proposed for image classification (Dosovitskiy et al.
2020). In this architecture, the transformer (Vaswani et al.
2017), which has been widely used in natural language pro-
cessing, is adopted instead of convolution block. Images are
split into multiple flattened patches and are encoded by a
transformer. ViT achieves results that are comparable to or
even better than those of a convolutional neural network
(CNN) on image classification tasks. Furthermore, it was
recently demonstrated that ViT yields notable performance
improvements on various vision tasks. The dense prediction
transformer (DPT) successfully applies ViT to segmentation
and depth estimation tasks by upsampling the encoded fea-
tures via convolution-based reassemble and fusion blocks
(FB) (Ranftl, Bochkovskiy, and Koltun 2021). Reassemble
blocks reassemble the encoded features into 3D featuresRs,
whereas fusion blocks upsample the Rs into fused features
F s. Unlike a CNN, however, the transformer lacks induc-
tive bias, necessitating large-scale dataset. Under an envi-
ronment with an insufficient dataset, the performance of the
transformer becomes worse than that of a CNN (Dosovitskiy
et al. 2020). Therefore, several attempts have been made to
alleviate data dependencies through multiple known tech-
niques, such as knowledge distillation (Touvron et al. 2021).

Proposed Method
Overall Architecture
The overall structure of the proposed training procedure,
as illustrated in Figure 4, is composed of two flows: self-
supervised learning (black arrows) and supervised learn-
ing (brown arrows). For self-supervised learning flow, non-
local DPT estimates the depth (D,D′) for each consecu-
tive video scene (V, V ′), while PoseNet predicts the cam-

era motion (δv, δr) between them. Then, each scene and
depth at different viewpoints are reconstructed through sam-
pling function (fs). Image consistency (LI ), depth consis-
tency (LD) and pose consistency (LP ) losses are imposed by
comparing reconstructed samples with corresponding video
scenes and the estimated depths. For supervised learning
flow, estimated depth (DI ) for image input (I) is com-
pared with the ground truth (Dg

I ). Traditional pixel-wise
loss (Lpix) and gradient loss (Lgrad) are imposed. Overall,
the objective function is constructed via Eq.2. Here, λI and
λD are hyper-parameters balancing the supervised and self-
supervised losses. Each element of Eq.2 will be described in
the following sections.

Ltotal = λI · LI + λD · LD + LP + Lpix + Lgrad (2)

Self-Supervised Losses
In this subsection, we introduce the self-supervised learn-
ing flow illustrated in Figure 4. First, we formulate the
relationships among the depth, camera motion and gravity-
aligned 360◦ video sequences. Then, the image consistency,
depth consistency and pose consistency losses are explained.

Relationships between consecutive scenes in video Con-
secutive video scenes V ∈ R3×H×W and V ′ ∈ R3×H×W

can be expressed as spherical coordinate (θ, φ, ρ) and
(θ′, φ′, ρ′), respectively. Here, each of the ρ and ρ′ values can
be considered as estimated depths, which are denoted corre-
spondingly as D ∈ R1×H×W and D′ ∈ R1×H×W . When
the video proceeds from V to V ′ (i.e., V → V ′), the trans-
lation and rotation of the camera between scenes are defined
as δv ∈ R3×1×1 and δr ∈ R3×1×1. Because we assume
that the videos are gravity-aligned, δry ∈ R1×1×1, δrz ∈
R1×1×1 can be set as a constant (i.e., 0). Therefore, the cam-
era motion is simplified to four variables: δvx, δvy, δvz and
δrx. Under this environment, Eq.3 is formulated, which de-
notes the movements of the 3D scene point between V and
V ′ in Cartesian coordinates according to the camera motion
and depth .
ρ · cos(θ − δrx) · sin(φ)− δvx = ρ′ · cos(θ′) · sin(φ′)
ρ · sin(φ) · sin(θ − δrx)− δvy = ρ′ · sin(φ′) · sin(θ′)
ρ · cos(φ)− δvz = ρ′ · cos(φ′)

(3)
By solving Eq.3, a closed-form expression of Eq.4 is ob-

tained, representing the relationship between V (θ, φ, ρ) and
V ′ (θ′, φ′, ρ′) for the depth and camera motion. Eq.4 can be
expressed simply using fs in Eq.5.



θ′ = tan−1(
ρ · sin(θ − δrx) · sin(φ)− δvy
ρ · cos(θ − δrx) · sin(φ)− δvx

)

φ′ = tan−1(
ρ · sin(θ − δrx) · sin(φ)− δvy
sin(θ′) · (ρ · cos(φ)− δvz)

)

ρ′ =
cos(φ) · ρ− δvz

cos(φ′)

(4)

V ′ = fs(V,D, δv, δr) (5)
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Figure 4: Overall architecture

Image consistency loss For consecutive scenes V → V ′,
scenes at a different view point V ′syn can be synthesized
from V with Eq.6 assuming the depth and camera mo-
tions are well estimated. In the same vein, Vsyn can also
be synthesized considering the reversely ordered sequences
V ′ → V . If the depth and camera motions are appropri-
ately estimated, each synthesized frame should be identical
to each corresponding scene in the video (i.e., V ′ = V ′syn
and V = Vsyn). Therefore, by regularizing the networks to
synthesize images equal to scenes in the video, the networ
is indirectly trained to predict proper depth and camera mo-
tions. Therefore, the image consistency loss is constructed
as Eq.7, similar to the previous works (Zioulis et al. 2019).
Here, SM indicates structural similarity (Wang et al. 2004),
α represents the weight parameters, n indicates the number
of pixels in an image.

V ′syn = fs(V,D, δv, δr)

Vsyn = fs(V
′, D′, -δv, -δr)

(6)

LI =
1

n
·
n∑
k=1

[α · (|V ′ − V ′syn|+ |V − Vsyn|)

+ (1− α) · (|1− SM(V, Vsyn)|+ |1− SM(V ′, V ′syn)|)]
(7)

Depth consistency loss Previous self-supervised learning
studies focusing on EIs only considered image consistency
(Zioulis et al. 2019; Wang et al. 2020b). We argue that depth
consistency can also be used for regularization, which can
further strengthen the training. Here, we introduce the depth
consistency loss for EIs, inspired by (Godard, Mac Aodha,
and Brostow 2017). By regarding the depth as an image, the
depths of different viewpoints D′syn and Dsyn can be syn-
thesized using Eq.8. If the depth and camera motion are ac-
curately estimated, D′syn and Dsyn become equal to D′ and
D, respectively. Therefore, similar to the image consistency
loss, LD can be constructed with Eq.9. The estimated depths
should be consistent across the scenes to minimize the loss,
which causes the network to check the images in more de-
tail.

D′syn = fs(D,D, δv, δr)

Dsyn = fs(D
′, D′, -δv, -δr)

(8)

LD =
1

n
·
n∑
k=1

(|D′ −D′syn|+ |D −Dsyn|) (9)

Pose consistency loss If PoseNet P is properly trained, es-
timated camera motions for scenes in reverse order (i.e.,
V → V ′ and V ′ → V ) should also have the opposite di-
rection. Therefore, the pose consistency loss LP can be es-
tablished as Eq.10.

LP =
1

n
·

4∑
k=1

|P (V, V ′)− P (V ′, V )| (10)

Supervised Losses for Joint Learning
Although self-supervised learning on videos has the poten-
tial to offer more accurate depth estimation, it has draw-
backs that should be resolved (i.e., non-optimal solutions).
Supervised learning can alleviate those drawbacks because
it has supervisions in the areas (e.g., light reflection) which
cause problems in self-supervised learning. Conversely, self-
supervised learning can diversify the features learned from
supervised learning through various video sequences, which
makes the network perform well at the unexposed data.
From this observation, we propose to use the supervised
and self-supervised losses jointly. However, the scale of
the depth value differs according to the depth-acquisition
method used or the environment (Eigen, Puhrsch, and Fer-
gus 2014; Chen et al. 2016; Wang et al. 2019; Ranftl et al.
2019). Therefore, scale and shift ambiguities regarding the
depth must be resolved in advance to use both losses to-
gether. If this is not done, they conflict harshly and pro-
duce even worse performances. For this reason, we initially
align the scale and shift of the depth via Eq.11 utilizing
schemes proposed by (Ranftl et al. 2019). Considering the
per-column characteristics of the gravity-aligned EIs (Sun,
Sun, and Chen 2021), the depth is aligned in a column-
wise manner. Here, Dg

I ∈ R1×H×W indicates the ground
truth depth, DA

I ∈ R1×H×W is the aligned depth, where
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s, t ∈ R1×1×W represents the per-column scale and shift
parameters.

s, t = argmin
s,t

(s ·DI + t−Dg
I )

DA
I = s ·DI + t

(11)

Then, we apply traditional pixel-wise loss expressed as
Eq.12 and the gradient loss (Li and Snavely 2018) of Eq.13,
while the gradient loss is calculated on four different scales.
The gradient loss induces the network to place emphasis on
the edges of the estimated depths.

Lpix =
1

n
·
n∑
k=1

|(DA
I −D

g
I )| (12)

Lgrad =
1

n
·
n∑
k=1

|∇x(DA
I −D

g
I ) +∇y(D

A
I −D

g
I )| (13)

Non-local Dense Prediction Transformer
Non-local fusion block ViT has advantages over a CNN
in that it can see the input images globally. For dense pre-
dictions, however, these advantages might be weakened.
When upsampling encoded features via convolution-based
FB (Ranftl, Bochkovskiy, and Koltun 2021), the receptive
field is bounded to the convolution kernel size. Because EI
contains a geometric structure (e.g., a wall) which should
be seen in a global manner (Pintore et al. 2021), losing the
global outlook may result in non-accurate depth estimations.
For these reasons, we propose the use of a non-local fusion
block (NLFB), which performs non-local operations (Wang
et al. 2018b) on each feature going into the FB, as shown
in Figure 5. Here, we define F s ∈ RC×Hs×Ws as the fused
features at scale s and Ns ∈ RC×Hs×Ws as the non-local
fused features. For the fused feature at the ith index F si , the
non-local fused feature Ns

i is calculated with Eq.14, where
W s
θ,φ,g ∈ RC/2×1×1 and W s

z ∈ RC×1×1 are the weight
matrix to be learned and j denotes the array of all possible
indexes. The features of each index i are reconstructed by
seeing all other indexes j, which makes the network to con-
tinue seeing the features from a global perspective. There-
fore, non-local DPT, which uses a NLFB instead of a FB,
yields more accurate dense predictions.

f(F si , F
s
j ) = e(W

s
θ Fi)

TW s
φFj

C(F s) =
∑
∀j

f(F si , F
s
j )

Ns
i = F si +

W s
z

C(F s)

∑
∀j

f(F si , F
s
j )W

s
gF

s
j

(14)

Fine-tuning on EI depth Due to lack of a inductive bias
(e.g., locality assumption), a large-scale dataset is needed
to train a well-performing transformer (Dosovitskiy et al.
2020). Considering the small amount of EI depth data, this
disadvantage is especially critical in EI depth estimation
studies. To overcome this hardship, we utilize a pre-trained
model which is learned from depth of RIs based on the fol-
lowing observation: Depth estimations on RIs and EIs work

𝑭𝒏 → 𝑵𝒏

𝑹𝒏

… …

Fusion

Fusion

𝑹𝒏−𝟏

Figure 5: Non-local fusion block

similarly from the relative point of view. Here, we assume
that two objects A and B are captured by RI and EI cam-
eras, respectively. If it is perceived that A is closer than B in
RIs, it also should be the case in EIs. This implies that fea-
tures learned from depth of RIs are also useful for EI depths.
Therefore, we initialize the weights of our network using the
transformer trained with RI depths and fine-tune the whole
network using EI depths with some additional settings.

Although estimated depths are aligned via Eq.11 during
the training procedure, we observe that scale mismatches in
depth between two learning flows dominate the total loss.
Before aligning depths via Eq.11, we thus robustly adjust
the scales of ground truth and the estimated depth of super-
vised learning flows based on the scales of the depth learned
from self-supervised losses. Further, we also pre-train the
pose network to minimize the negative effects of incorrect
pose estimations in the early phase of training. In this way,
we successfully transfer the various features learned from
large-scale RI depths to the equirectangular geometry. More
details are described in Technical Appendix.

Experiments
Experiments are composed of four parts. First, we briefly
explain the experiment environment in Section . Then, we
evaluate our methods under the various settings in Sections
and . Finally, the effect of each proposed schemes is ana-

lyzed through an ablation study in Section .

Experimental Setup
Evaluation details For fair and reproducible experiments,
we compare our results with studies that provide a pretrained
model in the open-source community. Omnidepth (Zioulis
et al. 2018), SvSyn (Zioulis et al. 2019), Bifuse (Wang et al.
2020a) and HoHoNet (Sun, Sun, and Chen 2021), which are
proven useful in numerous works, are compared. Stanford
(Armeni et al. 2017) and 3D60 (Stanford3D, Matterport3D,
SunCG) (Zioulis et al. 2018) datasets are used for evalua-
tion. Matterport (Chang et al. 2017) dataset is not used since
it requires additional data pre-processing which may provide
different results according to how it is processed. The fol-
lowing standard depth evaluation metrics are used to com-
pare methods: absolute relative error (Abs.rel), squared rela-
tive error (Sq.rel), root mean square error (RMS), root mean
square log error (RMSlog) and relative accuracy measures
(δ). Lower is better for Abs.rel, Sq.rel, RMS and RMSlog,
whereas higher is better for δ. Similar to (Ranftl et al. 2019;
Ranftl, Bochkovskiy, and Koltun 2021), we align the pre-
dicted depths using Eq.11 for all methods before measuring
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Dataset Method AbsRel Sq rel RMS RMSlog δ < 1.25 δ < 1.252 δ < 1.253

Stanford3D

Omnidepth 0.1009 0.0522 0.3835 0.1434 0.9114 0.9855 0.9958
SvSyn 0.1003 0.0492 0.3614 0.1478 0.9096 0.9822 0.9949
Bifuse 0.1214 0.1019 0.5396 0.1862 0.8568 0.9599 0.9880

HoHoNet 0.0901 0.0593 0.4132 0.1511 0.9047 0.9762 0.9933
Ours w/ FB 0.0669 0.0249 0.2805 0.1012 0.9652 0.9944 0.9983

Ours w/ NLFB 0.0649 0.0240 0.2776 0.993 0.9665 0.9948 0.9983

Matterport3D

Omnidepth 0.1136 0.0671 0.4438 0.1591 0.8795 0.9795 0.9950
SvSyn 0.1063 0.0599 0.4062 0.1569 0.8984 0.9773 0.9934
Bifuse 0.1330 0.1359 0.6277 0.2079 0.8381 0.9444 0.9815

HoHoNet 0.0671 0.0417 0.3416 0.1270 0.9415 0.9838 0.9942
Ours w/ FB 0.0729 0.0302 0.3089 0.1079 0.9574 0.9935 0.9980

Ours w/ NLFB 0.0700 0.0287 0.3032 0.1051 0.9599 0.9938 0.9982

SunCG

Omnidepth 0.1450 0.1052 0.5684 0.1884 0.8105 0.9761 0.9941
SvSyn 0.1867 0.1715 0.6935 0.2380 0.7222 0.9427 0.9840
Bifuse 0.2203 0.2693 0.8869 0.2864 0.6719 0.8846 0.9660

HoHoNet 0.0827 0.0633 0.3863 0.1508 0.9266 0.9765 0.9908
Ours w/ FB 0.0740 0.0338 0.3475 0.1073 0.9584 0.9949 0.9986

Ours w/ NLFB 0.0715 0.0321 0.3401 0.1042 0.9625 0.9950 0.9986

Table 1: Quantitative comparison on 3D60 dataset using the pre-trained baselines provided by each author. Numbers in bold
indicate the best results.
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Figure 6: Qualitative comparison on Stanford3D, Matterport3D and Stanford dataset. Here, Ours indicates the model using
NLFB module. Additional results are included in Technical and Multimedia Appendix.

the errors. For more details about the implementation, train-
ing, evaluation environment and additional experiments, re-
fer to the the Technical, Code and Multimedia Appendix.

Discussions on evaluation Because training neural network
is affected by numerous variables, it often becomes sensitive

even to the small changes in hyper-parameters. Therefore,
unifying the training environment of the all previous works
may not result in the fair comparison. Actually, the training
setup of each previous study differs significantly (Zioulis
et al. 2018, 2019; Wang et al. 2020a; Sun, Sun, and Chen
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Dataset Method AbsRel Sq rel RMS RMSlog δ < 1.25 δ < 1.252 δ < 1.253

Stanford

Omnidepth 0.1930 0.0042 0.0143 0.2691 0.7663 0.9140 0.9635
Svsyn 0.1844 0.0039 0.0137 0.2596 0.7806 0.9220 0.9676
Bifuse 0.1017 0.0019 0.0086 0.1783 0.9082 0.9722 0.9879

HoHoNet 0.0801 0.0016 0.0074 0.1577 0.9355 0.9803 0.9902
Ours w/ NLFB 0.0666 0.0015 0.0066 0.1461 0.9531 0.9836 0.9910

Table 2: Quantitative comparison on Stanford dataset using the pre-trained baselines provided by each author. Numbers in bold
indicate the best results.

Dataset Method AbsRel Sq rel RMS RMSlog δ < 1.25 δ < 1.252 δ < 1.253

Stanford3D
Bifuse 0.0421 0.0160 0.2199 0.0842 0.9752 0.9948 0.9983

HoHoNet 0.0541 0.0237 0.2566 0.1030 0.9573 0.9915 0.9968
Ours w/ NLFB 0.0344 0.0116 0.1921 0.0709 0.9843 0.9965 0.9987

Matterport3D
Bifuse 0.0455 0.0186 0.2368 0.0859 0.9744 0.9943 0.9981

HoHoNet 0.0612 0.0319 0.2950 0.1142 0.9523 0.9887 0.9960
Ours w/ NLFB 0.0364 0.0125 0.1963 0.0700 0.9852 0.9966 0.9988

SunCG
Bifuse 0.0323 0.0141 0.2067 0.0739 0.9811 0.9954 0.9985

HoHoNet 0.0518 0.0291 0.2789 0.1082 0.9587 0.9898 0.9967
Ours w/ NLFB 0.0233 0.0076 0.1574 0.0534 0.9915 0.9979 0.9992

Stanford
Bifuse 0.1237 0.0026 0.0114 0.2067 0.8684 0.9560 0.9823

HoHoNet 0.1306 0.0028 0.0114 0.2138 0.8510 0.9511 0.9804
Ours w/ NLFB 0.0992 0.0018 0.0080 0.1717 0.9147 0.9764 0.9865

Table 3: Further quantitative comparison using the baselines re-trained under the same training environment. Numbers in bold
indicate the best results.

2021), which makes it difficult to compare only the superi-
ority of each method. For more fair and clear comparison,
therefore, our methods are evaluated under the two settings.
First, our method is compared with the pre-trained baselines
provided by each author (Zioulis et al. 2018, 2019; Wang
et al. 2020a; Sun, Sun, and Chen 2021) in the open-source
community at Section . Because the performance of them is
guaranteed by each author, this evaluation is fair and repro-
ducible. Then, we compare our method with the baselines
re-trained under the same training environment in Section ,
which further clarifies the superiority of each method.

Comparison with the Pre-trained Baselines
In this subsection, the pre-trained baselines provided by each
author are used for evaluation. Our model is trained using
3D60 (Zioulis et al. 2018) and Stanford (Armeni et al. 2017)
datasets, which are also used as training data in previous
works.
Quantitative results Table 1 shows the quantitative depth
prediction results on 3D60 testset. Ours w/ FB represents
the model using normal fusion blocks (Ranftl, Bochkovskiy,
and Koltun 2021), while Ours w/ NLFB is the model us-
ing the proposed non-local fusion blocks. Except for the
Abs.rel metric on Matterport3D, our method achieves sig-
nificant improvements over previous works. We observe that
pre-trained Bifuse produces biased results on some specific
test splits, which results in worse quantitative results than
others. Meanwhile, Ours w/ NLFB provides better results
than Ours w/ FB for all cases, which demonstrates the effec-
tiveness of NLFB. Table 2 shows the quantitative results on
Stanford testset. For all metrics, Ours w/ NLFB provides the
best results.

Qualitative results Figure 6 shows the qualitative depth
estimation results. Omnidepth provides good results for
small objects. Overall, however, unstable depth results
are observed (e.g., wall). HoHoNet produces stable depth
results, but lacks detail. Small objects are not appropriately
predicted, which is also reported as a weakness in their pa-
pers (Sun, Sun, and Chen 2021). Meanwhile, it is observed
that Bifuse provides fine qualitative results compared to
other previous works. However, the results of Ours (/w
NLFB) are much more accurate than Bifuse, which are
even better than the ground truth for some cases. Holes
and inaccurate depths are observed among the ground truth
depths, whereas Ours provides stable and accurate depth
results.

Comparison with the Re-trained Baselines
In this subsection, we compare our method with the base-
lines re-trained under the same training environment to fur-
ther clarify the superiority of our approaches. Bifuse and
HoHoNet, which are the most recent studies and sharing
similar training environment, are used for evaluation. Fol-
lowing the training environment of Bifuse and HoHoNet,
each method including ours is re-trained using 3D60 dataset
with 512×1024 resolutions. Table 3 shows the quantitative
results on the re-trained models. Compared to the results
in Section , some improvements are observed except at the
Stanford testset, which is expected considering that they are
trained with 3D60 dataset only with higher resolutions. As
similar to the results in Section , however, our approach pro-
vides the best results for all metrics at all testset. Considering
the results of Tables 1,2 and 3 altogether, it is clear that our
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ID LI LD Lpix + Lgrad NLFB AbsRel Sq rel RMS RMSlog δ < 1.25 δ < 1.252 δ < 1.253

1 X 0.1056 0.0120 0.0646 0.1611 0.9121 0.9792 0.9926
2 X X 0.1048 0.0116 0.0631 0.1593 0.9151 0.9804 0.9928
3 X 0.0867 0.0086 0.0520 0.1403 0.9451 0.9855 0.9941
4 X X 0.0840 0.0079 0.0498 0.1360 0.9477 0.9870 0.9947
5 X X X 0.0802 0.0071 0.0476 0.1302 0.9540 0.9887 0.9952
6 X X X X 0.0781 0.0071 0.0470 0.1294 0.9537 0.9885 0.9953

Table 4: Ablation study on Structure3D dataset. Lp is used for all methods. Numbers in bold indicate the best results.

(a) Input (b) Ground truth

(c) Lpix + Lgrad (d) LI + LD

(e) Lpix + Lgrad + LI (f) Lpix + Lgrad + LI + LD

Figure 7: Studies on loss functions

approach provides better results than others.

Ablation Study
In this section, we analyze the effect of each component
of the proposed scheme through an ablation study on the
Structure3D dataset (Zheng et al. 2020). Structure3D, a re-
cently proposed dataset, is not used in the training proce-
dure. Therefore, it is suitable to demonstrate our arguments
on the proposed loss functions (e.g., perform well at unex-
posed data). Table 4 shows the quantitative results when
proposed schemes are added gradually. Lp is used in all
cases, though it is omitted in Table 4 for better visualiza-
tion. When only self-supervised losses are applied (ID 1 and
2), the results are not good as expected. However, when self-
supervised losses are used with supervised losses (ID 4 and
5), the performance increases dramatically compared to the
cases when only supervised losses are applied (ID 3). In this
case, LD plays an important role when both losses are used
together (ID 4 and 5). This results show that self-supervised
learning actually improves the depth estimation results when
combined with supervised learning. Also, it is observed that
NLFB improves the performance further (ID 6).

Figure 7 shows the qualitative result of the schemes in
Table 4. The model trained only with supervised losses in
Figure 7 (c) produces unsatisfactory results for some areas.
The black arrows indicate where the model predicts a dec-
oration in front of the curtain as a defect. Therefore, these
parts are predicted as holes, which are often found in ground

(a) Input (b) Ground truth

(c) Fusion block (d) Non-local fusion block

Figure 8: Effect of non-local fusion block

truth depths. This indicates that the model is highly affected
by inaccurate ground truth depths. The blue arrows indicate
cases where the model fails to distinguish a sofa from the
floor, which occurs because the model was not exposed to
such cases during the training procedure. On the other hand,
the model trained with self-supervised losses in Figure 7 (d)
was able to recognize the black object at the curtain appro-
priately, and distinguish the sofa from the floor. However,
it produces unstable depths overall. When LI is used with
supervised losses as shown in Figure 7(e), the problems in
Figure 7 (c) are mitigated according to the results shown in
Figure 7 (d). When LD is applied in addition, as shown in
Figure 7 (f), the model was able to distinguish the objects
properly. Figure 8 shows the effect of a non-local fusion
block in more detail. The fusion block fails to recognize the
wall as a single object, and therefore, reconstructs undesir-
able depths (red arrows). On the other hand, the non-local
fusion block reconstructs the depth well. This demonstrates
that NLFB makes the network to continue to see the features
with a wider view when reconstructing the depths.

Conclusion

In this paper, we introduce a self-supervised learning
scheme, a joint objective function, and a non-local fusion
block, in an effort to address the problems found in stud-
ies of EI depth estimations. Through the proposed scheme,
significant improvements over prior works are achieved, and
the benefits of each proposed method are also analyzed. We
believe that each contribution not only affects the EI depth
estimation research but also provides insight for those in-
volved in studies of other vision tasks.
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