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Abstract

Despite the great progress in video understanding made by
deep convolutional neural networks, feature representation
learned by existing methods may be biased to static visual
cues. To address this issue, we propose a novel method to
suppress static visual cues (S2VC) based on probabilistic
analysis for self-supervised video representation learning. In
our method, video frames are first encoded to obtain latent
variables under standard normal distribution via normalizing
flows. By modelling static factors in a video as a random
variable, the conditional distribution of each latent variable
becomes shifted and scaled normal. Then, the less-varying
latent variables along time are selected as static cues and sup-
pressed to generate motion-preserved videos. Finally, pos-
itive pairs are constructed by motion-preserved videos for
contrastive learning to alleviate the problem of representa-
tion bias to static cues. The less-biased video representation
can be better generalized to various downstream tasks. Exten-
sive experiments on publicly available benchmarks demon-
strate that the proposed method outperforms the state of the
art when only single RGB modality is used for pre-training.

Introduction
Recent top-performing approaches to solving video under-
standing tasks are based on supervised learning with a large
amount of labeled data for training. Due to the strong data
fitting capacity of deep convolutional neural networks, com-
petitive performance can be achieved for recognizing actions
in videos (Carreira et al. 2017; Wang et al. 2016). One of
the key factors for the success may owe to the strong cor-
relation between action class and object/background known
as representation bias in (Li et al. 2018; Choi et al. 2019).
For example, the action Riding Bike could be recognized by
the presence of the object Bike and the action Swimming is
recognized by the scene water. Such representation bias in
action datasets may provide shortcuts to solve the data-label
fitting problem. Nevertheless, the learned feature represen-
tation without proper motion modelling may be biased to
static visual cues, which limits the generalization ability to
recognize or detect actions requiring temporal reasoning.

*These authors contributed equally.
†Corresponding author.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Verifying the importance of motion cues. (a): Nat-
ural videos (top row) and shuffled videos (bottom row). (b):
With a fixed-weight 3D CNN, a linear classifier is trained
to distinguish natural videos from the shuffled ones. We
pre-train the R3D as feature extractor on the UCF101 by
two different methods, i.e., supervised learning and our self-
supervised learning method w/o and w/ suppressing static
visual cues, respectively. The performance of classifying
natural/shuffled videos on HMDB51 is 73.5% by using the
former and 79.1% (5.6↑) by using the latter. Notice that both
the test dataset and downstream task are different from those
used for training, which implies better generalization ability
of the learned representations by suppressing static cues.

To verify this issue, we first pre-trained the R3D net-
work (Hara et al. 2018) for feature extraction in two different
ways. The first one is supervised learning by using manual
annotations on the UCF101 dataset (Soomro et al. 2012),
while the second one is our self-supervised method trained
on the same dataset by mitigating the representation bias.
Then, the learned feature representations are evaluated on
the HMDB51 dataset (Kuehne et al. 2011). The downstream
task is defined as simple temporal-order (natural/shuffled)
classification as illustrated in Fig. 1 to assess the general-
ization ability of the learned features. Fig. 1(a) shows that
motion information is suppressed while static visual cues
are maintained by video shuffling. Without dealing with
the problem of representation bias, the supervised method
performs worse than ours (73.5% v.s. 79.1% (5.6↑)) in the
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downstream task of temporal-order classification (different
from the recognition task used for pre-training). This ver-
ifies our hypothesis that the generalization ability may de-
grade due to the misleading guidance by static visual cues.

In this paper, we propose a novel method to suppress static
visual cues (S2VC) for self-supervised video representation
learning, such that the representation bias is mitigated. Since
the pixel space of each frame in a video is highly compli-
cated with high dimensionality, it is not robust to directly
extract static cues from it. To estimate the distribution of the
pixel space, each video frame is encoded to obtain a latent
vector under multivariate standard normal distribution by us-
ing normalizing flows (NF). However, when constrained to a
specific video, each latent variable cannot be simply consid-
ered as one-dimensional (univariate) standard normal. We
model static factors in a video as a random variable such
that the conditional distribution of each latent variable be-
comes standard normal with shifting and scaling. The stan-
dard deviation of the conditional distribution that reflects
the correlation between latent variables and static factors is
then empirically estimated to select static cues. Based on
probabilistic analysis, static cues are suppressed to gener-
ate motion-preserved videos by the invertibility of the NF
model. Such generated videos are treated as pseudo posi-
tives for contrastive learning to mitigate the representation
bias w.r.t. static visual cues.

The contributions of this work are three-fold: i. We de-
velop a novel method to suppress static visual cues (S2VC)
via normalizing flows for self-supervised video represen-
tation learning, such that the problem of representation
bias is mitigated with improved generalization ability. ii.
Based on probabilistic analysis, static cues are recognized
and suppressed to generate motion-preserved videos for
self-supervised pre-training. iii. Extensive experiments with
quantitative and qualitative evaluation demonstrate the ef-
fectiveness of our method on various downstream tasks.

Related Work
Self-supervised Video Representation Learning aims at
learning visual representations without using manually-
annotated labels. Existing methods for video representa-
tion learning can be divided into two categories. The first
one is to design pretext tasks, in which pseudo labels are
automatically generated from videos for training. Repre-
sentative methods along this line include predicting rota-
tion (Jing et al. 2018), cloze (Luo et al. 2020), clip or-
der (Misra et al. 2016; Lee et al. 2017; Xu et al. 2019), play-
back speed (Benaim et al. 2020; Wang et al. 2020; Yao et al.
2020; Chen et al. 2021) and so on. The second category is
based on contrastive learning which has recently achieved
great success in the image domain (He et al. 2020; Chen
et al. 2020b,a). The key idea is to train a feature extractor
that makes a training sample similar to its generated posi-
tives and dissimilar to its negatives in the embedding space.
Existing methods have been proposed to generate positive
pairs by video clips sampled from the same video (Qian et al.
2021; Wang et al. 2021a; Lin et al. 2021), or codes from the
same position of adjacent frames (Han et al. 2019, 2020a).
Since additional modalities are available in videos, positive

pairs can also be determined by audio (Owens and Efros
2018; Alwassel et al. 2020; Korbar et al. 2018), text (Sun
et al. 2019b), or optical flow (Han et al. 2020b). Though ex-
isting methods show improved performance for downstream
tasks, they may be still biased to static visual cues like back-
ground or non-moving objects. To solve this problem, this
paper proposes to generate motion-preserved videos by nor-
malizing flows for less-biased representation learning.
Flow-based Generative Model is one of the widely used
approaches for data generation developed with strong the-
ory in probability (Ardizzone et al. 2019a; Dinh et al. 2015;
Dinh et al. 2017). It builds on a series of invertible and dif-
ferentiable functions that transforms the highly-complicated
raw data distribution to the simple and interpretable stan-
dard normal distribution. This transforming sequence is
called normalizing flows (NF) and is served as the founda-
tion of invertible neural network. In recent years, NF has
been successfully deployed in many applications including
image generation (Kingma and Dhariwal 2018), compres-
sion (Xiao et al. 2020), colorization (Ardizzone et al. 2019c),
adversarial attack (Dolatabadi et al. 2020), minimally inva-
sive surgery (Ardizzone et al. 2019b), etc. To the best of our
knowledge, this work is the first to suppress static cues in
videos by using NF for self-supervised learning.

Methodology
The objective of our proposed method is to mitigate the rep-
resentation bias brought by the strong correlation between
actions and static visual cues, such that the learned features
can be better generalized to different kinds of downstream
tasks. The rationale is to perform probability-based video
transformations that preserve motion information but sup-
press static visual cues (S2VC) for videos. In the follow-
ing subsections, we first introduce the overall architecture
of the proposed method. Then, details are given to elabo-
rate the idea of the proposed S2VC for motion-preserved
video generation via normalizing flows (NF). At last, we
present the way to integrate the novel S2VC with existing
self-supervised methods for video representation learning.

Overall Architecture
The training pipeline of our method is shown on the left
of Fig. 2. For a given unlabelled input video V , we start
with two random augmentations and get V̂ = ŝ(V ) and
Ṽ = s̃(V ) respectively, where ŝ and s̃ are randomly sampled
from the basic data augmentation set S. It consists of (e.g.)
random cropping, random horizontal flip, color jittering and
Gaussian blur. One of the randomly augmented videos Ṽ is
used to generate the motion-preserved video Ṽp by suppress-
ing static visual cues via normalizing flows. To mitigate the
computational cost, a spatially down/up-sampling process
is performed before/after the flow-based generative model.
The information loss is compensated by the residual video.
After that, V̂ and Ṽp are fed into the 3D backbone F for fea-
ture extraction to obtain v = F (V̂ ) and vp = F (Ṽp). The
feature extractor F is learned by minimizing the distance
between v and vp, and maximizing the distance between v
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Figure 2: Left: Training pipeline. We propose to learn video representations by training a 3D CNN to encode similar features for
the motion-preserved and the augmented video. The motion-preserved video retains the residual and motion information, while
clearly wiping the static cues. Right: Suppressing static visual cues. We illustrate the suppressing process with two sub-process
as shown on the right. In the encoding process, each video frame is mapping to a latent vector Z via normalizing flows. In the
generation process, static cues are first selected by thresholding the standard deviation of the latent vectors w.r.t the temporal
dimension. Then, the selected channels are set to zero to obtain Zp for generating motion-preserved video.

and other pseudo negatives from the momentum dictionary,
whose features are extracted by the momentum encoder F ′.

Suppressing Static Visual Cues
The proposed method for suppressing static visual cues is
illustrated on the right of Fig. 2. For an input video, each
frame is first encoded to obtain latent variables under stan-
dard normal distribution by normalizing flows (NF). Then,
the motion-preserved video is generated by suppressing the
less-varying latent variables (static cues) along time. Details
on these two steps are provided as follows.
Encoding Video Frames via Normalizing Flows. Denote
the vectorized frames in the input video as X1, · · · , XL ∈
Rd, where L is the number frames and d is the product
of image height, width and channels. These d-dimensional
vectors can be considered as a sequence of observations for
a random vector X with the probability density pX . Since
the dimension of the random vector X is very high, it is in-
tractable to directly estimate the density pX correctly. More-
over, pX is highly complicated due to variations like camera
motions and illumination changes in videos. Without accu-
racy estimation of the data distribution, it not robust to ex-
tract static cues directly from the raw observed data. As a
result, we propose to estimate the density pX of the high-
dimensional random vector X by normalizing flows (NF).

The idea of NF (Kobyzev et al. 2020) is depicted on the
right of Fig. 2. A sequence of simple invertible transforma-
tions f1, · · · , fk (e.g., affine coupling and channel-wise per-
mutation/convolution) maps X to the latent random vector
Z, which has the same dimension as X . Denote the compo-
sition function of f1, · · · , fk as f , i.e., f = fk ◦ · · · ◦ f1.
The mapping f from X ∈ Rd to Z ∈ Rd is invertible and
differentiable. By using f , X from the highly complicated
distribution can be transformed to Z in a straightforward
predefined distribution such as multivariate standard normal.

To determine the parameters θ in the mapping function f ,
the density pX is rewritten by the change-of-variables rule
as,

pX(X) = pZ (fθ(X)) |det(Dfθ)(X)| (1)
where pZ is the probability density of the latent random vec-
tor Z and det(Dfθ)(X) denotes the determinant of the Ja-
cobian matrix of partial derivatives of fθ over X . Given an
image dataset DNF (e.g., ImageNet), the model parameters θ
are learned by maximizing the log-likelihood as follows,

max
θ

EX∼DNF (log pZ (fθ(X)) + log |det(Dfθ)(X)|) (2)

where E is the mathematical expectation.
In our method, the predefined density pZ is set to multi-

variate standard normal as in (Dinh et al. 2017), i.e., Z ∼
N (0, I), where 0 is a d-dimensional zero vector and I is
a d × d unit matrix. With the pre-trained flow model, the
vectorized frames X1, · · · , XL are mapped into the latent
space to obtain Z1, · · · , ZL, which are used to detect the
temporally-varying patterns and extract static cues.
Motion-preserved Video Generation. Since the latent vec-
tor Z follows d-dimensional standard normal distribution
N (0, I), latent variables in Z are independent with each
other. Thus, we propose to analyze each latent variable
Zi, i ∈ {1, · · · , d} in Z to identify static cues separately.
If Zi is completely random without any other information
given in advance, it is obvious that the distribution of each
latent variable Zi is one-dimensional (univariate) standard
normal, i.e., Zi ∼ N (0, 1). Nevertheless, when the latent
variable Zi is constrained to be in a certain video, the com-
pletely random assumption is not valid.

We regard static factors (e.g., background, scene) inher-
ited in the input video affecting the distribution of each Zi

as a random variable Y . For selection of static cues, the ob-
jective is to determine the density pZi|Y of Zi conditioning
on Y . Let the dependence between Zi and Y be modelled
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by the correlation coefficient ρi. To make the marginal den-
sity pZi standard normal, the joint density pZi,Y is assumed
to be two-dimensional (bivariate) normal for maximum en-
tropy. Denote (Zi, Y ) ∼ N (0, µ, 1, σ2, ρi), where µ, σ2 are
the mean and variance of Y respectively. According to prop-
erties of normal conditional distribution (Ross 2009, 268-
269), the conditional density pZi|Y=y for a given value of
Y = y is still normal and can be written as,

(Zi|Y = y) ∼ N (
1

σ
ρi(y − µ), 1− ρ2i ) (3)

This equation implies that the latent variable Zi condition-
ing on an input video can be considered as standard nor-
mal random variable with shifting and scaling. With the
condition Y = y, the mean and variance are changed to
ρi(y − µ)/σ and 1− ρ2i , respectively.

For a latent variable Zi strongly correlated with static fac-
tors represented by Y , the dependence modelled by the cor-
relation ρi between Zi and Y is large. According to eq. (3),
this means the variance 1−ρ2i is small for the latent variable
Zi encoding static cues. Notice that the variance 1 − ρ2i is
independent of the value of Y = y. The variance or standard
deviation (STD) can be estimated empirically by the obser-
vations Zi

1, . . . , Z
i
L of the latent variable Zi in a video. De-

note the STD of the conditional density pZi|Y=y as σZi|Y .
We propose to select the set Cs of latent variables with small
empirical STDs as static cues, i.e.,

Cs = {i|σZi|Y ≈ STD(Zi
1, . . . , Z

i
L) < α} (4)

where α is the threshold hyperparameter used to decide
whether the i-th latent variable is selected or not.

Let the latent vector that preserves motion information
but suppresses static cues be Zp. For i ∈ Cs, Zi

p is set to
ρi(y − µ)/σ with the highest probability density, i.e., the
mean of the conditional distribution Zi|Y = y as derived
in eq. (3). In this way, the variance of Zi

p is equal to 0 for
minimum (zero) information entropy to suppress static cues.
Since the marginal density pY takes the maximum value at
Y = µ, we set Zi

p = 0 for i ∈ Cs by substituting y = µ
into ρi(y − µ)/σ. For i /∈ Cs, motion cues are preserved by
setting Zi

p = Zi. Due to invertibility of the NF model fθ,
each frame in the motion-preserved video is generated by,

Xp = f−1
θ (Zp) (5)

The pseudo-code of our method is given in the supplemen-
tary material. Other strategies to suppress static cues are also
presented for comparison in the ablation study.
Discussion on Generative Models.

i. The generative adversarial network (GAN) has achieved
success in the literature by jointly training a generator and a
discriminator in an adversarial manner (Goodfellow et al.
2014; Jaiswal et al. 2018). In most existing methods based
on GAN, there is no encoder to transform the image modal-
ity into the latent space. Though the generator in GAN could
be used for encoding, the generation results are without ex-
plicit probability interpretation. Hence, it is difficult if not
impossible to suppress static cues by the GAN approach.

ii. Different from GAN, the variational auto-encoder
(VAE) (Kingma and Welling 2014; Sohn, Lee, and Yan

2015) can encode an input image X to a latent vector Z un-
der a multivariate normal distribution N (mX , diag(σ2

X)).
The mean vector mX and standard deviation vector σX

are determined by learnable parameters and the input im-
age X . The latent vector Z is obtained by randomly sam-
pling from N (mX , diag(σ2

X)) and can be written as Z =
mX+σX⊙ϵ, where ϵ ∼ N (0, I) and ⊙ is the element-wise
product. Due to the randomness in computing the observa-
tions of Z, the encoded vectors Z1, · · · , ZL in a video may
not be able to preserve the continuity of the input frames
over time by using VAE. On the other hand, mX ,σX in the
latent distribution depend on the input image X , so static
cues cannot be directly selected by eq. (4).

iii. By using NF, the encoded latent vector Z is with ex-
pressive probability interpretation, which follows multivari-
ate standard normal distribution N (0, I) independent of the
input image X . Thanks to the differentiable property of the
NF model, the encoded latent vectors Z1, · · · , ZL preserve
the continuity over time. Moreover, as experimentally shown
in (Dinh et al. 2017; Kingma et al. 2018), the latent space in
NF encodes semantically meaningful concepts (like smile,
blond hair, male, etc. on face dataset). Because of these ad-
vantages, the flow-based approach instead of GAN and VAE
is used to suppress static visual cues in our method.

Integrated with Contrastive Learning
The proposed S2VC method is integrated in the framework
of contrastive learning to obtain video representations less-
biased to static cues. In this work, positive pairs are con-
stituted by the generated motion-preserved videos and cor-
responding inputs for self-supervised pre-training. Given a
video dataset D with N samples D = {V 1, V 2, ..., V N} for
training, the loss function is defined as:

L = −E

[
log

exp(v(i) · v(i)p /τ)

exp(v(i) · v(i)p /τ) +
∑

j ̸=i exp(v
(i) · v(j)p /τ)

]
(6)

where τ denotes the temperature parameter for model learn-
ing with hard negatives (Wu et al. 2018). In each positive
pair, the motion-preserved video shares the same motion in-
formation as the original one but removes static cues. By
minimizing the loss function in eq. (6), the similarity of fea-
tures in each positive pair is maximized. Thus, the proposed
method learns discriminative video representations which
simultaneously preserve motion information and suppress
static cues. As an efficient and effective baseline, MoCo (He
et al. 2020) is employed for contrastive learning. Further-
more, our method can serve as a powerful data augmentation
technique and easily be integrated with other self-supervised
learning methods, e.g., DPC in (Han et al. 2019).

Experiments
Datasets and Implementation Details
Datasets used for experiments includes UCF101 (Soomro
et al. 2012), HMDB51 (Kuehne et al. 2011), Kinetics-
400 (Kay et al. 2017), and its subset Kinetics-200 (Xie
et al. 2018). We use the flow model as described in Ad-
vFlow (Dolatabadi et al. 2020) for video frame encoding
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Method Pretrain Finetune Linear Probe
Method Net Depth Dataset Res. +Mod. UCF101 HMDB51 UCF101 HMDB51
3D RotNet (Jing et al. 2018) R3D 17 K400 112 - 62.9 33.7 47.7 24.8
CBT (Sun et al. 2019a) S3D 23 K600+ 112 - 79.5 44.5 54.0 29.5
VCOP (Xu et al. 2019) R(2+1)D 26 UCF101 112 - 72.4 30.9 - -
DPC (Han et al. 2019) R2D3D 33 K400 128 - 75.7 35.7 - -
MemDPC (Han et al. 2020a) R2D3D 33 K400 224 - 78.1 41.2 54.1 30.5
SpeedNet (Benaim et al. 2020) S3D 23 K400 224 - 81.1 48.8 - -
RSPNet (Chen et al. 2021) R3D 17 K400 224 - 74.3 41.8 - -
CoCLR (Han et al. 2020b) S3D 23 K400 128 F 87.9 54.6 74.5 46.1
IMRNet (Yu et al. 2021) R3D 17 K400 224 M,R 76.8 45.0 - -
MoCo Baseline S3D 23 UCF101 128 - 69.3 35.1 46.6 21.4
Ours S3D 23 UCF101 128 - 74.5(5.2↑) 43.7(8.6↑) 51.0(4.4↑) 27.7(6.3↑)
Ours S3D 23 K200 128 - 82.5 48.4 63.8 35.9
Ours R3D 17 UCF101 112 - 77.0 45.8 59.7 27.9
Ours R3D 17 K400 112 - 81.2 50.5 66.0 36.5

Table 1: Top-1 accuracy (%) comparison with existing methods. Action recognition results are reported on UCF101 and
HMDB51 datasets. K200/K400/K600+ denote different versions of Kinetics. Res. is short for Resolution. +Mod. means addi-
tional modalities besides RGB. F is Optical Flow. M, R refer to the two modalities of P-frame in compressed videos.

and generation. Two backbone networks, i.e., S3D (Xie et al.
2018) and R3D-18 (Hara et al. 2018), are evaluated for con-
trastive learning. If not specified, we employ MoCo with
S3D as the baseline and integrate our S2VC with MoCo (op-
timized by eq. (6) with τ set to 0.07). For a fair comparison,
we set the input clip length and resolution as 32, 1282 for
S3D and 16, 1122 for R3D. We conduct consistent augmen-
tation for each frame in a video clip. The batch size is set as
128 and the learning rate is initialized as 1e-3. Total epochs
we used for pretraining the network are 500 on UCF101, 200
on K200, and 100 on K400, respectively. Please refer to the
supplementary for more implementation details.

Action Recognition
We conduct self-supervised pre-training on two settings, i.e.
linear probe and finetune. For evaluation, following the com-
mon practice in (Carreira et al. 2017; Wang et al. 2021c), we
sample each video using half-overlap sliding window, and
apply ten-crops test to each video clip. Then, we average the
predicted accuracy as our validation result. The results com-
paring with the state of the art are reported in Table 1.
Linear Probe. Follow the SimCLR (Chen et al. 2020a), we
fix the weights of the pre-trained 3D CNNs and train a linear
classifier after the last conv layer for 100 epochs. We can
observe from the last two columns in Table 1 that our method
significantly surpasses existing works that use single RGB
modality for pre-training. Comparing with MemDPC (Han
et al. 2020a), the improvement by our method is up to 11.9%
on UCF101 and 6.0% on HMDB51.
Finetune. We finetune the overall model for 500 epochs and
show the results in Table 1. When the proposed S2VC is in-
troduced into MoCo, with the same backbone S3D and the
same pre-train dataset UCF101, it can bring 5.2% and 8.6%
improvements on UCF101 and HMDB51, respectively. Due
to limited computational resource, the S3D is pre-trained on
K200 for only 200 epochs. The results obtained under this
setting have already been better than the CBT (Sun et al.

2019a) pre-trained on the larger scale K600+, and compara-
ble with the SpeedNet (Benaim et al. 2020) pre-trained on
K400. With the R3D pre-trained on UCF101, our method
also achieves competitive performance and outperforms the
VCOP (Xu et al. 2019) pre-trained on the same dataset.
Though the CoCLR (Han et al. 2020b) obtain higher accu-
racy than ours, it needs the additional optical flow modality
complementary to RGB for pre-training. Compared with the
IMRNet (Yu et al. 2021) using multiple modalities in com-
pressed videos for pre-training, our method achieves better
results. The performance gains by our method over the IM-
RNet are 4.4% and 5.5% respectively on the two datasets by
using the same backbone and pre-training dataset K400.

Video Retrieval
In this section, our method is evaluated by the video retrieval
task. Following the setting in (Xu et al. 2019), we use the
pre-trained 3D CNN with fixed weight as feature extractor.
The training set is defined as the gallery and each 16-frame
video clip from the test set is used as a query. If the category
of the query appears in the retrieved K-nearest neighbors, we
record it as a hit during the test time. Accuracy comparison
with other self-supervised learning methods on the UCF101
and HMDB51 is reported in Tables 2 and 3. When using the
S3D as backbone, combining the S2VC with MoCo brings
a 4.1% improvement on Top1 accuracy and 7.5% improve-
ment on Top5 accuracy on the UCF101 dataset. For the
HMDB51, the Top1 and Top5 gains are 1.7% and 5.7%, re-
spectively. Additionally, our method outperforms the state of
the art for comparison, e.g., 6.2% better than the BE (Wang
et al. 2021b) under the same settings on the HMDB51. These
results validate that more discriminative and generalizable
representations can be extracted by our method.

Ablation Study
Motion Threshold α. In our method, α in eq. (4) is an im-
portant hyperparameter to determine how many static cues
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Method Net 1 5 10 20 50
SpeedNet S3D 13.0 28.1 37.5 49.5 65.0
VCOP R3D 14.1 30.3 40.4 51.1 66.5
MemDPC R3D 20.2 40.4 52.4 64.7 -
Pace R3D 23.8 38.1 46.4 56.6 69.8
MoCo S3D 32.8 49.0 57.5 68.3 80.7
Ours S3D 36.9 56.5 65.6 75.0 86.3
Ours R3D 39.9 57.1 66.3 75.6 87.4

Table 2: Recall-at-topK(%) of video retrieval on UCF101.

Method Net 1 5 10 20 50
VCOP R3D 7.6 22.9 34.4 48.8 68.9
MemDPC R3D 7.7 25.7 40.6 57.7 -
Pace R3D 9.6 26.9 41.1 56.1 76.5
BE R3D 11.9 31.3 44.5 60.5 81.4
MoCo S3D 13.2 31.8 44.0 59.7 80.7
Ours S3D 14.9 37.5 51.7 68.3 84.5
Ours R3D 18.1 37.9 51.1 66.0 84.4

Table 3: Recall-at-topK(%) of video retrieval on HMDB51.

are suppressed. Retrieval results of different α are shown on
the left of Fig. 3. These results show that as α increases,
the retrieval accuracy first increases, and then decreases af-
ter reaching the peak at 0.5 (the default value in this work).
Interestingly, when we select α as 0.8, which means only
6.5%/5.7% latent variables w.r.t motion are preserved in
UCF101/HMDB51, the results are still better than small α.
This indicates the importance of suppressing sufficient static
cues and keeping conspicuous motion information for action
recognition. We also visualize the generation results of dif-
ferent α on the right of Fig. 3. If α is too small, the effect
for suppressing static cues is insufficient. In contrast, for too
large α, useful action cues may also be suppressed.
Strategy for Suppressing Static Cues. In this experiment,
we evaluate different Strategies for suppressing static cues.
First, we compare with a simple thresholding frame differ-
ence (TFD) method by pixel-level operation. Similar to our
method, each frame in a video is reshaped to Rd in the TFD.
Then, the top 20% pixels with the largest STD along the
time dimension are persevered (approximately equal to the
amount of the preserved motion cues in the proposed S2VC
when α = 0.5). Besides the TFD, three variants of the pro-
posed S2VC to determine the suppressed latent variables are
evaluated: (a) set to random noise: set latent variables in Cs

to normal noise for the first frame and keep them unchanged
for other frames. (b) shuffle - in clip: randomly shuffle each
latent variable in Cs between frames of a video. (c) shuffle -
in frame: randomly shuffle each latent variable in Cs within
a frame. For fair comparison, we pre-train all the methods
with the S3D on the UCF101 for 100 epochs.

Retrieval results are shown in Table 4. We have the fol-
lowing observations: i. The in-clip shuffle method brings lit-
tle gain to the baseline model, since the channels already
have similar values (small at standard deviation). ii. All
methods that strongly disturb the static cues show great im-

Figure 3: Left: R@1(%) results of different α on UCF101
and HMDB51. Best result achieved when α = 0.5 (only
22.7%/22.3% cues are preserved). Right: Generation results
of the same video with different α. For α larger than 0.8,
almost all visual cues are suppressed.

Method UCF101 HMDB51
MoCo 25.4 11.8
TFD 29.1 (3.7↑) 11.6 (0.2↓)
S2VC (set to random noise) 28.7 (3.3↑) 12.6 (0.8↑)
S2VC (shuffle - in clip) 25.8 (0.4↑) 12.0 (0.2↑)
S2VC (shuffle - in frame) 29.8 (4.4↑) 14.0 (2.2↑)
S2VC (set to 0) [default] 30.5 (5.1↑) 14.9 (3.1↑)

Table 4: R@1(%) results of different strategies for suppress-
ing static visual cues. We use the S2VC (set to 0) as default.

provement to the baseline model. iii. TFD surpass the MoCo
baseline on UCF101 but perform worse on HMDB51. This
indicates that it is not robust and hard to generalize to a new
dataset by simply detecting motion according to pixel level
difference. iv. It performs the best by setting all latent vari-
ables in Cs to zero. Recall that zero suppressed latent vari-
ables refers to the minimum information entropy with the
highest probability. Other suppressing methods are not the
most likely or with randomness to carry static information.
As a result, we use the S2VC (set to 0) as default.

Analysis on Suppressing Effects
Intra-class similarity of different samples. Given α = 0.5,
we investigate the visual similarity over different samples in
the same action category. Specifically, we randomly select
ten classes from UCF101/HMDB51 and sample a subset of
video clips for each category. Then, we measure the cosine
similarity of different samples frame-by-frame with the la-
tent vector Z and the motion-preserved vector Zp, respec-
tively. As frames in the same class may have a similar scene
but large difference in moving regions, the cosine similarity
is smaller if the latent vectors contain less static visual cues.
The decreased similarity of Zp compare with Z shown in
Fig. 4 is aligned with the above analysis. This phenomenon
demonstrates that our method reduces the intra-class sim-
ilarity of static object/background significantly, which en-
sures that the generated motion-preserved videos are less bi-
ased to static cues. We also observe that different categories
show widely varied ratios over Z v.s. Zp, which means ac-
tion classes have various similarities on static cues.
Visualization of the suppressing quality. More intuitively,
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Figure 4: Intra-class cosine similarity. Compared with Z,
the similarity of the motion-preserved vector Zp greatly de-
creases, which indicates static cues are suppressed in Zp.
(Each bar represents an action category in the dataset.)

Figure 5: Suppressing quality comparison between the
thresholding frame difference (TFD) with our method (NF).

we compare the generation of motion-preserved videos with
minor/intense camera motion. As shown in Fig. 5, the gen-
eration is more robust to noise like camera movement and
is able to focus on the most salient motion by suppressing
static cues in the latent space encoded by the NF.

Analysis on Performance Improvement
Relative Improvement over Static Classification. As our
method suppress static visual cues, it may bring negative im-
pact to classes that have a high correlation with non-moving
object or background. To study the correlation between the
temporal dependency of actions and the performance gain
brought by our method, we plot the class-level relative per-
formance improvement in Fig. 6. In this experiment, we first
train a randomly initialized S3D baseline using static videos
(stacked copy images). Since the stacked duplicate images
provide no temporal information, the performance of the
baseline model indicates how much a category depends on
the static visual cues. The plot shows that although there ex-
ist some classes that our method leads to a worse result, the
overall performance is better. Moreover, there is a clear neg-
ative relationship between relative gain and baseline perfor-
mance, which suggests that the superiority of our method is
mainly coming from precisely identifying actions with high
temporal dependency. We also find that our model shows a
stronger negative correlation compared with MoCo.
Salient Regions Compared with Optical Flow. In this
experiment, we visualize the energy of the last convolu-
tional layer with the Class-Activation Map (CAM) tech-
nique (Zhou et al. 2016). We sample from the HMDB51
instead of the UCF101 used for pre-training to show the gen-

Figure 6: Strong negative correlation between relative im-
provement and baseline classification result trained by static
videos. The Pearson correlation is ρ = −0.40 for S2VC and -
0.33 for MoCo baseline, which indicates S2VC utilized more
motion cues during discriminative learning.

Figure 7: Which region contributes most to identify action?
Here, red/blue correspond to high/low activated regions. Our
method can discover the two salient moving players close to
the boundary in the view (the second row).

eralizability. We also visualize the optical flow for reference,
which indicates the significant motion cues in the video. The
results are depicted in Fig. 7. From these samples, we find a
strong correlation between highly activated regions and the
dominant mover in the scene. The network pre-trained with
the S2VC tends to focus more on the moving object. For ex-
ample, in the second row, only our method concentrates on
the two boys dribbling the ball on either side separately.

Conclusion
In this paper, we present a novel method to suppress static
visual cues (S2VC), which mitigates the representation bias
over less-moving object/background in videos. Due to the
difficulty in estimating the pixel-level distribution, video
frames are encoded to a latent space under multivariate stan-
dard normal distribution by normalizing flows. Then, less-
varying latent variables along time are selected as static cues
based on probabilistic analysis and suppressed to generate
motion-preserved videos. The proposed S2VC is integrated
with the self-supervised learning framework to extract video
representations that focus more on motion cues. Extensive
experiments with visualization validate that features learned
by our method pay more attention to moving objects and can
be better generalized to different downstream tasks.
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