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Abstract

Group re-identification (G-ReID) focuses on associating the
group images containing the same persons under different
cameras. The key challenge of G-ReID is that all the cases
of the intra-group member and layout variations are hard to
exhaust. To this end, we propose a novel uncertainty model-
ing, which treats each image as a distribution depending on
the current member and layout, then digs out potential group
features through random sampling. Based on potential and
original group features, uncertainty modeling can learn bet-
ter decision boundaries, which is implemented by the mem-
ber variation module (MVM) and layout variation module
(LVM). Furthermore, we propose a novel second-order trans-
former framework (SOT), which is inspired by the fact that
the position modeling in the transformer is coped with the G-
ReID task. SOT is composed of the intra-member module and
inter-member module. Specifically, the intra-member module
extracts the first-order token for each member, and then the
inter-member module learns a second-order token as a group
feature by the above first-order tokens, which can be regarded
as the token of tokens. A large number of experiments have
been conducted on three available datasets, including CSG,
DukeGroup and RoadGroup, which show that the proposed
SOT outperforms all previous state-of-the-art methods.

Introduction
Group re-identification (G-ReID) aims to associate group
images containing the same members under different cam-
eras with non-overlapping views based on their similarity.
G-ReID usually focuses on groups of 2 ∼ 6 members, and
images belonging to the same group class should contain
at least 60% same members. G-ReID is a more critical and
challenging task than person re-id because people usually
have group and social attributes, which indicates people pre-
fer group moving in most real scenes. Therefore, G-ReID
needs to deal with the member and layout variation. Specifi-
cally, the member variation means the number of intra-group
members could decrease due to the member leaving or serve
occlusion, and the layout variation means that the spatial po-
sitions may change under different cameras.

Although there are some pioneering works (Huang et al.
2021; Lin et al. 2021; Zhu et al. 2020; Yan et al. 2020) based
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Figure 1: Certainty modeling versus uncertainty modeling.
The pure triangles and squares represent the feature repre-
sentations of the corresponding images. The textured trian-
gles and squares represent potential group features mined
from the original image through the MVM and LVM. The
dotted circles represent the class boundaries learned from
the given images by certainty modeling. The dotted lines
represent the decision boundaries between the two classes.

on deep learning to address the above challenges, the per-
formances are not satisfactory. The shortcomings are mainly
due to the following two reasons. 1) The features extracted
by the existing works are the specific features of the group
image under the fixed member and layout. As shown in Fig.
1, The class boundaries learned from the orange triangles
and green squares are the local representations of the whole
classes, which leads to the fact that the decision boundary
(red dotted line) based on the local boundaries cannot dis-
tinguish well between two classes. 2) The existing models
are based on a combined framework of CNN and GNN,
which are weak to describe the group layout feature due to
the drawback of structure itself in position modeling, so the
performances are limited.

In this paper, we propose a novel uncertainty modeling,
which is motivated by the fact that variations of member and
layout contained in each group are infinitely diverse. All sit-
uations cannot be exhausted no matter how elaborately sam-
pling from the real world. Therefore, uncertainty is an inher-
ent attribute of the group image that cannot disappear by col-
lecting large-scale data. The proposed uncertainty modeling
treats each group image as a distribution rather than a spe-
cific sample, and then digs out several potential group fea-
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tures of the current group under other possible members and
layouts by dynamically sampling on the distribution. Two
modules, the member variation module (MVM) and layout
variation module (LVM), are designed to construct the spe-
cific probability distribution for each image. As shown in
Fig. 1, the group feature (triangles and squares) learned with
uncertainty modeling are closer to the true boundary and
consistent with the real-world distribution. Training and op-
timizing this true boundary can obtain more separable deci-
sion boundaries and more robust feature representations.

Specifically, the proposed MVM defines a random vari-
able p to describe the probability distribution of intra-group
member variation. A standard form p is constructed with the
following properties. First, the group members tend to main-
tain stability when they occur across multi-cameras. Second,
the variation probability will decrease with the increase of
disappeared members when variation happens occasionally.
Considering that the input does not always contain all the
members of its group class, we will dynamically constrain
the standard p to fit each image.

LVM focuses on the layout variation of each member. Be-
cause it is hard to exhaust all the spatial positions, LVM nor-
malizes all possible spatial positions under a certain num-
ber of members into the same layout feature. To this end, a
learnable memory bank M is designed to describe the lay-
out features. For a group with j members, the j-th column
of M is adopted as the normalized layout feature for each
member. The advantage of LVM is that normalized layout
can avoid oversampling on continuous position distribution.

Furthermore, we propose a Second-Order Transformer
model (SOT) inspired by the position embedding in trans-
former, which is coped with layout feature in G-ReID. The
traditional CNN-GNN models lack spatial position model-
ing, which leads to low performance and can be overcome by
our model. The proposed SOT consists of the intra-member
and inter-member modules. For a group image, SOT crops
each member firstly, and then partitions each member into
several sub-patches. The intra-member module extracts the
first-order token as each member feature by modeling the
relationship among sub-patches through the member feature
transformer. Then inter-member module models the group
relationship among members through uncertainty modeling
and extracts the second-order token as the group feature
through the group feature transformer which receives the
first-order tokens and outputs token of tokens.

Our contributions are summarized as follows.

• We propose the uncertainty modeling, which regards
each image as a distribution instead of a specific sample.
Uncertainty modeling aims to explore potential group
variations through random sampling on distributions,
which is achieved by the proposed member variation
module (MVM) and layout variation module (LVM).

• We propose the second-order transformer (SOT), extract-
ing the token as the member feature and the token of to-
kens as the group feature. SOT can efficiently extract the
layout feature, which is hard in the existing methods.

• The SOT achieves the Rank-1/mAP of 91.7%/90.7%,
72.7%/78.9%, and 86.4%/91.3% on CSG, DukeGroup,

and RoadGroup datasets, outperforming the state-of-the-
art method by 28.5%, 15.3%, and 1.9% on Rank-1.

Related Work
Person Re-identification. Person re-identification (ReID)
aims to associate individual pedestrians in a camera network
with non-overlapping views. Recently, many methods (Sun
et al. 2018; Wang et al. 2018; Dai et al. 2021; He et al.
2021b; Bai et al. 2021; Zhao et al. 2021; Wu, Zhu, and Gong
2022) based on deep learning have made significant progress
in this field, including extracting more discriminative fea-
tures and designing more suitable metrics. For example, OS-
Net (Zhou et al. 2019) and OSNet-AIN (Zhou et al. 2021)
designed a novel backbone that both consider the discrim-
inative feature learning and the computational cost. AGW
(Ye et al. 2021) proposed a weighted regularization triplet
metric learning method.

However, the above works were not suitable for G-ReID,
because these work only focused on the appearance feature
of the individual pedestrian, and ignored the relationship be-
tween intra-group members. The proposed SOT overcomes
the shortcomings of existing work, and explicitly models the
number and layout relationships of members, which greatly
improves the performance.

Group Re-identification. Compared with ReID, G-ReID
is less studied, and only a few pioneering works try to ad-
dress this task. Some early works (Zheng, Gong, and Xi-
ang 2009; Cai, Takala, and Pietikäinen 2010; Zhu, Chu,
and Yu 2016; Lisanti et al. 2017) took the whole image as
the input of the model, and directly extracted group fea-
tures. Because these works were based on hand-crafted fea-
tures, and background information was considered, the per-
formance was not satisfactory. Recently, CNN-based works
(Mei et al. 2020, 2019, 2021) have become the mainstream
research, which cropped the intra-group members, and then
extracted the group features. For example, DotGNN (Huang
et al. 2019) adopted CycleGAN (Zhu et al. 2017) to ob-
tain the style transfer, and then integrate the member fea-
tures with GNN to extract group features. MRF (Xiao et al.
2018; Lin et al. 2021) considered more granular member-
ships, and proposed a multi-order matching method to calcu-
late the similarity. GCGNN (Zhu et al. 2020) used K-nearest
members to encode the each member, and then designed
group context GNN to extract group features. MACG (Yan
et al. 2020) proposed a multi-attention context graph frame-
work which applied the complex attention mechanism to the
group feature learning.

The performance of the above works are not satisfactory,
mainly because: 1) They were based on the CNN and GNN
framework, which were weak for modeling group layout; 2)
They belonged to the certainty modeling. The proposed SOT
can overcomes these shortcomings.

Transformer. Transformer (Vaswani et al. 2017) was pro-
posed to extract text features in NLP task, and then general-
ized to many CV tasks and achieved good performances. For
example, IPT (Chen et al. 2021) adopted the large-scale pre-
training transformer to achieve good performance on many
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low-level vision tasks. ViT (Dosovitskiy et al. 2021) is a pure
transformer which directly divided the image into several
patches. SwinTransformer (Liu et al. 2021) achieved a sat-
isfied performance on object detection. DETR (Carion et al.
2020) proposed an end-to-end framework which combined
the encoder and decoder together on object detection. Tran-
sReID (He et al. 2021a) first introduced the transformer into
the person re-identification. However, transformer has not
received too much attention in the G-ReID. To this end, we
propose the second-order transformer to deal with G-ReID.

Method
In this section, we firstly introduce the MVM and LVM of
uncertainty modeling, and then describe the proposed SOT
network. Fig. 2 illustrates the method in detail.

Member Variation Module (MVM)
In this paper, MVM aims to construct a specific probability
distribution for each image, and determines the existence of
intra-group members by random sampling. Therefore, the
key issue is how to obtain the specific form of probabil-
ity distribution. We constrain the probability distribution to
meet the following two properties, so that it can simulate the
variations in the real-world scenes.
• Stability: For a robust group, the number of intra-group

members usually remains unchanged.
• Randomness: When the robust group occasionally

change, the probability of changing Zd members will de-
crease significantly as Zd increases.

Formally, the probability distribution can be described as
Pr{p;Zc, Zt}, where Zt and Zc represent the number of
members in the steady state and in the current image, and
Zt = Zc + Zd. We start with the trivial case Zc = Zt, and
the symbol Pr{p;Zt, Zt} can be abbreviated as Pr{p}. Ac-
cording to these two properties, the probability distribution
function of p can be described as follows:{

Pr {p = 0} = P0

Pr {0 < p ⩽ pmax} =
∫ pmax

0
f (p) dp = 1− P0

, (1)

where steady state probability P0 ∈ (0, 1) determines the
probability that the group is in a stable state, cut-off proba-
bility pmax ∈ (0, 0.4] determines the upper bound of the p,
and f(p) is the probability density function of p. Setting the
upper bound of pmax to 0.4 is based on the member defini-
tion of G-ReID for the same group class.

Next, we derive the specific expression form of f(p).
We assume that the form of the f(p) follows the truncated
Gaussian distribution N (µ, σ) which is satisfied with “ran-
domness” of p. Due to the sampling space (−∞,+∞) of
the N (µ, σ) is not consistent with the sampling interval
[0, pmax] of p, we impose the following two constraints on
the N (µ, σ). First, the probability of the N (µ, σ) sampling
in the interval (−∞, 0) is mapped to the probability when
p = 0. Second, the µ+3σ in Gaussian distribution is mapped
to pmax, which ensures that Pr{p ∈ (pmax,+∞)} is a small
probability event. So far, p follows the conditional Gaussian
distribution N (µ, σ;P0, pmax) under the tolerable error.

After that, the solution of µ and σ can be obtained through
these two constrains, which can be described as follows:{ ∫ 0

−∞
1√
2πσ

e−
(p−µ)2

2σ2 dp = P0

µ+ 3σ = pmax

. (2)

Solving the Eq. 2, we can get the followings:∫ 0

−∞
1√
2πσ

e−
(p−µ)2

2σ2 dp =
1

2

[
1− erf

(
µ√
2σ

)]
, (3)

where erf (x) = 2√
π

∫ x

0
e−t2dt is Gauss error function, and

erf(x) ∈ [−1, 1]. Solving the Eq. 3, we can get the follow-
ings:

µ√
2σ

= erf−1 (1− 2P0) . (4)

From the Eq. 1, we can see the P0 ∈ (0, 1). Therefore, Eq.
4 is always satisfied because the interval of 1 − 2P0 is in-
cluded in the definition domain of erf−1(·). After that, the
analytical solutions for the µ and σ are described as follows:{

σ = pmax√
2erf−1(1−2P0)+3

µ = pmax − 3σ
. (5)

The non-trivial case Zc<Zt is an extension of the above
conclusion. The upper bound of the member variation needs
to be corrected in order to meet the definition of G-ReID,
which can be described and solved as follows:

Zc − Zcp
′

max ⩾ Zt − Ztpmax (6)

=⇒p
′

max = max (0, 1− (1− pmax)Zt/Zc) , (7)

where p
′

max stands for the true cut-off probability under the
current image. In the non-trivial case, we use P0 and p

′

max
to solve the µ and σ via Eq. 5. In a training batch consist-
ing of several group images, we count the largest number of
members contained in the current class as Zt. Each member
is determined whether to change by the same p sampled on
the N (µ, σ;P0, p

′

max), and the remaining members are then
modeled for layout features and group feature extraction.

Layout Variation Module (LVM)
Compared with MVM, the modeling of the layout is a more
challenging problem. Because the spatial position variation
of each member is a continuous distribution in the image,
which is hard to exhaust all cases. To this end, we propose
a normalized layout representation to avoid the above infi-
nite enumerations. Specifically, a learnable layout embed-
ding bank M ∈ RD×M0 is designed, and each column of M
represents the layout feature under a certain member num-
ber, where the D is the layout feature dimension and M0

is the maximum number of group members in the training
set. For a group with j remaining members after MVM, we
select the j-th column in M as the layout feature of each
member in the current group, which is shown in Fig. 2.

In the testing stage, if the members exceed M0, a ran-
dom D-dim vector is used as the current layout feature. Be-
cause the groups with more than M0 members are not satis-
fied with the definition of G-ReID, and are regarded as the
distractors that needs to be discarded. Using a random lay-
out feature can effectively reduce the similarity with other
groups, and avoid the wrong matching.
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Figure 2: The illustrate of the proposed SOT. The pink square stands for the group feature, and the red, green and dark blue
square represent the member features. Group and member feature transformer are consisted of transform layers with different
L, and do not share parameters. ✓/× from MVM stands for the existence/disappearance of the current member.

Second-Order Transformer (SOT)
The whole structure of the SOT is shown in Fig. 2. The SOT
is composed of the intra-member and inter-member mod-
ules. The intra-member module considers the feature ex-
traction of individual members in the group, and the inter-
member module focuses on the uncertainty modeling of
group variation and the group feature extraction. We adopt a
transformer module to implement the extraction of member
and group features, which is composed of different numbers
of transformer layers. Notably, the member and group fea-
ture transformers do not share parameters.

As shown in Fig. 2, for a group image in the batch with
N images, we first crop the region of each member ac-
cording to the ground truth. Then, we send each member
patch to the intra-member module and divide it into fixed-
size image sub-patches (specifically, 16×16), and add a first-
order token and sequential position embeddings to these
sub-patches. The first-order token is regarded as the mem-
ber feature after passing through the member feature trans-
former, which is supervised by the person identity and triplet
loss function.

LID = − 1

P

P∑
j=1

C∑
i=1

yji log (ŷji), (8)

where P represents the total member number of the current
batch, C represents the total member classes, the indicator
function yji = 1(j = i) equals to 1 when the j-th member
belongs to the i-th class, and ŷji is the prediction of network

about the j-th member belongs to the i-th class.

LTri =
1

P

P∑
i=1

max
(
d
(
fi, f

+
i

)
−d

(
fi, f

−
i

)
+m, 0

)
, (9)

where d(·, ·) represents the distance function between two
features such as the Euclidean distance, fi/f+

i /f−
i represent

the anchor/hard positive/hard negative feature in the current
batch, and m is the hyper-parameter of margin.

Lp = LID + LTri (10)

In the inter-member module, MVM dynamically samples
probability values from the proposed probability distribution
in MVM for the current group, and then determines whether
the first-order token of each member is discarded. After that,
LVM selects the corresponding column in the layout embed-
ding bank as the layout feature of each member according to
the number of remaining members. We add the second-order
token as the token of these first-order tokens, and the second-
order token can extract the group feature through the group
feature transformer. The loss function Lg of a second-order
token is also composed of the group identity and triplet loss,
which is similar to the LID and LTri. Overall, the whole
loss function of the SOT is described as follows:

L = Lp + Lg. (11)

It can be seen that in the training phase of the SOT, MVM
and LVM will dynamically change the members and layout
representation of the current group, in order to mine more
potential feature representations.
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Method Publication
CSG DukeGroup RoadGroup

Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP
CRRRO-BRO BMVC 2009 10.4 25.8 37.5 - 9.9 26.1 40.2 - 17.8 34.6 48.1 -

Covariance ICPR 2010 16.5 34.1 47.9 - 21.3 43.6 60.4 - 38.0 61.0 73.1 -
PREF ICCV 2017 19.2 36.4 51.8 - 30.6 55.3 67.0 - 43.0 68.7 77.9 -

BSC+CM ICIP 2016 24.6 38.5 55.1 - 23.1 44.3 56.4 - 58.6 80.6 87.4 -
LIMI MM 2018 - - - - 47.4 68.1 77.3 - 72.3 90.6 94.1 -

DOTGNN MM 2019 - - - - 53.4 72.7 80.7 - 74.1 90.1 92.6 -
GCGNN TMM 2020 - - - - 53.6 77.0 91.4 - 81.7 94.3 96.5 -

MGR TCYB 2021 57.8 71.6 76.5 - 48.4 75.2 89.9 - 80.2 93.8 96.3 -
MACG TPAMI 2020 63.2 75.4 79.7 - 57.4 79.0 90.3 - 84.5 95.0 96.9 -

SOT (Ours) - 91.7 96.5 97.6 90.7 72.7 88.6 93.2 78.9 86.4 96.3 98.8 91.3

Table 1: Comparison of the proposed method with the state-of-the-arts on CSG, DukeGroup and RoadGroup. The compared
methods are categorized into two groups, including hand-crafted methods and deep learning methods. The best and second best
results are shown in bold and underline respectively. The Rank-1, Rank-5, Rank-10 and mAP are reported(%).

Experiments
Datasets
The proposed SOT is evaluated on DukeGroup (Lin et al.
2021), RoadGroup (Lin et al. 2021) and CSG (Yan et al.
2020) datasets. The DukeGroup dataset contains 354 images
including 177 group classes. The RoadGroup dataset con-
tains 324 images including 162 group classes. Follow the
protocol in (Lin et al. 2021), the training and testing set of
DukeGroup and RoadGroup are randomly and equally split.

The CSG dataset contains 3,839 images including 1,558
group classes, where 859/699 groups are split for train-
ing/testing. Follow the protocol in (Yan et al. 2020), the im-
ages in the test set are sequentially selected as the probe,
and all the remaining images are regarded as the gallery. In
addition, CSG adds extra 5K group images as distractors in
the gallery. We do not use any extra datasets when training
on each G-ReID dataset for fair performance comparison.
The Cumulative Matching Characteristics (CMC) at Rank-
1, Rank-5, Rank-10, and mean Average Precision (mAP) are
used as evaluation metrics.

Details
We adopt ViT-Base (Dosovitskiy et al. 2021), pre-trained on
ImageNet (Deng et al. 2009), as the backbone of the member
feature transformer. We regard the SOT without LVM and
MVM as the certainty modeling. For the input group image,
we crop all the member patches by the given bounding box
and resize them to 256× 128. In the training stage, the ran-
dom horizontal flip and random erasing are performed with
a fixed probability of 0.5. Each mini-batch is sampled with
16 group identities, and each group identity selects 4 im-
ages. We choose SGD (Bottou 2012) as the optimizer. Our
training stage ends when the iteration number reaches 400
epochs. We use a cosine annealing learning rate strategy.
The initial learning rate is 2e-3, and the minimum learning
rate is 1.6e-4. The learning rate of the inter-member module
is multiplied by 0.1. The weight decay is 1e-4. The selec-
tion of hard samples in triplet loss adopts an online mining
strategy. In the testing stage, we do not use any data aug-
mentation and re-ranking. We use the Euclidean distance to
measure the normalized features. All ablation studies, pa-

rameter analyses, and visualizations have been conducted on
the DukeGroup dataset if there is no additional comments.

Performance
We evaluate the proposed SOT method against the existing
methods on three available G-ReID datasets to show the su-
periority of our method. As shown in Table 1, we divide
the existing methods into two groups: hand-crafted G-ReID
methods including CRRRO-BRO (Zheng, Gong, and Xi-
ang 2009), Covariance (Cai, Takala, and Pietikäinen 2010),
PREF (Lisanti et al. 2017) and BSC+CM (Zhu, Chu, and Yu
2016); deep learning G-ReID methods including LIMI (Xiao
et al. 2018), DOTGNN (Huang et al. 2019), GCGNN (Zhu
et al. 2020), MGR (Lin et al. 2021) and MACG (Yan et al.
2020). The MACG is regarded as the state-of-the-art method
in the existing methods according to the performance. Three
conclusions can be drawn from Table 1.

First, our SOT achieves very strong performance on CSG,
DukeGroup and RoadGroup datasets, which far exceeds the
MACG on Rank-1 and mAP. In the CSG datasets, the per-
formance of our SOT achieves 91.7%/90.7% on Rank-1/
mAP, and exceeds MACG by 28.5% on Rank-1. In the
DukeGroup datasets, the performance of our SOT achieves
72.7%/78.9% on Rank-1/mAP, and exceeds MACG by
15.3% on Rank-1. In the RoadGroup datasets, the perfor-
mance of our SOT achieves 86.4%/91.3% on Rank-1/mAP,
and exceeds MACG by 1.9% on Rank-1. This shows that
the SOT brings different degrees of performance gain on all
datasets, proving that uncertainty is an attribute of group im-
ages and does not disappear as the data size increases. This
also shows that the SOT overcomes the inherent uncertainty
of group images and brings significant improvements.

Second, the performances of the methods based on the
hand-crafted features are relatively low. Different from these
works, the proposed SOT crops each member in the group
to avoid background interference. Furthermore, the SOT de-
signs a second-order transformer to extract the feature of
each member and the whole group, which is more robust
and discriminative.

Finally, the performances of deep learning methods are
still unsatisfactory, which is caused by the certainty model-
ing and insufficient layout modeling. Different from these
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CSG DukeGroup RoadGroup
MVM LVM Rank1 mAP Rank1 mAP Rank1 mAP

85.56 84.40 65.91 75.00 83.95 89.10
✓ 88.92 87.31 67.05 75.10 85.19 89.89

✓ 90.26 88.92 68.18 75.55 85.19 89.70
✓ ✓ 91.70 90.70 72.73 78.90 86.40 91.30

Table 2: Ablation study of the proposed SOT (%).
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Figure 3: Comparisons with alternative variants.

works, the SOT designs the uncertainty modeling which
mines potential group features by treating each image as a
specific distribution. In addition, the proposed SOT lever-
ages the transformer-based network to extract the member
and group features, which is more suitable for G-ReID.

Ablation Study
Effect of MVM and LVM. The ablation experiment
mainly shows the effect of two proposed modules, MVM
and LVM, on uncertainty modeling. We mainly analyze the
results on the DukeGroup, and there are similar conclusions
on the other two datasets. As shown in Table 2, two con-
clusions can be drawn. First, each module can improve the
performance when used alone. Compared with the baseline
model, MVM increased by +1.14%/+0.1% on Rank-1/mAP,
and LVM increased by +2.27%/+0.55% on Rank-1/mAP.
This shows that each module digs for potential member vari-
ation and layout variation, respectively, making SOT more
discriminative. Second, when two modules are both used,
the performance gain, +6.82%/+3.90% on Rank-1/mAP, is
higher than than the sum of individual modules. This shows
that member and layout variations are two complementary
aspects for modeling group variations. Using MVM and
LVM simultaneously can explore more potential group fea-
tures.

Alternative Probability Distribution. In order to verify
the effectiveness of the proposed probability distribution
N (µ, σ;P0, p

′

max), we choose other distributions as compar-
isons, including fixed probability p = 0.1 and p = 0.4, and
uniform distribution in the interval [0, 0.4]. As shown in Fig.
3(a), our distribution is better than other alternative distribu-
tions. The proposed distribution is coped with the real scene,
due to the constraints of “stability” and “randomness”. In
addition, we construct a specific distribution for each image,
which alleviates the class confusion caused by the change of
members.

Layout modeling strategy Rank-1 mAP
no embedding 67.05 75.04

random sequential embedding 68.18 76.62
normalized embedding (Ours) 72.73 78.90

Table 3: Several alternative layout feature modeling (%).

Alternative Inter-member Module. To verify that group
feature transformer is more suitable for G-ReID, we se-
lect a classical GNN (Hamilton, Ying, and Leskovec 2017)
model for comparison. As shown in Fig. 3(b), the existing
GNN lacks the extraction of member layout information and
only learns group features through member appearance fea-
tures, which is not sufficient and robust. On the contrary, our
method can model layout features when extract group fea-
tures, thus, it can bring more performance gain and is more
suitable for G-ReID than GNN.

Alternative Layout Feature Modeling. We design sev-
eral other layout feature modeling strategies and compare
them with our method. No embedding means that the layout
embedding bank in LVM is discarded, but we extract group
features through member appearance features. Random se-
quential embedding is similar to the position embedding in
ViT, which means that we assign group members a random
sequence to enumerate possible layout situations. As shown
in Table 3, row 1 not only ignores layout variations but also
ignores the discrimination information contained in layout
features themselves. Row 2 proves that the layout variations
cannot be exhausted by finite enumeration, so the perfor-
mance is also limited. Our method brings the best perfor-
mance when describing the layout uncertainty.

Parameter Analysis
Influence of P0. P0 controls the effect of stability in
MVM, which determines that each input maintains the cur-
rent members and layout by probability P0 during train-
ing. When P0 is too small, the stability of the SOT cannot
be guaranteed, which lead to the performance degradation;
when P0 is too large, the SOT is too stable to ignore the min-
ing of potential features, which lead to insufficient model
generalization and performance degradation. As shown in
Fig. 4(a), we set P0 = 0.5 for the best performance.

Influence of pmax. pmax controls the effect of random-
ness in MVM, which controls the maximum variation prob-
ability of each member in the current group during training,
and also reflects the drastic degree of member variation. As
shown in Fig. 4(a), the drastic degree of member variation
becomes greater with the increase of pmax, and the poten-
tial group features mined are more and more diverse. When
pmax reaches 0.3, the model achieves the best performance,
so we set pmax = 0.3. When pmax further increases, some
unexpected variations that cause confusion of group class
will happen, which lead to the performance degradation.

Influence of L. We analyze the relationship between the
number of layers in the group feature transformer and per-
formance and show the results in Fig. 4(c). When L = 0,
there is no connection between the second-order token and
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Figure 4: Parameter analysis of the proposed SOT.

Query Rank-1 Rank-3 Rank-1 Rank-3

Retrieval by certainty modeling Retrieval by SOT

Figure 5: The top-three retrieval visualization of the cer-
tainty modeling and the SOT. The red/green boxes indicate
the correct/wrong matches. In the DukeGroup dataset, each
query only has one correct matching in the gallery.

member features. Therefore, the performance is very low.
With the increase of L, the performance starts to improve
and achieves the best with L = 2. When L further increases
to 3, there are too many parameters resulting in over-fitting,
which reduces the performance.

Influence of m. Margin m controls both intra-member/
group-class consistency and inter-member/group-class dis-
crepancy. We select five different values {0, 0.1, 0.2, 0.3,
0.4} to analyze the effect of m on the performance. As
shown in Fig. 4(d), we set m = 0.3 as the best performance
of the SOT.

Visualization
Retrieval visualization. Fig. 5 shows the top-three re-
trieval visualization of the certainty modeling and the pro-
posed SOT. The advantages of SOT are reflected in the fol-
lowing two aspects. 1) Certainty modeling tends to search

ID0
ID1
ID2
ID3
ID4
ID5

(a) Certainty modeling.

ID0
ID1
ID2
ID3
ID4
ID5

(b) SOT.

Figure 6: The feature visualization of the whole training
set through t-SNE (van der Maaten and Hinton 2008). Each
color represents a group class.

for images with similar layouts and cannot model layout
variations. For example, certainty modeling tends to search
for images with a horizontal layout in row 1 and images with
a tight layout in row 2. However, SOT can get the correct re-
sults under the large layout differences between query and
gallery. 2) Certainty modeling tends to search for the images
with the same number with query. For example, certainty
modeling tends to search for images with four members in
row 3. However, SOT extracts similar group features from
the images with different members of the same group.

Feature visualization. Fig. 6 shows the feature distribu-
tion visualization of six classes in the training set when the
certainty modeling and the proposed SOT are trained to con-
verge. It is worth noting that there are only two images in
each group class. In Fig. 6(a), certainty modeling learns poor
decision boundaries (cyan and purple circles, blue and red
circles) due to the lack of potential group features mining.
With the advantages of uncertainty modeling, the feature
distribution of the SOT shows obvious intra-class consis-
tency and inter-class discrepancy.

Conclusion
In this paper, we focus on member and layout variation in
G-ReID. To this end, firstly, we propose a novel uncertainty
method to model the variation of intra-group members and
layout. The advantage of uncertainty modeling is that lots of
potential group features can be explored and the training of
the model can be promoted. Secondly, we propose a second-
order transformer (SOT) to extract the features of individ-
ual members and groups, respectively. Finally, the proposed
SOT achieves the state-of-the-art performance on multiple
datasets, which greatly exceeds the existing methods.
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