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Abstract

In the practical application of restoring low-resolution gray-
scale images, we generally need to run three separate pro-
cesses of image colorization, super-resolution, and dows-
sampling operation for the target device. However, this
pipeline is redundant and inefficient for the independent pro-
cesses, and some inner features could have been shared.
Therefore, we present an efficient paradigm to perform
Simultaneously Image Colorization and Super-resolution
(SCS) and propose an end-to-end SCSNet to achieve this
goal. The proposed method consists of two parts: coloriza-
tion branch for learning color information that employs the
proposed plug-and-play Pyramid Valve Cross Attention (PV-
CAttn) module to aggregate feature maps between source and
reference images; and super-resolution branch for integrating
color and texture information to predict target images, which
uses the designed Continuous Pixel Mapping (CPM) mod-
ule to predict high-resolution images at continuous magni-
fication. Furthermore, our SCSNet supports both automatic
and referential modes that is more flexible for practical appli-
cation. Abundant experiments demonstrate the superiority of
our method for generating authentic images over state-of-the-
art methods, e.g., averagely decreasing FID by 1.8↓ and 5.1
↓ compared with current best scores for automatic and ref-
erential modes, respectively, while owning fewer parameters
(more than ×2↓) and faster running speed (more than ×3↑).

1 Introduction
In some practical scenarios, e.g., restoration of old photos
and artistic creation of gray-scale draft, we can only ob-
tain Low-Resolution (LR) gray-scale images and hope to
get more attractive High-Resolution (HR) colorful images.
As shown in the top part of Figure 1, the current solution
pipeline cascades different methods by mainly three stages:
1) Using automatic or referential colorization model to
color the gray-scale image for obtaining visually appealing
RGB images. 2) Leveraging Single Image Super-Resolution
(SISR) method for learning a nonlinear mapping to recon-
struct HR images from LR inputs. 3) Down-sampling the
generated HR images to the appropriate resolution for the
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Figure 1. Current automatic and referential pipelines re-
quire three stages: 1) image colorization; 2) image super-
resolution; and 3) down-sampling for target devices in dif-
ferent scenarios. Our end-to-end SCSNet supports both au-
tomatic and referential modes.

target device. However, this pipeline is redundant and ineffi-
cient for practical use, where image colorization and super-
resolution could have shared some common features by one
unified network. Also, the device-adapted down-sampling
operation in the last stage means that there is redundancy
calculation in the SISR stage, which generates HR images
at a fixed magnification (usually higher than needed) rather
than device-required magnification. As shown in the bottom
part of Figure 1, we focus on solving the above problems
and designing an efficient paradigm to achieve Simultane-
ously image Colorization and Super-resolution (SCS) task
by one unified network. Figure 2 shows our authentic and di-
versified generation results in both automatic and referential
modes, as well as the qualitative and quantitative compar-
ison results with State-Of-The-Art (SOTA) pipelines. Con-
cretely, we propose a novel efficient SCSNet that contains
colorization and super-resolution branches.

For colorization branch, it learns how to predict two miss-
ing channels information from the given gray-scale image.
Image colorization mainly falls into automatic and referen-
tial modes depending on the availability of the reference im-
age. The automatic mode only requires LR gray-scale im-
age that seems intuitive but suffers from poor chromaticity
of the generated images, because each semantic object can
have various colors and the network tends to average output
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Figure 2. The left part shows our various results for 4× under automatic and referential modes, while the middle part is for 4×
compared with SOTA referential pipeline. Right figure shows the efficiency comparison among our method and SOTA methods,
and the circle size represents the parameter number of each method.

if applying inappropriate training strategy (Zhang, Isola, and
Efros 2016). The referential mode requires an additional ref-
erence image for providing semantic color information that
is more controllable. A key point in the referential process
is how to reasonably merge color information from the ref-
erential image into the source image. Some works (He et al.
2018; Zhang et al. 2019a) propose to calculate the correla-
tion matrix to characterize bidirectional similarity between
source and reference images, and approaches (Zhao et al.
2019; Xu et al. 2020; Kumar, Weissenborn, and Kalchbren-
ner 2021) use direct concatenation, AdaIN operation (Huang
and Belongie 2017), or transformer module to aggregate in-
formation. However, the information interaction of current
methods can be error-prone and may lack visual interpreta-
tion. Inspired by self-attention (Zhang et al. 2019b), we re-
design a plug-and-play Pyramid Valve Cross Attention (PV-
CAttn) module that applies interpretable valves to control
the information flow and fuses features at multiple scales.
Also, our SCS paradigm supports both modes controlled by
a reference switch in the PVCAttn module.

For super-resolution branch, it learns how to reconstruct
HR images from LR images. In general, SISR technology
is employed to post-process the generated images for bet-
ter visualization, and almost all current SISR methods only
carry out fixed magnification (Wang et al. 2018; Guo et al.
2020), which goes against the natural world with a contin-
uous visual expression. Unlike recent Meta-SR (Hu et al.
2019) that attempts continuous magnification by predicting
convolutional weights for each pixel, we propose a more ef-
ficient Continuous Pixel Mapping (CPM) module to realize
arbitrary magnification in a continuous space. Specifically,
we make the following three contributions:

• We propose an efficient SCSNet paradigm to perform the
SCS task in an end-to-end manner firstly, and abundant
experiments demonstrate the superiority of our approach
for generating authentic and colorful images.

• A novel plug-and-play PVCAttn module is proposed to
effectively aggregate color information between source
and reference images in an explicable way.

• An elaborate CPM module is designed to realize contin-
uous magnification, which is more computation-friendly
and suitable for practical application.

2 Related Work
2.1 Image Colorization
Before the advent of CNN-based approaches, Li et
al. (Deshpande, Rock, and Forsyth 2015) train a quadratic
objective function in the chromaticity maps to colorize im-
ages. Subsequently, learning-based approaches almost dom-
inate the automatic image colorization (Anwar et al. 2020;
Cheng, Yang, and Sheng 2015; Zhang, Isola, and Efros
2016; Larsson, Maire, and Shakhnarovich 2016; Iizuka,
Simo-Serra, and Ishikawa 2016). Cheng et al. (Cheng,
Yang, and Sheng 2015) propose to extract multiple-level
feature descriptors to regress pixel values, while Zhang et
al. (Zhang, Isola, and Efros 2016) quantize the chrominance
space into bins. Later works (Deshpande et al. 2017; Mes-
saoud, Forsyth, and Schwing 2018) leverage VAE to learn
a low dimensional embedding of color fields, while GAN-
based methods (Cao et al. 2017; Vitoria, Raad, and Ballester
2020) introduce adversarial training to generate diverse and
authentic colorful images. Moreover, I2C (Su, Chu, and
Huang 2020) uses an off-the-shelf object detector to obtain
extra object-level features, while Lei et al. (Lei and Chen
2019) design a two-stage network successively for coloriza-
tion and refinement. Even though the above automatic meth-
ods perform well, they are uncontrollable and cannot gener-
ate various images once trained. This work also considers di-
versity and controllability when designing the network while
retaining the benefits of automatic image colorization.

Differently, referential image colorization requires addi-
tional information to guide the generation process. Zou et
al. (Zou et al. 2019) propose a SECat network that inputs
a gray-scale line art and color tag information to produce
a quality colored image. Some GAN-based methods (Fu-
rusawa et al. 2017; Xian et al. 2018; Sun et al. 2019) use
adversarial training to improve the rationality of generated
images, while works (Huang, Liao, and Kwong 2020; Lee
et al. 2020; Xian et al. 2018) take gray sketch image as in-
put and color it with the aid of the reference image con-
dition. He et al. (Iizuka and Simo-Serra 2019) propose
a similarity sub-net to compute the bidirectional similar-
ity map between source and reference images. Consider-
ing the limitation of one-stage network, methods (Xu et al.
2020; Zhang et al. 2019a) design the coarse-to-fine net-
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Figure 3. Overview of the proposed SCSNet, which consists of a PVCAttn-based Colorization branch (φ) and a CPM-based
Super-resolution branch (ψ). Given a low-resolution gray source image I ls and a colorful reference image I labr , the encoders
φs

E and φr
E in colorization branch are used to extract corresponding deep features F s and F r, respectively. PVCAttn module

aggregates F s and F r to form F int if choosing the referential mode, otherwise F int equaling F s. Subsequent colorization
decoder φD restores the color feature to the original resolution F color. For super-resolution branch, the encoder ψE extracts
the residual feature of initial feature F init

s , while the CPM module in decoder ψD uses mapping function F(·) to generate

target HR image Î
lab

t in a continuous space.

work to improve the performance. Nevertheless, how to rea-
sonably aggregate the referential feature is still a big chal-
lenge (Zhao et al. 2019; Xu et al. 2020). Works (Zhang et al.
2019a; Huang, Liao, and Kwong 2020) propose to obtain
the correlation matrix whose elements characterize the sim-
ilarity between the source and reference images. Recently,
Gray2ColorNet (Lu et al. 2020) design an attention gat-
ing mechanism-based color fusion network, and Kumar et
al. (Kumar, Weissenborn, and Kalchbrenner 2021) firstly
introduce the transformer (Vaswani et al. 2017) structure.
However, the above methods are effortless to select incor-
rect referential information prone to produce visual artifacts,
e.g., color shift and color patch. To alleviate the problems,
we propose a novel PVCAttn module to more effectively ag-
gregate information between source and reference images.

2.2 Single Image Super-Resolution
Since Dong et al. (Dong et al. 2015) propose SRCNN for
SISR, many CNN-based methods (Lim et al. 2017; Zhang
et al. 2018a,b; Ledig et al. 2017; Wang et al. 2018; Guo et al.
2020) with good effects have been proposed. EDSR (Lim
et al. 2017) improves performance significantly by remov-
ing unnecessary batch normalization in conventional resid-
ual networks and designing a new multi-scale deep super-
resolution system. Later RCAN (Zhang et al. 2018a) and
RDN (Zhang et al. 2018b) improve the residual block, and
works (Ledig et al. 2017; Wang et al. 2018) further intro-
duce adversarial loss during the training phase that greatly
improves the model’s performance. To solve the problem of

real-world image matching, works (Cai et al. 2019; Zhang
et al. 2019c) contribute new datasets where paired real-world
LR-HR images on the same scene are captured. Recently,
Guo et al. (Guo et al. 2020) propose a novel dual regres-
sion scheme for paired and unpaired data, which forms a
closed-loop to provide additional supervision. The above
methods have achieved good results, but they can only carry
out fixed factors for SISR, not producing a continuous dis-
play for practical application. Different from Meta-SR that
attempts continuous magnification by predicting convolu-
tional weights for each pixel, we design a more efficient
Continuous Pixel Mapping head to directly regress pixel
value with local relative coordinate in a continuous space.

3 Approach
In this paper, a novel efficient paradigm is proposed to
complete both automatic and referential image colorization
along with SISR simultaneously by one end-to-end net-
work. As depicted in Figure 3, the proposed SCSNet consists
of a PVCAttn-based colorization branch for restoring the
color information, as well as a CPM-based super-resolution
branch for generating high-resolution target image in a con-
tinuous space. An initial convolution firstly increases the
channel dimension of the low-resolution gray-scale source
image: I ls ∈ R1×Hs×Ws → F init

s ∈ R64×Hs×Ws , where
Hs and Ws are the height and width of the input image.

For the colorization branch, encoders φs
E and φr

E are
employed to extract corresponding deep features:
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Figure 4. Schematic diagram of VCAttn. The module takes
the source feature F s and the reference feature F r as input
and outputs the aggregated target feature map F t that has
the same dimension with F s.

F s =φ
s
E(F

init
s ) ∈ R256×Hs/4×Ws/4,

F r =φr
E(I

lab
r ) ∈ R256×Hs/4×Ws/4.

(1)

We design the branch with two patterns: the automatic mode
that directly maps source image feature to output (i.e.,F s →
F int), and the referential mode that employs the proposed
plug-and-play PVCAttn module to aggregate both source
and reference image features:

F int = PVCAttn(F s,F r) ∈ R256×Hs/4×Ws/4. (2)

Subsequently, decoder φD restores the color information
F int to the original resolution F color ∈ R64×Hs×Ws via
a self-attention layer and several convolution layers.

For super-resolution branch, encoder ψE extracts the
residual texture feature F tex ∈ R64×Hs×Ws from the initial
feature map F init

s via concatenated basic blocks. Each ba-
sic block contains two convolution layers along with a skip
operation. A subsequent 3×3 convolution is used to aggre-
gate F tex and F color, indicated as F cs ∈ R256×Hs×Ws .
Finally, the CPM module employs mapping function F(·)
to regress target HR image Î

lab

t ∈ R3×Hs∗p×Ws∗p, and p
represents any magnification that can be a decimal, while
F cs ∈ R2×Hs∗p×Ws∗p is obtained according to F cs.

3.1 Pyramid Valve Cross Attention
In order to more effectively aggregate feature information
between source and reference images, we propose a novel
Valve Cross Attention (VCAttn) module. As illustrated in
Figure 4, the purpose of VCAttn is to select the reference
feature F r ∈ RCr×Hr×Wr reasonably to the source feature
F s ∈ RCs×Hs×Ws . Similar to SAttn (Zhang et al. 2019b),
three convolution operations are used to extract query fea-
tures Qs ∈ RC×Hs×Ws , key features Kr ∈ RC×Hr×Wr ,
and value features V r ∈ RCs×Hr×Wr , respectively. Then,
Qs andKr are employed to calculate the correlation matrix
CMat, which further multiplies V r to obtain F r→s. Sub-
sequently, concatenated F s and F r→s go through cascaded
1×1 Convolution and Sigmoid to obtain valve maps V 1 and
V 2, which are used to control the information flux of F s

and F r→s. To further improve the representation, we design
a pyramid VCAttn module (PVCAttn) in Figure 5: pyramid
feature maps are sent into corresponding VCAttn modules
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Figure 5. Schematic diagram of PVCAttn. Pre-convolved
pyramid feature maps are processed by multiple VCAttns.

𝑭00 𝑭10

𝑭01 𝑭11

𝑭02 𝑭12

𝑭20

𝑭21

𝑭22

−1,−1

−1,+1

+1,−1

+1,+1

𝑭𝑥

𝑭0,0 𝑭1,0

𝑭0,1 𝑭1,1

𝑭0,2 𝑭1,2

𝑭2,0

𝑭2,1

𝑭2,2

−1,−1

−1,+1

+1,−1

+1,+1

𝑭𝑥,𝑦 = 𝑭𝑐𝑠
𝑥,𝑦

+ 𝒁𝑟𝑒𝑙
𝑥,𝑦

𝑭0,0 𝑭1,0

𝑭0,1 𝑭1,1

𝑭0,2 𝑭1,2

𝑭2,0

𝑭2,1

𝑭2,2

−1,−1

−1,+1

+1,−1

+1,+1

𝑭𝑥,𝑦 = 𝑭𝑐𝑠
𝑥,𝑦

+ 𝒁𝑟𝑒𝑙
𝑥,𝑦

𝑭0,0 𝑭1,0

𝑭0,1 𝑭1,1

𝑭2,0

𝑭2,1

−1,−1

−1,+1

+1,−1

+1,+1

𝑭𝑥,𝑦 = ഥ𝑭𝑐𝑠
𝑥,𝑦

+ 𝒁𝑟𝑒𝑙
𝑥,𝑦

𝑭0,0 𝑭1,0

𝑭0,1 𝑭1,1

𝑭2,0

𝑭2,1

−1,−1

−1,+1

+1,−1

+1,+1

𝑭𝑥,𝑦 = ഥ𝑭𝑐𝑠
𝑥,𝑦

+ 𝒁𝑟𝑒𝑙
𝑥,𝑦

Figure 6. Schematic diagram of CPM. Taking four points on
the feature map as an example, the feature F x,y of the point
x, y is modeled as the fusion of two parts: one is the main
feature F

x,y

cs obtained by bilinear interpolation with corner
alignment, the other is the local relative coordinate Zx,y

rel to
the nearest anchor point.

after pre-convolving, and the concatenated feature map goes
through a post-convolution to obtain the final output.

3.2 Continuous Pixel Mapping
In order to generate target images at any magnification,
we model the discrete feature mapping in continuous pixel
space and propose an efficient super-resolution head named
Continuous Pixel Mapping. As shown in Figure 6, we model
the feature F x,y of each point x, y with two parts: main
feature F

x,y

cs obtained by bilinear interpolation around the
neighborhood four points, as well as the local coordinate
feature Zx,y

rel that describes continuous local spatial infor-
mation. We model each point in the target image by its local
relative coordinate to the nearest point in the original reso-
lution image (i.e., anchor point) for providing fine-grained
guidance for each location. Since the coordinate is continu-
ous that it can be infinitely interpolated, and is independent
of the image resolution, F x,y can be modeled in a contin-
uous space. Note that we align the corner when obtaining
the main feature of each point. As for local coordinate fea-
ture Zx,y

rel , we look for its corresponding anchor point in the
original feature F cs ∈ R256×Hs×Ws and calculate local co-
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ordinate feature Zx,y
rel in the following formula:

Zx
rel =mod(x, xunit)/xunit ∗ 2− 1,

Zy
rel =mod(y, yunit)/yunit ∗ 2− 1,

(3)

where xunit = 1/Ws, yunit = 1/Hs, mod is remainder op-
eration, and Zx/y

rel are in range -1 to +1, i.e., (-1,-1) for the
upper left corner while (+1,+1) for the lower right corner.
Finally, continuous pix mapping function F(·) that contains

four linear layers maps the feature to target image Î
lab

t .

3.3 Objective Functions
During the training stage of SCSNet, we only adopt three
losses: Content Loss LC to monitor image quality at the
pixel level, Perceptual Loss LP to ensure semantic similar-
ity, and Adversarial LossLAdv to improve image quality and
authenticity. The full loss Lall is defined as follow:

Lall = λCLC + λPLP + λAdvLAdv, (4)

where λC = 10, λP = 5, and λAdv = 1 represent weight
parameters to balance different terms.
Content Loss. The first term LC calculates the `1 error be-
tween the generated target image Î

lab

t and ground truth I labt :

LC = ||Î
lab

t − I
lab
t ||1. (5)

Perceptual Loss. The second term LP calculates seman-
tic errors between the generated target image Î

lab

t and the
ground truth image I labt :

LP = E

[
5∑

l=1

wl · ||φl(Î
lab

t )− φl(I labt )||1

]
, (6)

where φl(·) represents the activation map extracted at the
convl 1 layer from the pre-trained VGG16 network, and wl

is the weight for layer l.
Adversarial Loss. The third term LAdv employs the stan-
dard relativistic discriminator (Jolicoeur-Martineau 2018)
for adversarial training in order to ensure the authenticity
of the generated images. Since the SCS task is typically a
one-to-many problem, the adversarial loss greatly improves
the model performance.

4 Experiments
4.1 Datasets and Implementation Details
ImageNet-C. Considering the high requirement for both
image colorization and super-resolution, we filtered out
some of the low-quality images from ImageNet (Deng et al.
2009) to build a colorful and high-resolution dataset named
ImageNet-C. It ends up with 407,041 training images and
16,216 validation images. In detail, we remove images with
file sizes smaller than 80K and less color variation.

Other Datasets. CelebA-HQ (Karras et al. 2018) (30,000
images), Flowers (Nilsback and Zisserman 2008) (8,189
images), Bird (Yu et al. 2015) (479,548 images), and
COCO (Lin et al. 2014) (98,246 images) datasets are used to
assess different colorization methods (for testing), and they
go through the same pre-selection process as ImageNet-C.

Evaluation Metrics. We use Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity (SSIM) (Wang et al. 2004)
to assess the generated images at pixel level, while Fréchet
Inception Distance (FID) (Heusel et al. 2017) and Image
ColorfulNess (CN) (Zerman, Rana, and Smolic 2019) to as-
sess image distribution and colorfulness at semantic level. In
order to fully evaluate various methods, we hire real people
to score authenticity of images for human study.

Implementation Details. The image is processed in LAB
color space, and the input resolution of source and refer-
ence images is 128×128. Consistent with DRN, the bicubic
kernel is used to produce LR-HR pairs. We train the SC-
SNet with two modes alternately and apply random hori-
zontal flip and elastic distortion (Simard et al. 2003) to ref-
erence images. Perceptual weights w1−5 in Eq. 6 are set as
1.0/32, 1.0/16, 1.0/8, 1.0/4, and 1.0, respectively. We use
Adam (Kingma and Ba 2015) optimizer and set β1 = 0.9,
β2 = 0.999, weight-decay=1e−4, and learning rate=1e−4.
SCSNet is trained for 50 epochs with batch-size=4 and
output-resolution=512 (default ×4↑ setting). Resolution of
the referential image for all experiments is set to 128, and all
experiments run with 8 Tesla V100 GPUs.

4.2 Comparison with SOTAs
We conduct and discuss a series of qualitative and quantita-
tive comparison experiments on several datasets. At present,
there is no end-to-end model to perform image colorization
and super-resolution simultaneously, so we choose some
SOTA colorization methods (i.e., AutoColor (Lei and Chen
2019), DRemaster (Iizuka and Simo-Serra 2019) (DR), Inst-
Color (Su, Chu, and Huang 2020) (IC), DEVC (Zhang et al.
2019a), ColTran (Kumar, Weissenborn, and Kalchbrenner
2021)) along with concatenated super-resolution approaches
(ESRGAN (Wang et al. 2018), DRN (Guo et al. 2020)) as
our comparison methods. Concretely, we divide the above
colorization methods into automatic and referential modes.
Qualitative Results. We conduct a series of qualitative ex-
periments on ImageNet-C and COCO validation datasets to
visually show the superiority of our approach for generat-
ing authentic and colorful images for the SCS problem. As
shown in Figure 7, the left part shows automatic SCS re-
sults of different methods that use the low-resolution gray-
scale images (first column) as input. All methods can dis-
tinguish semantic targets and color them, but our generated
images look better in colorfulness and detail than other ap-
proaches. The right part shows results for various methods
under the condition of an elastic reference image in resolu-
tion 128×128, which provides the color information that the
real image should contain. All methods could transfer ref-
erential color well except ColTran, but our method can pro-
duce clearer and authentic images while maintaining color
transfer. Note that ColTran inputs an extra HR gray-scale
image for better clarity that is unfair for the SCS task. We
reduce its input gray-scale image to the same resolution as
other methods, and the output images get a little blurry (c.f .
ColTran-LR in the penultimate column).
Quantitative Results. We choose image-level metrics to
evaluate the effectiveness of different SOTA methods on
several datasets: FID for assessing image distribution while
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AutoColor + DRN Dremaster + DRN InstColor + DRN Dremaster + DRN DEVC + DRN Ours-RefLR Gray image Ref image ColTran-LROurs-Auto ColTran

AutoColor + DRN Dremaster + DRN InstColor + DRN Dremaster + DRN DEVC + DRN Ours-RefLR G-image Ref image ColTran-LROurs-Auto ColTran

10.8 7.0 4.7 6.3 7.4 27.50.233.3 0.2

Figure 7. Qualitative comparisons with SOTA methods on ImageNet-C and COCO datasets. The left and right parts are simulta-
neously image colorization and super-resolution results in automatic and referential modes, respectively. The upper left number
is the inference FPS speed of the corresponding method. Note that ColTran inputs an extra HR gray-scale image that is unfair
for other approaches, so we reduce its input gray-scale image to the same resolution as other methods, i.e., ColTran-LR.

Method ImageNet-C CelebA-HQ Flowers Bird COCO Average Params
(M)

Speed
(FPS)FID CN FID CN FID CN FID CN FID CN FID CN

A
ut

o

InstColor + ESR 26.353 3.588 31.109 3.306 48.425 3.510 36.212 3.435 24.954 3.635 33.411 3.495 66.990 5.541

AutoColor + DRN 31.666 3.389 26.083 3.489 63.891 3.210 43.034 3.189 39.208 3.417 40.776 3.339 18.560 10.781
DRemaster + DRN 33.993 2.996 34.842 3.054 74.356 2.678 45.742 2.832 37.397 3.076 45.266 2.927 58.644 7.037
InstColor + DRN 26.501 3.588 31.389 3.307 48.475 3.511 36.378 3.436 25.153 3.635 33.579 3.495 60.118 4.671

Ours-Auto 25.992 4.688 27.809 3.892 46.607 4.724 34.401 4.334 24.047 4.573 31.771 4.442 9.954 33.293

R
ef

DRemaster + DRN 25.498 3.990 29.702 3.426 41.506 4.311 31.843 3.505 35.267 3.722 32.763 3.791 73.987 6.311
DEVC + DRN 26.050 4.288 49.126 3.570 39.426 4.516 42.444 3.700 36.702 3.938 38.750 4.002 69.570 7.435
ColTran 15.860 4.692 10.405 4.215 21.595 5.003 18.580 4.529 18.391 4.679 16.966 4.624 70.697 0.209
Ours-Ref 9.632 5.288 12.771 4.388 9.776 5.743 13.526 4.822 13.812 4.974 11.903 5.043 15.358 27.466

Table 1. Image-level evaluation for SOTA methods on several datasets. Since the SCS task is an ill-conditioned problem that
each pixel has various semantic colors, more reasonable image-level FID and CN are used.

Method ImageNet-C CelebA-HQ COCO

PSNR SSIM PSNR SSIM PSNR SSIM

DR + DRN 19.343 0.811 25.559 0.915 21.039 0.845
IC + DRN 22.126 0.842 26.523 0.923 22.917 0.856
Ours-Auto 22.807 0.856 27.160 0.917 23.341 0.872
ColTran 20.734 0.845 24.495 0.914 22.787 0.857

DR + DRN 24.671 0.871 28.582 0.928 26.663 0.901
Ours-Ref 27.694 0.923 30.741 0.950 28.197 0.931

Table 2. Pixel-level evaluation for SOTAs. Top and bottom
parts are for automatic and referential modes, respectively.

visual-friendly CN for colorfulness. Our approach is trained
only on ImageNet-C without extra datasets, while other
methods use corresponding pre-trained models that may use
extra datasets for training. We randomly choose 5,000 im-
ages of each method for assessment (2,500 under automatic
mode; 500 by self-referential elastic images; while 2,000
by randomly selecting other elastic images as reference im-
ages). Table 1 shows the results of different methods for
several datasets on two modes, and we can summarize the
following conclusions: 1) The middle part illustrates that
different SR methods have little difference in the results,
so we choose SOTA DRN for SISR in the following ex-
periments. 2) Referential mode tends to get better results

than automatic mode. 3) Different datasets are slightly dif-
ferent in CN metric and our method obtains the highest
CN score (i.e., 4.442 and 5.043 for two modes, increasing
+0.947 and +0.419 than current best results), meaning that
our approach can capture color information better and gen-
erate visual-appealing colorful images. 4) Our method ob-
tains the best FID scores on almost all datasets no matter in
automatic mode or referential mode, meaning that the gen-
erated images by our method have a more consistent dis-
tribution of the real images. 5) We further evaluate the pa-
rameter and running speed of all approaches, and our SC-
SNet has the fewest parameters (×6↓ than InstColor+DRN;
×4↓ than ColTran) and fastest running speed (×8↑ than In-
stColor+DRN; ×130↑ than ColTran; with batch size equal-
ing one), which is more efficient for practical application.
Furthermore, we use pixel-level PSNR and SSIM to eval-
uate generated images under automatic and self-referential
modes. As shown in Table 2, our method consistently ob-
tains better evaluation scores, meaning that the predicted im-
ages by SCSNet are more consistent with real images. Inter-
estingly, the aforementioned ColTran inability to integrate
referential image colors (c.f . Figure 7) is also reflected here,
where it obtains worse pixel-level metric scores.

Human Study. Since SCS is an ill-conditioned problem,
and each metric has its evaluation disadvantage, we further
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Comparison Methods Authenticity (%)

Ours v.s. AutoColor + DRN 77.3 v.s. 22.7
Ours v.s. DRemaster + DRN 90.6 v.s. 9.4
Ours v.s. InstColor + DRN 59.4 v.s. 40.6

Ours v.s. DRemaster + DRN 82.7 v.s. 17.3
Ours v.s. DEVC + DRN 95.1 v.s. 4.9
Ours v.s. ColTran 68.6 v.s. 31.4

Table 3. Human study about the authenticity of images with
different methods in automatic and referential modes.

LC LP LAdv FID CN PSNR SSIM

3 7 7 16.290 4.128 26.172 0.898
3 3 7 15.068 4.196 27.456 0.918
3 7 3 11.616 5.171 26.536 0.906
3 3 3 9.632 5.288 27.694 0.923

Table 4. Quantitative ablation study for different loss terms.

perform a human study for artificially evaluating the qual-
ity of generated images for different methods. Concretely,
we randomly select 500 generated images (250:250 for two
modes) of different approaches on the COCO dataset. Each
image pair (i.e., ours vs. each other method) is displayed
for one second for each conner (50 totally), and the conner
needs to select which image is more visually authentic. Ta-
ble 3 illustrates that the generated images by our approach
are preferred by real people, meaning that our method can
generate more authentic images than SOTA methods.

4.3 Ablation Study and Further Assessment
Loss Functions. Following the afore-mentioned proce-
dure for generating the validation images (under referen-
tial mode), we quantitatively evaluate the effectiveness of
each loss function in Table 4 and draw a conclusion: Each
loss function contributes to the model performance, and the
model obtains the best score when all loss terms are applied.
Network Components. We perform quantitative experi-
ments to evaluate each component of our approach. Specif-
ically, we modify a simple version of PVCAttn as Basic
Cross-Attention (BCAttn) that removes pyramid structure
and valves, which is used for a fair comparison with our
PVCAttn. Results in Table 5 demonstrate the effectiveness
of each component, and our approach obtains the highest
metric scores when both proposed components are used.
Moreover, the CPM module obtains competitive results even
though it is designed for continuous magnification.
CPM Efficiency. We compare CPM module with Meta-
SR (Hu et al. 2019) that also achieves continuous magni-
fication, and results indicate that CPM is more efficient as it
has fewer parameters and a ×2↑ faster running speed, i.e.,
0.35M vs. 0.45M and 178FPS vs. 92 FPS.
Interpretability of PVCAttn. In Figure 8, we visualize the
attention maps of PVCAttn, focusing on a few points in the
source image. Visualized attention maps indicate that each
location pays more attention to semantically similar areas,
and the location in the low-resolution feature map focuses
on more average areas (c.f . right-bottom attention map).
Multi-Magnification Generation. Benefit from the CPM
module, SCSNet can generate target images at continuous

BaselineBCAttnPVCAttnCPM FID CN PSNR SSIM

3 7 7 7 17.541 4.763 25.517 0.887
3 3 7 7 16.635 4.767 26.173 0.896
3 7 3 7 15.334 4.863 26.619 0.907
3 7 7 3 9.978 5.059 26.796 0.905
3 7 3 3 9.632 5.288 27.694 0.923

Table 5. Quantitative ablation study of our approach with dif-
ferent components on the ImageNet-C dataset.

Cross-Attn (1, 6) 1x

Cross-Attn (28, 10) 1x

Cross-Attn (17, 24) 1x

Cross-Attn (17, 24) 2x↓

Cross-Attn (1, 6) 1x

Cross-Attn (28, 10) 1x

Cross-Attn (17, 24) 1x

Cross-Attn (17, 24) 2x↓

𝑰𝑠
𝑙

𝑰𝑟
𝑙𝑎𝑏

(1, 6) 1x

(28, 10) 1x

(17, 24) 1x

(17, 24) 2x↓

𝑰𝑠
𝑙

𝑰𝑟
𝑙𝑎𝑏

Figure 8. Cross attention for a set of reference points. The
PVCAttn can match similar semantic information. The left
part shows attention maps for different positions, while the
right part shows pyramid attention maps for one position.

Low High

Figure 9. Image generation at continuous magnification.
Magnified red areas are displayed in the upper left corner.

magnification. As shown in Figure 9, the generated results
have consistent color stability for different resolutions and
smooth transitions for adjacent images. Dynamic video can
be seen in the supplementary material.

5 Conclusion
In this paper, we propose an efficient paradigm to address
SCS task and design an end-to-end SCSNet to complete
this goal. Concretely, a PVCAttn module is designed to ag-
gregate feature information between source and reference
images effectively, while the CPM efficiently models the
discrete pixel mapping in a continuous space to generate
target images at arbitrary magnification. Extensive experi-
ments demonstrate our approach’s superiority for achieving
the SCS task well and generating high-quality images. In the
future, we will combine general detection and segmentation
methods with current colorization branch to provide more
semantic-knowability information.
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