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Abstract

Demosaicing is the crucial step in the image processing
pipeline and is a highly ill-posed inverse problem. Re-
cently, various deep learning based demosaicing methods
have achieved promising performance, but they often design
the same nonlinear mapping function for different spatial lo-
cations and do not well consider the difference of mosaic pat-
tern for each color. In this paper, we propose a deep spatial
adaptive network (SANet) for real image demosaicing, which
can adaptively learn the nonlinear mapping function for dif-
ferent locations. The weights of spatial adaptive convolution
layer are generated by the pattern information in the receptive
filed. Besides, we collect a paired real demosaicing dataset
to train and evaluate the deep network, which can make the
learned demosaicing network more practical in the real world.
The experimental results show that our SANet outperforms
the state-of-the-art methods under both comprehensive quan-
titative metrics and perceptive quality in both noiseless and
noisy cases.

Introduction
To reduce cost, most digital camera captures image through
a single CCD/CMOS sensor with color filter array (CFA),
e.g., RGGB Bayer pattern, where two-thirds of the informa-
tion is lost and the rest one-third of the information may be
perturbed by different kinds of noise. Modern digital cam-
era employs Image Signal Processing (ISP) pipeline to cre-
ate high-quality color image from the raw data. The first and
most crucial step in the sequence of ISP steps is demosaic-
ing. The recovery errors during the early step of ISP may
negatively influence the visual appearance of final result.

Since demosaicing is under-determined, prior knowledge
of the natural image is usually utilized to regularize the re-
covery. The traditional techniques encode the heuristic hand-
crafted priors into local filter and interpolate the mosaic
image (Cok 1987; Laroche 1994; Malvar, He, and Cutler
2004; Buades et al. 2009). These local filters are adaptively
in terms of the local CFA information and/or image con-
tent. Besides, optimization approaches iteratively recovery
color image by embedding hand-crafted prior into optimiza-
tion, such as nonlocal prior (Heide et al. 2014). However,
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Figure 1: The interpolation filter for different locations in
R, G, B channels. Note that the B channel is the same as R
channel. We take filter with 5∗5 kernel size as example, and
there are 4 types for R and B channels and 2 types for G
channel, respectively.

the hand-crafted priors are insufficient to represent the vari-
ety of the real-world noisy data, and some challenging high
frequency regions appear some visually disturbing artifacts
such as checkerboard patterns, zippering around edges, and
moire (Gharbi et al. 2016).

Different from traditional methods which rely on hand-
crafted priors, deep learning methods (Tan et al. 2017b;
Tan, Chen, and Hua 2018; Gharbi et al. 2016; Kokkinos
and Lefkimmiatis 2018; Liu et al. 2020; Chen, Wen, and
Chan 2021) employ convolution neural network (CNN) to
implicitly learn the prior from training dataset. Some meth-
ods (Gharbi et al. 2016; Liu et al. 2020; Chen, Wen, and
Chan 2021) decompose a mosaic image with Bayer pattern
into four-channel RGGB image and feed it to a CNN, which
is similar to image super-resolution (Song et al. 2020; Pan
et al. 2020). The other methods (Tan et al. 2017b; Tan, Chen,
and Hua 2018; Kokkinos and Lefkimmiatis 2018) directly
input the mosaic image to a CNN. All these methods employ
the same nonlinear mapping function for different spatial lo-
cations. Nevertheless, as shown in Figure 1, different loca-
tions need different interpolation filters, i.e., different map-
ping functions.

In addition, deep learning methods rely heavily on train-
ing dataset. There several datasets are utilized mostly, and
they can be grouped into three categories. The first kind of
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dataset (Gharbi et al. 2016; Timofte et al. 2018, 2017) con-
tains sRGB images, which have been nonlinearly processed.
Nevertheless, demosaicing always works in linear represen-
tation of raw image in the real ISP, Besides, the sRGB image
is demosaiced by existing algorithm, which may introduce
undesirable artifacts. The second kind of dataset (Khashabi
et al. 2014) contains linear RGB images downsampled from
raw mosaic image, but it may change the structure of the
signal. The third kind of dataset (Qian et al. 2019) contains
linear full color images captured by camera with advanced
pixel shift technique. Moreover, all these datasets only have
clean RGB images, and the mosaic images are synthesized
with CFA and gaussian noise. The synthetic data has domain
gap to real raw data, and may limit the practice of trained de-
mosaicing methods in the real world.

In this paper, we present a deep spatial adaptive network
(SANet) to adaptively learn the mapping function for differ-
ent spatial locations in the mosaic image, depicted in Fig-
ure 2. The architecture of SANet is based on UNet (Ron-
neberger, Fischer, and Brox 2015), and involves proposed
spatial adaptive convolution layer and residual learning. In
each spatial adaptive convolution layer, the kernel weights
are generated by the pattern information in the receptive
field. To ease the training of deep network, we further in-
troduce residual learning to SANet, including global resid-
ual learning and local residual learning. Besides, we cap-
ture a real demosaicing dataset by the camera with advanced
pixel shift technique under both noiseless and noisy cases.
The captured dataset contains paired raw mosaic and raw
RGB images, which makes the trained network more practi-
cal in the real world. The experimental results show that our
SANet outperforms the state-of-the-art methods under both
comprehensive quantitative metrics and perceptive quality in
both noiseless and noisy cases.

In summary, our main contributions are that
• We propose a deep spatial adaptive network for real im-

age demosaicing, which is learned on our captured paired
real demosaicing dataset and can adaptively learn the
mapping function for different spatial locations.
• We design a spatial adaptive convolution layer to replace

the conventional convolution layer, whose weights are
generated for each spatial location by the pattern infor-
mation in the receptive filed.
• We capture a real demosaicing dataset with paired raw

mosaic and RGB images, which makes the trained net-
work more practical under both noiseless and noisy cases
in the real world.

Related Work
In this section, we review the most relevant studies on image
demosaicing, and spatial adaptive network.

Image Demosaicing
Image demosaicing aims to recover a full color image from
a sub-sampled mosaic image with potential noise. Since im-
age demosaicing is a highly ill-posed problem, prior knowl-
edge of the natural image is utilized to regularize the re-
covery. Traditional interpolation-based methods (Cok 1987;

Laroche 1994; Malvar, He, and Cutler 2004; Buades et al.
2009) encode the heuristic hand-crafted priors into local fil-
ter and interpolate the mosaic image. At the early stage, the
local filter is designed to interpolate R, G and B channels
separately. Later, to exploit the correlation between differ-
ent color channels, various priors have been proposed to
model inter-channel correlation, such as integrated gradi-
ent (Pekkucuksen and Altunbasak 2010), sparsity (Mairal,
Elad, and Sapiro 2007; Yu, Sapiro, and Mallat 2011), self-
similarity (Zhang and Wu 2005; Mairal et al. 2009) and
residual interpolation (Kiku et al. 2016; Monno et al. 2017).
However, the interpolation-based methods cannot handle
noise in the mosaic image. The optimization-based methods
(Heide et al. 2014; Tan et al. 2017a) embed hand-crafted
priors into an optimization algorithm and iteratively recover
the full color image from noisy mosaic image. Heide et al.
(2014) proposed a primal dual optimization method with
nonlocal prior. Tan et al. (2017a) integrated various hand-
crafted priors, e.g., total variation prior and nonlocal prior,
into alternating direction method of multipliers (ADMM) for
image demosaicing.

Recently, deep learning methods (Tan et al. 2017b; Tan,
Chen, and Hua 2018; Gharbi et al. 2016; Kokkinos and
Lefkimmiatis 2018; Liu et al. 2020) have been proposed to
automatically learn the desired prior for image demosaicing.
Gharbi et al. (2016) proposed a deep convolution network to
cover full color image from noisy mosaic image. Tan et al.
(2017b) and Tan et al. (2018) first initially covered the full
color image via bilinear interpolation, and then employed a
CNN-based method to enhance the initialized result. Kokki-
nos et al. (2018) unfolded the majorization-minimization al-
gorithm with a residual denoising network for image demo-
saicing. Liu et al. (2020) proposed a self-guidance network
for image demosaicing by introducing green channel guid-
ance and density map guidance.

The traditional methods employ hand-crafted priors,
which often only model the linear characteristic and are in-
sufficient to exploit the nonlinearity in natural image. The
deep learning methods learn the same nonlinear prior for
different locations in the mosaic image, but do not well con-
sider the pattern information. In this work, we present an ef-
ficient CNN-based method for image demosaicing to learn
spatial adaptive prior according to pattern information.

Adaptive Network
The naive CNN-based methods only employ convolution
layer, nonlinear activation layer and/or normalization layer
to model the nonlinear mapping function between input and
output information. Once the network has been trained, the
network parameters and the nonlinear mapping function are
fixed. Recently, more and more researchers focus on devel-
oping adaptive network, which can learn the adaptive map-
ping function according to image features and/or extra input
information.

The most well-known category of adaptive network is that
with various attention mechanisms, such as nonlocal atten-
tion (Wang et al. 2018), channel attention (Hu, Shen, and
Sun 2018) and so on. The attention mechanism adaptively
calculates the correlation between different input informa-
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Figure 2: The overview of the proposed image demosaicing network SANet, employing Unet as the basic architecture. To ease
the training, we introduce global and local residual learning into SANet, and employ residual block as fundamental block. In
each residual block, we replace the conventional convolution layer by our proposed spatial adaptive convolution layer, whose
weights are generated for each spatial location by the pattern information in the receptive filed through feeding the mosaic
pattern into the same network architecture. The details of residual blocks and corresponding pattern information flow are
indicated in the purple dotted box and shown in the right.

tion. Besides, deformable convolution (Dai et al. 2017) em-
ploys irregularly-shaped filers. Dynamic convolution (Chen
et al. 2020) linearly combines a set of kernels in a convo-
lution layer. Adaptive activation (Kligvasser, Shaham, and
Michaeli 2018) and normalization (Huang and Belongie
2017) generate the parameters of these layers according to
extra input information.

Our spatial adaptive network is more related to kernel pre-
diction network (Bako et al. 2017) and hypernetwork (Ha,
Dai, and Le 2016). The kernel prediction network generates
spatial-varying kernels according to input images, mean-
while the hypernetwork produces spatial-consistent kernels
according to extra input information. In this work, we
propose a spatial adaptive convolution layer with spatial-
varying kernels, whose parameters are generated according
to CFA pattern information.

Spatial Adaptive Network for Image
Demosaicing

In this section, we first formulate the problem for image de-
mosaicing with noise, and describe the motivation of our
method. Then, we introduce the spatial adaptive convolu-
tion, whose weights are generated by the pattern informa-
tion in the receptive field. Finally, we describe the overall
network architecture of SANet, which can adaptively learn
the mapping function for each spatial location.

Formulation and Motivation

The aim of demosaicing is to recovery full color RGB image
X ∈ R3×H×W from mosaic image Y ∈ R1×H×W , where
H and W are the number of height and width for the mo-
saic and RGB images. N ∈ R1×H×W denotes the additive
noise. The relationship of mosaic and RGB images is gener-

ally linear and can be represented as
Y =M(X) +N, (1)

whereM is the mosaic mapping function.
To recover the full color RGB image, traditional meth-

ods (Cok 1987; Laroche 1994; Malvar, He, and Cutler 2004;
Buades et al. 2009) employ various linear local filters reg-
ularized by heuristic hand-crafted priors to adaptively inter-
polate the mosaic image in different locations, while deep
learning methods (Tan et al. 2017b; Tan, Chen, and Hua
2018; Gharbi et al. 2016; Kokkinos and Lefkimmiatis 2018)
directly learn nonlinear mapping function with CNN to re-
cover RGB image without considering the pattern informa-
tion in each location of mosaic image. In this work, we
present a spatial adaptive convolution layer to learn the adap-
tive nonlinear mapping function in terms of pattern informa-
tion. Concretely, we design a spatial adaptive convolution
layer, whose weights in each location are generated by the
pattern information in the same receptive field. Figure 2 and
Figure 3 show the proposed spatial adaptive network and
spatial convolution layer, respectively.

Spatial Adaptive Convolution
Before describing spatial adaptive convolution, we first re-
view the conventional convolution. Let FI ∈ RCi×H×W de-
note the input feature map, whereCi is the input channels. A
set of Co convolution kernels with size of K×K is denoted
as K ∈ RCo×Ci×K×K , where each kernel Ko ∈ RCi×K×K

(o = 1, 2, · · · , Co) is consist ofCi convolution filters Ko,i ∈
RK×K (i = 1, 2, · · · , Ci). Then, these filters are employed
to operate the input feature map in a sliding window way to
generate the output feature map FO ∈ RCo×H×W , which
can be expressed as

FO
o [p] =

Ci∑
i=1

∑
q∈N (p)

Ko,i[p− q]FI
i [q], (2)
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Figure 3: The spatial adaptive convolution. We decompose
large spatial adaptive kernel H ∈ RCo×Ci×H×W×K×K into
G ∈ RH×W×K1×K1 and F ∈ RCo×Ci×K2×K2 , and we set
K1 +K2 − 1 = K to keep the receptive field. The weights
of G for each feature location are generated by pattern infor-
mation in the receptive field with the function φ.

where p denotes the spatial location for convenient represen-
tation, and N (p) is the neighboring pixels of p.

The conventional convolution shares kernel weights and
learns a consistent mapping function for each spatial loca-
tion. However, different locations in the mosaic image with
different pattern information need different mapping func-
tions. The spatial adaptive convolution can break the ker-
nel spatial sharing property of conventional convolution, and
each spatial location is operated by an independent kernel.
The convolution kernel of spatial adaptive convolution is de-
noted as H ∈ RCo×Ci×H×W×K×K , and the corresponding
convolution operation can be represented as

FO
o [p] =

Ci∑
i=1

∑
q∈N (p)

Ho,i,p[p− q]FI
i [q]. (3)

Nevertheless, spatial adaptive convolution in this form occu-
pies a very large memory, which is H×W times larger than
conventional convolution and Co ×K ×K or Ci ×K ×K
times larger than input or output feature maps. The large
memory occupation limits the application of spatial adaptive
convolution in this form.

Previous researches show that a large convolution kernel
can be decomposed into two small convolution kernels
and keep the same receptive field (Szegedy et al. 2016).
The kernel decomposition not only reduces computational
cost, but also reduces the memory occupation. Here, we
decompose the large kernel of spatial adaptive convolution
H ∈ RCo×Ci×H×W×K×K into G ∈ RH×W×K1×K1 and
F ∈ RCo×Ci×K2×K2 , as shown in Figure 3. G focuses
on extracting spatial adaptive correlation and shares the
kernel between different channels. F focuses on extracting
the inter-channel relationship and shares kernel between
different spatial locations. We setK1+K2−1 = K to keep
the same receptive field. After decomposition, the memory

occupation is
H ×W ×K1 ×K1 + Co × Ci ×K2 ×K2

Co × Ci ×H ×W ×K ×K
times than undecomposed one and
H ×W ×K1 ×K1 + Co × Ci ×K2 ×K2

Co × Ci ×K ×K
times than

conventional convolution. Taking Co = Ci = 32,
H = W = 64 and K1 = K2 = 3 as an example, the
memory occupation is almost 0.00037 times than the unde-
composed one and 1.8 times than conventional convolution.
The operation can be expressed as

FO
o [p] =

∑
q1∈N1(p)

Gp[p− q1] Ci∑
i=1

∑
q2∈N2(p)

Fo,i[p− q2]FI
i [q2]

 [q1],

(4)

where N1(p) and N2(p) are the neighboring pixels of p for
G and F , respectively.

Different from conventional convolution with a fixed
weight, the kernel weights of our proposed spatial adaptive
convolution is generated by pattern information in the recep-
tive field, as shown in Figure 3. F is a spatial consistent ker-
nel, and we only need to generate spatial adaptive weights
for G. We symbolize the weight generation function as φ,
which can be represented as

Gp = φ(Pq∈N (p)), (5)

where P denotes the pattern information, and q is the in-
dex in the receptive field N (p). Specifically, we utilize a
K×K conventional convolution to extract the pattern infor-
mation in the combined receptive field of F and G. Then, we
feed the extracted information through LeakyReLU activa-
tion function and fully-connection layer to generate weights
in a K2

1 vector for each location. Finally, we reshape the
vector into K1 ×K1 as the kernel of G.

Network Architecture
The architecture of SANet is illustrated in Figure 2. The
overall structure is based on typical Unet (Ronneberger, Fis-
cher, and Brox 2015) architecture. SANet consists of 4 en-
coder stages and 4 corresponding decoder stages. At the end
of each encoder stage, the feature maps are downsampled
to 1/2× scale with a 4 × 4 kernel size and 2 stride con-
volution. Before each decoder stage, the feature maps are
upsampled to 2× scale with bilinear interpolation. Skip con-
nections pass large-scale low-level feature maps from each
encoder stage to its corresponding decoder stage. To ease the
training, we introduce residual learning into SANet, includ-
ing global residual and local residual learning. For global
residual learning, we employ a spatial adaptive convolution
to initially recovery the RGB image from input mosaic im-
age and is added by the global residual of Unet output. For
local residual learning, we utilize residual block as the fun-
damental block to build encoder and decoder. The residual
block is conducted by two K × K convolutions followed
by LeakyReLU activation function and a 1× 1 convolution,
which learns the local residual.

The spatial adaptive convolution replace the conventional
convolution in each residual block. In the spatial adaptive
convolution, the wights for each location are generated by
the pattern information in the receptive field. To guarantee
the receptive field on input mosaic image is the same as
that on pattern information, we input the pattern information
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Clean data Real noisy data Synthetic noisy data

Figure 4: The difference between real and synthetic noisy
data. Real data contains signal-dependent and signal-
independent noises (Wei et al. 2020), but synthetic data is
only synthesized by signal-independent noise with gaussian
distribution.

① ②

③ ④

①

②

Shift Shift
Shift

Shot 1 Shot 2 Shot 3 Shot 4

R

G

B

Full color image

+ + + =

Figure 5: The illustrate of pixel shift technology. In each
capturing, the camera sensor is physically moved in hori-
zontal and vertical dimension and takes four shots, and inte-
grating these mosaic images can get a full color image.

to the same architecture except with small feature maps, as
shown in the bottom of Figure 2(a).

Generally, the mosaic pattern is represented as a {0, 1}
binary mask. It only indicates whether this location has in-
formation or not. To identify the color information for each
location, we replace the {0, 1} mask by {0, 1, 2, 3} mask,
which denote no information, R information, G information
and B information, respectively.

The network is trained with paired mosaic and RGB im-
ages, and we use L1 distance between mosaic image and
demosaiced RGB images as the loss function, which can be
expressed as

L(θ) = ||X− f(Y; θ)||1, (6)
where f and θ denote SANet and the corresponding param-
eters, respectively.

Paired Real Image Demosaicing Dataset
It is well-known that the powerful deep learning methods
rely on training dataset. The existing datasets for demo-
saicing network training have several problems. The sRGB
datasets (Gharbi et al. 2016; Timofte et al. 2018, 2017) are
demosaiced by existing demosaicing algorithm and lie in
nonlinear representation, which introduces undesirable ar-
tifacts and does not match the linear workspace of demo-
saicing algorithms, respectively. The linear RGB datasets

Figure 6: Paired real data capture setup.

(Khashabi et al. 2014) downsample the raw mosaic image,
which changes the structure of signal. Recently, Qian et al.
(Qian et al. 2019) capture the full color RGB dataset by ad-
vanced pixel shift camera. Nevertheless, all these datasets
only contain RGB image, and the mosaic image is synthe-
sized with CFA and gaussian noise. The noise difference be-
tween real and synthetic data is shown in Figure 4. There
has domain gap between synthetic data and real data, which
limits the practice of trained demosaicing algorithms.

To support the research, we employ a pixel shift camera
to capture a real paired mosaic and full color RGB images
dataset. For each full color RGB image capturing, pixel shift
camera physically controls the camera sensor to horizontally
or vertically move one pixel four times, and takes one mo-
saic image at each movement, as shown in Figure 5. After
four times capturing, the color information of each pixel can
be fully captured. Then, we fix the camera setting and turn
the capturing mode from pixel shift to normal to capture a
corresponding mosaic image. Besides, according to the work
in (Chen et al. 2018), we reduce the exposure time to capture
noisy mosaic image. Therefore, we can capture paired real
noiseless/noisy mosaic and clean full color RGB images.

To capture the dataset, we employ a Sony A7R4 digital
camera with pixel shift technology, as shown in Figure 6.
The camera is mounted on sturdy tripods. We adjust cam-
era settings such as aperture, focus and exposure time to
maximize the quality of the full color RGB image for each
scene. Then, we employ a remote control software to turn
the capturing mode from pixel shift to normal. When cap-
turing noisy mosaic image, we further set a shorter exposure
time. Finally, we collect the noiseless/noisy mosaic image.
Since we capture multiply images for one scene, all scenes
in the dataset are static. Our dataset contains 100 indoor and
outdoor scenes with 9568 × 6376 resolution. We will con-
tinuously expand our dataset and capture more data being
suitable for image demosaicing in future.

The captured paired real demosaicing dataset can support
deep learning methods to be more practical under noiseless
and noisy cases in the real world.

Experiments
In this section, we first introduce the settings in our ex-
periments, including implementation details and metrics for
quantitative evaluation. Then, our method is compared with
several state-of-the-art methods on our captured real demo-
saicing dataset under both noiseless and noisy cases. Finally,
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FlexISP ADMM DeepJoint DeepUnfold

CDM SGNet SANet(Ours) GT

Figure 7: Visual quality comparison on a typical scene for image demosaicing in our real demosaicing dataset. The results
recovered by different methods and the groundtruth image are shown from left to right and from top to bottom.

Cases Metrics Methods
FlexISP ADMM DeepJoint DeepUnfold CDM SGNet SANet(Ours)

Noiseless PSNR 39.580 39.443 51.089 51.082 51.124 51.771 52.012
SSIM 0.9641 0.9643 0.9923 0.9860 0.9942 0.9947 0.9951

Noisy PSNR 30.246 30.078 41.186 41.503 41.540 42.298 42.576
SSIM 0.9149 0.9120 0.9832 0.9811 0.9822 0.9829 0.9833

Table 1: Quantitative results of different methods on our real demosaicing dataset. The best results are highlighted in bold.

Methods Params(M) FLOPs(G)

DeepJoint 0.56 9.39
DeepUnfold 0.38 245.60

CDM 0.27 17.44
SGNet 13.62 221.69
Ours 10.78 19.18

Table 2: Efficiency comparison of deep learning methods.

we discuss the effect of different network modules.

Settings
The proposed architecture requires no pre-training and is
trained in an end-to-end manner. The kernel size K is set to
be 5, and the decomposed kernel size K1 and K2 are set to
be 3 and 3 for all spatial adaptive convolution, respectively.

In the training stage, we randomly crop overlapped 256×
256 spatial regions from image in our paired real demo-
saicing dataset. Our implementation is based on PyTorch
(Paszke et al. 2019). The models are trained with Adam op-
timizer (Kingma and Ba 2014) (β1 = 0.9 and β2 = 0.999)
for 100 epochs. The initial learning rate and mini-batch size

are set to 1× 10−4 and 1, respectively.
We employ two evaluation metrics to evaluate the perfor-

mance of all methods, including the Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity (SSIM). The larger
PSNR and SSIM indicate better performance.

Evaluation on Real Image Demosaicing Dataset
We compare our SANet with six state-of-the-art methods,
including two traditional methods, i.e., FlexISP (Heide et al.
2014) and ADMM (Tan et al. 2017a), and four deep learning
methods, i.e., DeepJoint (Gharbi et al. 2016), DeepUnfold
(Kokkinos and Lefkimmiatis 2018), CDM (Tan et al. 2017b)
and SGNet (Liu et al. 2020). We evaluate all methods in both
noiseless and noisy cases on our captured real image demo-
saicing dataset. Note that we do not employ noise map for all
deep learning methods, for noiseless data do not need noise
map and noisy data do not know the accurate noise level.

Table 1 provides the averaged recovery results of noise-
less and noisy cases on our real image demosaicing dataset,
to quantitatively compare our SANet with FlexISP, ADMM,
DeepJoint, DeepUnfold, CDM and SGNet. The best results
are highlighted in bold for each metric. It can be seen that
deep learning methods always have better performance than
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GT Case 1 Case 2 Case 3 Case 4 (Full model)

Figure 8: Visual quality comparison of our network with different modules.

traditional methods, which demonstrates the advantage of
deeply exploiting the intrinsic characteristic of nature image.
Comparing the results with different deep learning methods
in the same case, our method outperforms the existing meth-
ods in both PSNR and SSIM metrics. This reveals the effec-
tiveness of our spatial adaptively learned nonlinear mapping
function.

We further quantitatively evaluate the efficiency of all
deep learning methods by parameters and floating point op-
erations (FLOPs) metrics, and the results are provided in
Table 2. Note that the FLOPs is calculated by recovering
a 256 × 256 resolution image. It can be seen that the num-
ber of parameters of our method and SGNet are larger than
that of other methods, which indicates that our method and
SGNet have stronger capacity to model the intrinsic charac-
teristic of nature image. The FLOPs of our method is similar
to DeepJoint and CDM, and is an order of magnitude smaller
than DeepUnfold and SGNet. It reveals the efficiency of our
method.

To visualize the experimental results, a representative re-
covered result for noisy case is shown in Figure 7. The
recovered results of FlexISP/ADMM/DeepJoint/DeepUn-
fold/CDM/SGNet/our methods and ground truth are shown
from left to right and from top to bottom. The results of Flex-
ISP and ADMM still contain noise, and indicates the hand-
crated prior is insufficient for image demosacing in the real
world. The recovered result from our SANet is more accu-
rate than the results from compared methods, which demon-
strates the effectiveness of our method.

Modules Cases
1 2 3 4

Unet X X X X
spatial AdaConv X X X

local residual X X
global residual X

PSNR 50.715 51.473 51.941 52.012
SSIM 0.9936 0.9948 0.9950 0.9951

Params(M) 10.02 10.43 10.78 10.78
FLOPs(G) 17.48 18.45 19.14 19.18

Table 3: Quantitative results of our network with different
modules. The best results are highlighted in bold.

Ablation Study
To investigate the effectiveness and efficiency of spatial
adaptive convolution, local residual learning and global
residual learning, we conduct an ablation study on our real
image demosaicing dataset with noiseless case. The results
are provided in Table 3. It can be seen that all modules con-
tribute to the performance improving, which verifies the ef-
fectiveness of spatial adaptive convolution, local and global
residual learning. Comparing the parameters and FLOPs of
our method with different modules, we can see that each
module only sightly improve the computational cost. It ver-
ifies the efficiency of spatial adaptive convolution, local and
global residual learning.

A visual comparison of our method with different mod-
ules is provided in Figure 8. The error maps are the aver-
age absolution errors between ground truth and recovered
results across channels. It can be seen that our method dif-
ferent modules all recover the image well and are similar to
the ground truth. Our method with spatial adaptive convolu-
tion and residual learning can further improve the recovery
accuracy.

Conclusion
In this paper, we propose a novel spatial adaptive network
for image demosaicing, which consists of a serial of spa-
tial adaptive convolution considering the pattern information
for each location. The proposed method can adaptively learn
the nonlinear mapping function for each location in the mo-
saic image. Besides, we collect a real paired mosaic and full
color RGB images dataset by pixel shift camera under both
noiseless and noisy cases, which makes the trained network
more practical in the real world. Experimental results show
that the proposed SANet outperforms current state-of-the-
art methods under both comprehensive quantitative metrics
and perceptive quality. In the future, we will further consider
the content information to generate weights of spatial adap-
tive convolution and expand our real demosaicing dataset to
support image demosaicing in the real world.
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