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Abstract

While self-training achieves state-of-the-art results in semi-
supervised object detection (SSOD), it severely suffers from
foreground-background and foreground-foreground imbal-
ances in SSOD. In this paper, we propose an Adaptive Class-
Rebalancing Self-Training (ACRST) with a novel mem-
ory module called CropBank to alleviate these imbalances
and generate unbiased pseudo-labels. Besides, we observe
that both self-training and data-rebalancing procedures suf-
fer from noisy pseudo-labels in SSOD. Therefore, we con-
tribute a simple yet effective two-stage pseudo-label filtering
scheme to obtain accurate supervision. Our method achieves
competitive performance on MS-COCO and VOC bench-
marks. When using only 1% labeled data of MS-COCO, our
method achieves 17.02 mAP improvement over the super-
vised method and 5.32 mAP gains compared with state-of-
the-arts.

Introduction
Recently, significant progress has been witnessed in deep-
learning-based object detection (Ren et al. 2015; Zhu et al.
2021; Tian et al. 2019). However, this success heavily relies
on large datasets with bounding-box annotations, which are
prohibitively time-consuming and expensive to collect.

Therefore, a surge of attention has been dedicated to semi-
supervised object detection (SSOD), which uses a small
amount of labeled data and a large amount of unlabeled data
to obtain an accurate detector. In this regard, state-of-the-art
SSOD performance has been achieved by the self-training
paradigm (Liu et al. 2021; Zhou et al. 2021; Sohn et al.
2020), in which pseudo-labels of unlabeled data are gener-
ated as extra supervisions.

Motivations. Despite the promising results, the ma-
jority of SSOD approaches are inherited directly from
advanced self-training algorithms (Tarvainen and Valpola
2017; Xie et al. 2020b; Laine and Aila 2017), which are
designed specifically for classification tasks under a class-
balanced data distribution. However, most real-world de-
tection datasets have biased class distributions where few
classes occupy the majority of instances, i.e. foreground-
foreground imbalance as shown in Fig.1 (a). And, to ob-
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tain accurate pseudo-labels, self-training adopts a high con-
fidence threshold. This scheme leads to sparse foreground
instances distribution in detection data, i.e. foreground-
background imbalance (see Fig.1 (b)).

The above two types of imbalance yield biased pseudo-
labels during self-training. Subsequent training on biased
supervisions further intensifies the class imbalance, thereby
aggravating the performance of the final model. Unfortu-
nately, this problem is largely overlooked in current solu-
tions and hinders further improvements in SSOD.

To address the preceding issues, using data-rebalancing
algorithms in classification tasks (Pang et al. 2019; Ouyang
et al. 2016; Ren et al. 2015) is an intuitive solution. How-
ever, this idea is impeded by entanglements of foreground
instances and background in detection data. Besides, directly
redistributing class distributions without prior information
on unlabeled data is insufficient in previous researches.

Contributions. In this work, we introduce a simple yet ef-
fective Adaptive Class-Rebalancing Self-Training (ACRST)
method to redistribute pseudo-labels. ACRST consists
of two detection-specific data-rebalancing algorithms:
foreground-background rebalancing (FBR) and adaptive
foreground-foreground rebalancing (AFFR).

Before handling class imbalance, we design a memory
module called CropBank to decouple instance entangle-
ments in detection data. CropBank stores classification and
localization information of foreground instances, according
to ground-truths and pseudo-labels during training. As far
as we know, CropBank is the first method to allow distri-
bution rebalancing at instance-level instead of image-level.
Besides, we contribute a selective supervision scheme to re-
duce noise in inaccurate regression with CropBank.

We first propose FBR to address the foreground-
background imbalance in SSOD. FBR samples foreground
instances from CropBank and injects them into other images
to produce unbiased data. In this regard, FBR directly ad-
justs the proportion of foreground instances in self-training
and alleviates the foreground-background imbalance.

We then design AFFR based on FBR to handle the
foreground-foreground imbalance. Specifically, a simple yet
effective criterion called Pseudo Recall is proposed to judge
which class is neglected or over-focused during training.
Consequently, pseudo-labels of neglected classes are sam-
pled more frequently because of higher negative confidence,
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Figure 1: Class imbalance in SSOD on 1% COCO-standard. Ground truths are true labels of labeled data and pseudo-labels are
generated by the teacher model.

and the class distribution is adaptively redistributed accord-
ing to learning states, thus leading to a minimally biased de-
tector in the subsequent self-training.

While FBR and AFFR are simple and effective in ad-
dressing the class imbalance in SSOD, inaccurate pseudo-
labels (see Fig.2) severely hinder their effectiveness. To ob-
tain accurate pseudo-labels, we get a free lunch from a semi-
supervised multi-label learning (SSMLL) module, which
provides image-level constraints complementary with the
original detection confidence threshold. Thereafter, we de-
sign a two-stage filtering scheme to remove pseudo-labels
that activate negative in detection confidences or multi-label
predictions.

Our proposed method is simple, generic, and efficient,
which can be seamlessly incorporated into other self-
training pipelines for SSOD. Albeit simple, our method
outperforms previous state-of-the-art results on MS-COCO
and VOC benchmarks by significant margins. When us-
ing only 1% labeled COCO-standard (Lin et al. 2014), our
method obtains 5.32 mAP improvement over other competi-
tive methods. When using VOC07 (Everingham et al. 2010)
as labeled data, our method outperforms state-of-the-arts by
1.26 mAP improvement.

Figure 2: Accuracy and Recall of pseudo-labels in 1%
COCO-standard.

Related Work
Supervised Object Detection
Existing object detection frameworks include one- and two-
stage detectors. One-stage detectors (Redmon et al. 2016;

Lin et al. 2017; Law and Deng 2018; Duan et al. 2019) de-
tect directly instances on dense grids, and two-stage detec-
tors (Ren et al. 2015; He et al. 2017; Girshick et al. 2014;
Girshick 2015) first generate regions of interest (RoIs) and
perform refinement on RoIs for the final predictions. We
choose Faster-RCNN (Ren et al. 2015) in our experiments
for a fair comparison with previous works.

Semi-supervised Learning
Recently, semi-supervised learning has achieved remark-
able progress. Typical examples of SSL typically fall onto
two types. One is consistency-regularization (Berthelot et al.
2019b,a; Xie et al. 2020a; Takeru et al. 2018; Sajjadi, Ja-
vanmardi, and Tasdizen 2016), enforcing variant predictions
for the input under various perturbations. The other is self-
training (Tarvainen and Valpola 2017; Bachman, Alsharif,
and Precup 2014; Arazo et al. 2019; Iscen et al. 2019), ex-
ploiting high-quality pseudo-labels of unlabeled data as ex-
tra supervisions.

In this work, we focus on self-training, which normally
assumes balanced class distributions in unlabeled datasets.
Recently, cReST (Wei et al. 2021) reveals that such as-
sumption is irrational in real-world datasets and previous
researches degrade heavily on biased distributions. Concur-
rently, cReST introduces an effective rebalancing method,
which relies on prior knowledge on the unlabeled class dis-
tribution and can not be extended to SSOD due to entan-
gled semantics in detection tasks. In contrast, our method is
simple yet efficient to handle class imbalances in detection
datasets without any prior information.

Semi-supervised Object Detection
Following standard SSL settings, semi-supervised object de-
tection has a rapid development recently. Consistency based
methods, e.g. CSD (Jeong et al. 2019) and ISD (Jeong et al.
2021), impose consistency-regularization on inputs under
various permutations.

Recently, self-training based methods are frequently re-
visited. Inherited from Noisy Student (Xie et al. 2020b),
STAC (Sohn et al. 2020) introduces detection-specific data
augmentations for weakly- and strongly-augmented views
generation. Instant Teaching (Zhou et al. 2021) enforces
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consistency between the mixed predictions and predic-
tions of mixed inputs with MixUp (Zhang et al. 2018)
and Mosaic (Bochkovskiy, Wang, and Liao 2020). Humble
Teacher (Tang et al. 2021) mines more information from soft
pseudo-labels. Soft Teacher (Xu et al. 2021) focuses on ac-
curate pseudo-labels generation with uncertainty in classifi-
cation and regression.

While these studies improve the detector against the su-
pervised baseline, they lack considerations into serious class
imbalances in real-world detection tasks and generate biased
predictions. Recently, Unbiased-Teacher (Liu et al. 2021)
applies focal loss (Lin et al. 2017) to implicitly balance
the classification predictions. However, this work fails to
model detection-specific imbalance in SSOD, and detectors
with focal loss easily overfit in noisy pseudo-labels. To ad-
dress the preceding issues, we propose ACRST to explicitly
handle the class imbalance. We also contribute a two-stage
pseudo-label filtering algorithm to assist ACRST and allevi-
ate the noise in self-training.

Method
Overview
In SSOD, detectors are trained with a small labeled
dataset Dl and a large unlabeled dataset Du, where
Dl = {xl

i, y
l
i}

Nl
i=1 with bounding-box annotations yl, and

Du = {xu
i }

Nu
i=1. For fair comparisons, we choose Mean

Teacher (MT) (Tarvainen and Valpola 2017) as the SSOD
framework, and represent the overview of our framework
in Fig.3. The corresponding training steps consisted of pre-
training and mutual learning are clarified as follows.

Pre-training. The student model is first pre-trained with
Dl via gradient back-propagation, and then the teacher
model resumes from the student model. Pre-training gener-
ates noisy-less pseudo-labels, thereby facilitating the subse-
quent mutual training.

Teacher-Student Mutual Learning. In the mutual learn-
ing stage, the student model is trained with ground truths and
pseudo-labels. The student model is updated via the gradi-
ent back-propagation, and the teacher model is updated via
exponential moving average (EMA):

θs ← θs +
∂L
∂θs

, (1)

θt ← λemaθt + (1− λema)θs, (2)
where θs/θt represents the model parameters of the studen-
t/teacher model, and λema is the parameter for EMA. L rep-
resents the total SSOD losses, i.e. a combination of losses
on labeled data Lsup and unlabeled data Lunsup:

L = Lsup + λunsupLunsup, (3)

Lsup = ΣiLrpn
cls (xl

i, y
l
i) + Lrpn

reg (x
l
i, y

l
i)

+Lroi
cls (x

l
i, y

l
i) + Lroi

reg(x
l
i, y

l
i),

(4)

Lunsup = ΣiLrpn
cls (xu

i , ỹ
u
i ) + Lroi

cls (x
u
i , ỹ

u
i ), (5)

where Lrpn
cls , Lrpn

reg , Lroi
cls , Lroi

reg respectively represent loss
functions of RPN classification, RPN regression, ROI clas-
sification and ROI regression. yli represents the annotation

of the labeled image xl
i, and ỹui represents the pseudo-labels

of unlabeled image xu
i . λunsup is used to balance the super-

vised and unsupervised losses. Note that regression losses
are removed in Lunsup in previous studies for denoising.

In the following, we first introduce the CropBank for
semantic disentanglement. Then, we elaborate on our pro-
posed ACRST consisted of FBR and AFFR. Subsequently,
we clarify the two-stage pseudo-label filtering algorithm to
obtain accurate supervisions. Lastly, we introduce the selec-
tive supervision scheme for regression learning.

CropBank
Despite the effectiveness of data-resampling algorithms in
distribution rebalancing, they are heavily hindered by strong
entanglements between foreground instances and back-
ground in detection data. To decouple such interconnec-
tions, we propose a novel memory module called Crop-
Bank, which incorporates two sub-banks. One is Labeled
CropBank ΦL = {yli}

NL
i=1, absorbing NL ground truths

from labeled images. The other is Pseudo CropBank ΦU =
{ỹui }

NU
i=1, accumulating NU pseudo-labels generated by the

teacher model.
In the implementation, the CropBank brings negligible

memory and time consumption for only storing instance-
level annotations. In the self-training, ΦL is fixed once gen-
erated, while ΦU is updated periodically with improved
pseudo-labels in mutual training. CropBank supports the
data resampling at the instance-level, based on which we
design adaptive class-rebalancing self-training (ACRST) to
handle the class imbalance in SSOD.

Adaptive Class-Rebalancing Self-Training
While self-training is an ideal solution to alleviate the
lack of human annotations, it is hindered by the inherent
class imbalance in real-world detection datasets. To han-
dle the class imbalance in SSOD, we propose Adaptive
Class-Rebalancing Self-Training (ACRST), which consists
of foreground-background rebalancing (FBR) and adaptive
foreground–foreground rebalancing (AFFR).

Foreground-Background Rebalancing. Models trained
on foreground-background imbalanced data often overfit in
background instances (Lin et al. 2017). While various solu-
tions (Lin et al. 2017; Ren et al. 2015) have been proposed,
they heavily rely on ground truths to redistribute training
data. In contrast, we use abundant instance-level annotations
with few ground truths and lots of pseudo-labels in Crop-
Bank to rebalance the foreground-background distribution.

Given a training data {xi, yi}, we fetch a set of foreground
instances F = {cj , yj}NC

j=1 from the CropBank ΦL and ΦU

for image xi following a sample distribution P, where cj is a
foreground instance cropped from original image according
to annotation yj , and NC ∈ sample range [Nmin, Nmax].
Then, the new training data {xmix

i , ymix
i } is generated as

follows:
xmix
i = αxi + (1− α)cj , (6)

ymix
i = merge(yi, yj), (7)
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Figure 3: An overview of our semi-supervised object detection framework. The teacher model generates pseudo-labels from
weakly-augmented unlabeled data and the student model is trained on strongly-augmented data with a combination of ground
truths and pseudo-labels. To alleviate the class imbalance in SSOD, we first design a memory module called CropBank. Then,
the foreground-background rebalancing (FBR) and adaptive foreground-foreground rebalancing (AFFR) are applied for adap-
tive class-rebalancing self-training (ACRST) based on CropBank. We also contribute a two-stage pseudo-label filtering (TPF)
method and a selective supervision scheme to assist ACRST and generate accurate pseudo-labels.

where α is a binary mask of cj , and ymix
i denotes the new

annotations, in which fully occluded instances are removed
from the new image xmix

i . During training, cj is augmented
and pasted to random locations of xi. This combination di-
rectly increases the ratio of foreground instances, thereby
rebalancing foreground-background distribution.

In the implementation, the data-rebalancing is seamlessly
incorporated into strong data augmentations and brings no
restriction on the SSOD framework. Besides, as discussed
in the following section, such a crop-paste operation reduces
noise in pseudo-labels and enables accurate regression with
selective supervision.

Adaptive Foreground-Foreground Rebalancing. FBR
adequately alleviates the foreground-background imbal-
ance with considerable attention to foreground instances.
However, sampling randomly or uniformly foreground in-
stances from the CropBank fails to handle the foreground-
foreground imbalance. Hence, we contribute an adaptive
sample strategy, in which samples in neglected classes dur-
ing self-training are selected more frequently.

To measure the neglected degree of each class, we pro-
pose a novel criterion Pseudo Recall (PR). For each cat-
egory k, we empirically use a low threshold (0.1) to filter
noisy predictions. Then detection confidences from Teacher
Detector for each foreground instance are accumulated to
calculate PRk:

PRk = ΣNk
i=1s

k
i , (8)

where ski is the detection confidence for i-th pseudo-label.
PR defines how neglected one class is in SSOD. High

PRk indicates that the detector is certain even over-
confident on class k. Consequently, lower sample probabili-
ties should be allocated to samples in class k to avoid over-
fitting. And, low PRk implies that the detector lacks con-
fidence for detecting instances of class k. Therefore, these
instances should be selected more frequently in subsequent
training. When categories are similarly neglected, lower PR

is adaptively assigned to tail categories and raises increasing
attention on them. Besides, unlike cReST (Wei et al. 2021),
the definition of PR does not rely on any prior information
on unlabeled data.

With PR, we design an adaptive sample strategy:

µk =
(1/PRk)

β

ΣK
j=1 (1/PRj)

β
, (9)

where µk is the probability of choosing instances of class
k, and K is the number of categories. β is used to ad-
just the sample probability. This mechanism adaptively al-
locates higher/lower sample rates to neglected/over-focused
instances. Note that AFFR performs FBR simultaneously.

Two-stage Pseudo-label Filtering
While proposed ACRST considerably alleviates the class
imbalance in SSOD. However, its effectiveness is heav-
ily affected by the quality of pseudo-labels. Once noise
in the CropBank is selected improperly, it will be am-
plified undesirably in self-training. While a high thresh-
old (0.9) is usually used in semi-supervised classifica-
tion/segmentation (Berthelot et al. 2019b) to select accurate
pseudo-labels, it is necessary to adopt a relative low thresh-
old (0.7) in SSOD (Liu et al. 2021; Zhou et al. 2021) to en-
sure enough yet noisy pseudo-labels, which are unfriendly
to ACRST. To alleviate the above issues, we propose a
semi-supervised multi-label classification module to pro-
vide high-level semantics (i.e., image-level pseudo-labels)
for two-stage pseudo-label filtering.

Semi-supervised Multi-label Learning. The proposed
semi-supervised multi-label learning (SSMLL) module is
devised based on ResNet50-based CTran (Lanchantin et al.
2021) following Mean Teacher pipeline. For each image xi,
we predict its image-level pseudo-labels vi = {lk}Kk=1, lk ∈
{0, 1}, where K is the number of classes and lk indicates
whether there are instances of class k in the image. In the
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training stage, predictions of the teacher model are converted
to image-level pseudo-labels, and a focal binary cross en-
tropy loss to optimize the student model. SSMLL is a much
easier auxiliary task compared with SSOD and enables reli-
able references generation for two-stage pseudo-label selec-
tion. Note that we also extend ACRST to alleviate the class
imbalance in SSMLL, and the total training of SSMLL only
takes 1

5 of SSOD’s time due to fewer steps, smaller input
size, and a more simplified framework.

Two-stage Pseudo-label Filtering. For predictions from
the teacher model, we adopt a two-stage pseudo-label fil-
tering scheme to get accurate pseudo-labels with confidence
scores s and image-level pseudo-labels v. In the first stage,
predictions with scores s < τcls are removed to get pseudo-
labels with high objectness. In the second stage, predictions
with classes that activate negative in v (i.e., activation values
are smaller than τml) are removed to get pseudo-labels with
correct class labels. Note that we use negative instead of pos-
itive multi-label as references because negative learning has
much higher accuracy and recall than positive learning.

Selective Supervision

While bounding-box regression losses in previous SSOD re-
searches (Liu et al. 2021) are removed due to inaccurate
regression, they are beneficial for our framework. We at-
tribute the success to the CropBank, which alleviates noise
from partially detected instances that take a large propor-
tion (81.2% in 1% COCO-standard) in biased predictions.
Learning blindly with these noisy pseudo-labels will heav-
ily aggravate the model performance. However, in our work,
when the partially detected instances from the CropBank are
cropped and pasted to other images, they become indepen-
dent and complete in new backgrounds, thereby providing
additional accurate supervision for regression learning.

With selective supervision, loss function Lunsup in Equa-
tion 5 can be represented as follows:

Lunsup = ΣiLrpn
cls (xu

i , ỹ
u
i ) + Lrpn

reg (x
u
i , ỹ

ss
i )

+Lroi
cls (x

u
i , ỹ

u
i ) + Lroi

reg(x
u
i , ỹ

ss
i ),

(10)

where ỹssi are the instances from CropBank.

Experiments
Datasets

We evaluate our method on three SSOD benchmarks from
MS-COCO (Lin et al. 2014) and PASCAL VOC (Ev-
eringham et al. 2010). (1).COCO-standard: We sam-
ple 0.5/1/2/5/10% of the COCO2017-train as the labeled
dataset and take the remaining data as the unlabeled
dataset. (2).COCO-additional: We use the COCO2017-
train as the labeled dataset and the additional COCO2017-
unlabeled as the unlabeled dataset. (3).VOC: We use the
VOC07-trainval as the labeled dataset and the VOC12-
trainval as the unlabeled dataset. We evaluate the model on
the COCO2017-val for (1)(2) and VOC07-test for (3).

Implementation Details
For fair comparisons, we follow previous methods (Sohn
et al. 2020; Liu et al. 2021) to use Faster-RCNN with FPN
and ResNet50 and build our framework upon the Detec-
tron2 (Wu et al. 2019). Following (Liu et al. 2021), the
batch-sizes of labeled and unlabeled images are both 32.
We use the SGD optimizer with learning rate=0.01 and mo-
mentum rate=0.9. We set λema = 0.9996, τcls = 0.7,
λunsup = 4. For specific parameters in our work, we
set β = 0.6, and τml = 0.2. The pre-training takes
3000/5000/5000/5000/10000 steps and the total training
takes 180000 steps for 0.5/1/2/5/10% COCO-standard. For
VOC, the pre-training takes 5000 steps and the total train-
ing takes 72000 steps. We apply color jittering, Gaussian
blur and CutOut for strong augmentations, and we ap-
ply randomly resize and flip, crop for weak augmenta-
tions. The widely used mAP (AP50:95) serves as metric
for comparisons. For SSMLL, the batch-sizes of labeled
and unlabeled images are both 64. The pre-training takes
2k/2k/6k steps and the total training takes 18k/36k/96k steps
for VOC/COCO-standard/COCO-additional, where we use
Adam optimizer with lr=1e-5. Data augmentations are the
same with SSOD but images are resized into 576*576.

Results and Comparisons
COCO-standard & COCO-additional. We first evalu-
ate our method on COCO-standard. As shown in Table 1,
when using only 1% to 10% labeled data, our model consis-
tently performs better against all previous approaches. When
trained on the 1% COCO-standard, our method achieves
5.32 mAP improvement compared with Unbiased-Teacher,
and 3.61 mAP improvement than CSD trained on 10%
COCO-standard. When using 10% COCO-standard, our
method achieves 11.06 mAP improvement compared with
supervised baselines. In Table 2, our model has a 0.72 mAP
gains on COCO-additional and 3.08 mAP gains on 0.5%
COCO-standard compared with previous methods. This re-
sult indicates that our method achieves satisfying gains even
on extremely small/large-scale labeled datasets. We attribute
the success of model performance to the class rebalanced
data and accurate pseudo-labels.

VOC. We evaluate models on a balanced dataset VOC to
demonstrate the generalization of our method. Table 3 pro-
vides the mAP results of CSD, STAC, Unbiased Teacher,
Humble Teacher, and ours. Our method achieves 7.99 mAP
improvement compared with the supervised baseline and
1.26 mAP improvement against Humble Teacher, even
though Humble Teacher has witnessed performance satura-
tion in VOC. We owe the success to the generalization abil-
ity of ACRST. Albeit training data is already foreground-
foreground balanced in VOC, FBR alleviates the inevitable
foreground-background imbalance in SSOD. Besides, the
two-stage pseudo-label filtering scheme and selective super-
vision further improve the model performance.
Ablation Studies
Foreground–Background Rebalancing. We first verify
the effect of FBR. Table 4 shows that applying FBR im-
proves mAP in 1% labeled COCO from 21.05 to 23.32. To
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COCO-standard (AP50:95)

1% 2% 5% 10%
Supervised 9.05± 0.16 12.70± 0.15 18.47± 0.22 23.86± 0.81

CSD (Jeong et al. 2019) 10.51± 0.06(+1.46) 13.93± 0.12(+1.23) 18.63± 0.07(+0.16) 22.46± 0.08(−1.4)
STAC (Sohn et al. 2020) 13.97± 0.35(+4.92) 18.25± 0.25(+5.55) 24.38± 0.12(+5.91) 28.64± 0.21(+4.78)

Instant Teaching (Zhou et al. 2021) 18.05± 0.15(+9.00) 22.45± 0.15(+9.75) 26.75± 0.05(+8.28) 30.40± 0.05(+6.54)
Unbiased Teacher (Liu et al. 2021) 20.75± 0.12(+11.70) 24.30± 0.07(+11.60) 28.27± 0.11(+9.80) 31.5± 0.10(+7.64)
Humble Teacher (Tang et al. 2021) 16.96± 0.38(+7.91) 21.72± 0.24(+9.02) 27.70± 0.15(+9.23) 31.61± 0.28(+7.75)

Soft Teacher (Xu et al. 2021) 20.46± 0.39(+11.41) - 30.74± 0.08(+12.27) 34.04± 0.14(+10.18)
Ours 26.07 ± 0.26(+17.02) 28.69 ± 0.17(+15.99) 31.63 ± 0.13(+13.16) 34.92 ± 0.22(+11.06)

Table 1: Comparison with the state-of-the-arts on 1% to 10% COCO-standard.

Figure 4: Ablation study on (a) FBR and (b) AFFR.

AP50:95

COCO-addtional 0.5% COCO-standard
Supervised 40.20 6.83

CSD 38.82(−1.38) 7.41(+0.58)
STAC 39.21(−0.99) 9.78(+2.95)

Unbiased Teacher 41.30(+1.10) 16.94(+10.11)
Humble Teacher 42.17(+1.97) −

Ours 42.89(+2.69) 20.02(+13.19)

Table 2: Comparison with the state-of-the-arts on COCO-
additional and 0.5% COCO-standard.

AP50 AP50:95

Supervised 72.63 42.13
CSD 74.70(+2.07) -
STAC 77.45(+4.82) 44.64(+2.51)

Unbiased Teacher 77.37(+4.74) 48.69(+6.56)
Humble Teacher 80.94(+8.31) 53.04(+10.91)

Ours 81.11(+8.48) 54.30(+12.17)

Table 3: Comparison with the state-of-the-arts on VOC.

FBR AFFR Two-Stage SS AP50:95

21.05
✓ 23.48(+2.43)

✓ 23.32(+2.27)
✓ ✓ 24.36(+3.31)
✓ ✓ ✓ 25.56(+4.51)
✓ ✓ ✓ ✓ 26.12(+5.07)

Table 4: Ablation study on 1% COCO-standard.

analyze the divergent results, we visualize the foreground-
background distribution of the rebalanced pseudo-labels. As
shown in Fig.4 (a), the distribution of the foreground in-
stances is rebalanced after FBR. The ratio of foreground in-
stances in rebalanced pseudo-labels is even higher than that
of ground truths. Hence, training detectors with rebalanced
training data alleviates data bias and produces high mAP. We
also perform ablation studies on the type of CropBank and
sample range [Nmin, Nmax]. As shown in Table 5, sampling
instances from both Labeled and Pseudo CropBank with a
large random sample range achieves the highest mAP.

CropBank Nmin Nmax AP50:95

Labeled 0 10 25.42
Pseudo 0 10 25.96

Labeled + Pseudo 0 5 26.04
Labeled + Pseudo 0 10 26.12
Labeled + Pseudo 10 10 25.74

Table 5: Ablation study on CropBank and sample ranges.

Adaptive Foreground–Foreground Rebalancing. As
shown in Table 4, AFFR improves 3.31 mAP compared to
supervised baseline. We further verify the effectiveness of
AFFR by analyzing the KL-divergence between the distribu-
tion of ground truths and pseudo-labels. Fig.4 (b) indicates
that when using AFFR, the KL-divergence is reduced from
0.00024 to 0.00013. This result further confirms the effec-
tiveness of AFFR in handling foreground–foreground imbal-
ance in pseudo-labels and generating unbiased data distribu-
tions. And, we explore the selection of hyper-parameter β.
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Figure 5: Pseudo-labels improvements in Box Accuracy and Box mIoU in 1% COCO-standard.

Figure 6: Effect of TPF and ACRST on neglected/over-focused classes on 1% COCO-standard.

As shown in Table 6, equipped with β = 0, AFFR is equiv-
alent to uniform sample and degrades to FBR. With larger
β = 0.6, AFFR delivers 1.04 mAP performance gains.
Note that AFFR with β = 0.4 or β = 0.8 obtains simi-
lar gains, these results prove that AFFR is insensitive to the
only hyper-parameter β.

β 0 0.2 0.4 0.6 0.8
AP50:95 23.32 23.90 24.22 24.36 24.28

Table 6: Results for different values of β in AFFR.

Two-stage Pseudo-label Filtering. We also verify the
effectiveness of the two-stage pseudo-label filtering with
detection confidences and image-level pseudo-labels. As
presented in Table 4, the model that filters pseudo-labels
with additional multi-label information favorably achieves
2.43 performance gains compared to single-stage filtering.
Fig.5 (a) shows a continuous improvement in the accu-
racy of pseudo-labels with the two-stage filtering scheme
effective in removing noisy predictions in SSOD. Besides,

the two-stage filtering scheme is necessary to build an ac-
curate Pseudo CropBank and improve the performance of
ACRST. Table 4 indicates that applying the two-stage fil-
tering scheme to ACRST improves the mAP from 24.36
to 25.56. All the results confirm that the two-stage filtering
scheme is effective in handling the noisy pseudo-labels.

Selective Supervision. In this section, we examine the ef-
fectiveness of selective supervision in SSOD. As presented
in Table 4, the selective supervision improves the mAP from
25.56 to 26.12 in 1% COCO-standard. We owe the improve-
ment to the crop-paste operation in ACRST, in which in-
complete instances are pasted to new backgrounds. Accord-
ingly, transferring these incomplete predictions to complete
objects in a new background alleviates regression noise in
the pseudo-labels and improves the model performance. We
further analyze the accuracy of regression in pseudo-labels.
As shown in Fig.5 (b), selective supervision continuously
improves the mIoU of pseudo-labels. While selective super-
vision is an effective method to exploit partially detected
pseudo-labels in SSOD, there is still room for improvement.
For instance, the current strategy fails to handle noise when
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objects are overlapped with each other in pseudo-labels.

Ablation Study on other SSOD frameworks. To prove
that our method can be seamlessly incorporated into other
SSOD frameworks, we re-implement a representative work
STAC (Sohn et al. 2020), equipped with proposed ACRST,
two-stage pseudo-label filtering (Two-stage), and selective
supervision (SS). As shown in Table 7, while pseudo-labels
in STAC are not updated online, our proposed methods
achieve significant gains on 1% COCO-standard and show
strong generalization ability.

Method AP50:95

STAC 13.97
STAC+ACRST 15.52(+1.55)

STAC+ACRST+Two-stage 16.64(+2.67)
STAC+ACRST+Two-stage+SS 16.92(+2.95)

Table 7: Ablation study for STAC on 1% COCO-standard.

Ablation Study on the Most Frequent and Rarest
Classes. We perform another ablation study on the ef-
fect of proposed modules on the over-focused(most fre-
quent)/neglected(rarest) classes in Fig. 6. The results in
both Fig. 6 (a) and (b) indicate that both two-stage
pseudo-labels filtering (TPF) and ACRST perform well on
over-focused/neglected classes. As shown in (b), ACRST
achieves significant improvements on the neglected classes
with AFFR, while baseline has witnessed a performance
drop in the rarest classes.

Additional Results and Analysis
CropBank:A Strong Data Augmentation for Detection.
Appropriate strong augmentations play a vital role in semi-
supervised learning (SSL). While image-level data aug-
mentations (e.g.color jittering, CutOut (Devries and Taylor
2017)) are effective in boosting SSL on classification, they
are not powerful enough for SSOD (Zhou et al. 2021). Re-
cently, (Zhou et al. 2021) combines MixUp (Zhang et al.
2018) and Mosaic (Bochkovskiy, Wang, and Liao 2020) as a
strong augmentation to change the image semantics and im-
proves the model performance. However, MixUp and Mo-
saic are designed specifically for the classification and de-
grade in SSOD. While CropBank is designed for ACRST, it
is a strong detection-specific augmentation for SSOD. The
strength of CropBank is two-folds. First, CropBank decou-
ples foreground instances and background in detection data
and creates complicated training data with decoupled ele-
ments. Second, the CropBank alleviates noise in pseudo-
labels with selective supervision.

To verify the effectiveness of CropBank, we provide the
results of Instant Teaching (Zhou et al. 2021) with different
data augmentations in Table 8. The CropBank improves the
mAP from 16.00 to 16.85 compared to MixUp and Mosaic.

Semi-supervised Multi-Label Learning. Here, we pro-
vide the results from the semi-supervised multi-label learn-
ing (SSMLL) with different τml and corresponding SSOD
performance. As shown in Table 9, SSMLL generates accu-
rate image-level pseudo-labels and the SSOD performance

Augmentations AP50:95

MixUp and Mosaic (Zhou et al. 2021) 16.00
CropBank 16.85

Table 8: Instant Teaching performance under different data
augmentations on 1% COCO-standard.

is insensitive to τml. Note that positive image-level pseudo-
labels are less accurate, the accuracy is 0.740 and the recall
is 0.325 when using a 0.7 threshold.

τml Accuracy Recall AP50:95

0.05 0.994 0.968 23.27
0.1 0.992 0.984 23.28
0.2 0.990 0.991 23.32

Table 9: Accuracy and Recall of image-level negative
pseudo-labels on 1% COCO-standard.

Then we clarify the reasons for using negative instead of
positive pseudo-labels as reference. We provide the results in
three settings: (1) Single-stage: Predictions with low detec-
tion confidence are filtered. (2) Two-stage filtering: Predic-
tions with low detection confidence or activating negative in
image-level pseudo-labels are filtered. (3) Two-stage Min-
ing: Predictions with high detection confidence or activating
positive in image-level pseudo-labels are reserved.

Setting Accuracy Recall AP50:95

Single-stage 0.788 0.377 21.05
Two-stage Filtering 0.815 0.367 23.48
Two-stage Mining 0.712 0.448 21.79

Table 10: Model Performance, Accuracy and Recall of
pseudo-labels on 1% COCO-standard.

As shown in Table 10, while the two-stage mining
achieves higher recall gains compared with the two-stage
filtering, the latter achieves 1.69 mAP gains. This result in-
dicates that the improvement in accuracy of pseudo-labels is
relatively important in SSOD.

Conclusion
This study proposes a simple but effective ACRST to
address the class imbalance in SSOD. With CropBank,
ACRST considerably alleviates foreground-background and
foreground-foreground imbalances with FBR and AFFR.
To further improve FBR and AFFR, we design a two-
stage pseudo-label filtering algorithm with detection confi-
dences and high-level semantics. Over iterations on rebal-
anced training data, SSOD detectors become unbiased and
ameliorate the model performance progressively. Extensive
experiments demonstrate the effectiveness of our method.
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