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Abstract
Deep learning has achieved promising performance on se-
mantic segmentation, but few works focus on semantic seg-
mentation at the fine-grained level. Fine-grained semantic
segmentation requires recognizing and distinguishing hun-
dreds of sub-categories. Due to the high similarity of different
sub-categories and large variations in poses, scales, rotations,
and color of the same sub-category in the fine-grained im-
age set, the performance of traditional semantic segmentation
methods will decline sharply. To alleviate these dilemmas, a
new approach, named Class Guided Channel Weighting Net-
work (CGCWNet), is developed in this paper to enable fine-
grained semantic segmentation. For the large intra-class vari-
ations, we propose a Class Guided Weighting (CGW) mod-
ule, which learns the image-level fine-grained category prob-
abilities by exploiting second-order feature statistics, and use
them as global information to guide semantic segmentation.
For the high similarity between different sub-categories, we
specially build a Channel Relationship Attention (CRA) mod-
ule to amplify the distinction of features. Furthermore, a De-
tail Enhanced Guided Filter (DEGF) module is proposed to
refine the boundaries of object masks by using an edge con-
tour cue extracted from the enhanced original image. Exper-
imental results on PASCAL VOC 2012 and six fine-grained
image sets show that our proposed CGCWNet has achieved
state-of-the-art results.

Introduction
Deep learning has achieved great success in semantic seg-
mentation (Chen et al. 2018b,a; Wang et al. 2020; Arani
et al. 2021), while semantic segmentation at the fine-grained
level (i.e., sub-category level) has received little attention.
Fine-grained semantic segmentation is a fundamental and
challenging problem, whose goal is to recognize and dis-
tinguish multiple subordinate categories (e.g., “Boeing 737-
200” and “Boeing 737-500”) of a super-category (e.g., “Air-
craft”). The study of this task can be applied to many practi-
cal applications, such as new retail, automatic driving, robot
sensing, and image editing.

In fine-grained semantic segmentation, due to large vari-
ations in poses, scales, rotations, and color of the same sub-
category, some parts of the prediction will be incorrect (see
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Figure 1: Main challenges of fine-grained semantic segmen-
tation, i.e., intra-class inconsistency and inter-class indis-
tinction. The second column is the SPNet based model. The
third column is the output of our approach. The last column
is the ground truth.

the first and second row of Figure 1). We describe this prop-
erty as “intra-class inconsistency”. Meanwhile, objects of
different sub-categories from the same super-category usu-
ally have quite similar visual appearances, which will cause
the prediction to be confused (see the third and fourth row
of Figure 1). We describe this property as “inter-class in-
distinction”. Most existing traditional semantic segmenta-
tion methods (Yu et al. 2018b; Zhang et al. 2019a; Li et al.
2019; Hou et al. 2020; Wang et al. 2020; Arani et al. 2021)
have obtained promising results. However, in our experi-
ments, we found that the performance of these methods will
decline sharply in fine-grained semantic segmentation. The
main reasons come from the following two aspects: 1) These
methods regard the semantic segmentation as an intensive
recognition problem and usually generate predictions based
on the local receptive field of CNN. Among different sub-
categories, some parts of objects usually have the same ap-
pearance, which will bring difficulties to traditional segmen-
tation methods; 2) Since the goal of fine-grained semantic
segmentation needs to distinguish complex boundaries from
hundreds or thousands of sub-categories, the previous fea-
ture representation lacks the ability to distinguish such sub-
tle differences. As shown in Figure 1, traditional segmen-
tation methods like SPNet (Hou et al. 2020) may produce
false predictions when suffering from the two confusions
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(i.e., intra-class inconsistency and inter-class indistinction).
To this end, we propose a Class Guided Channel Weighting
Network (CGCWNet), which considers both the intra-class
consistency and inter-class distinction to better enable fine-
grained semantic segmentation.

To alleviate the problem of intra-class inconsistency, we
proposed a Class Guided Weighting (CGW) module, which
is designed based on the following two considerations: 1)
Different appearances of the same sub-category may pro-
duce false predictions. Therefore, we use second-order fea-
ture statistics to learn robust feature representations for dif-
ferent appearances of the same sub-category; 2) The con-
volution operation is calculated from local receptive fields,
which may lead to inconsistent predictions of semantic la-
bels for a semantic object. The image-level category infor-
mation can effectively provide global consistency guidance.
To this end, we use the image-level fine-grained category
probabilities as global information to guide fine-grained se-
mantic segmentation. Besides, we build a Channel Relation-
ship Attention (CRA) module, which enables the communi-
cation between channels to adaptively weight the features
with high distinguishable ability to alleviate the problem
of inter-class indistinction. Each channel of high-level fea-
tures can be regarded as a class-specific response. Through
the interaction between channels, the response channels of
specific categories can be aggregated to highlight their fea-
ture representation, thereby enhancing the distinguishabil-
ity of features for subtle differences between sub-categories.
Specifically, we first obtain the channel relationship ma-
trix by second-order feature statistics in the CGW module.
Then, the channel relationship matrix is regarded as a chan-
nel crossing weight to enhance the distinguishable of fea-
tures, so as to better complete the segmentation of similar
sub-categories. Furthermore, a Detail Enhanced Guided Fil-
ter (DEGF) module is proposed to refine the boundaries of
object masks by using an edge contour cue extracted from
the enhanced original image. Three contributions of this pa-
per are:

• To the best of our knowledge, this is the first study about
fine-grained semantic segmentation which will be helpful
for researchers in this field.

• Our CGW, CRA, and DEGF modules can support seman-
tic segmentation at the fine-grained level by effectively
alleviating the problems of intra-class inconsistency and
inter-class indistinction. Moreover, those modules can
easily be seamlessly integrated into most existing seg-
mentation networks to improve their performance.

• We extend the fine-grained image classification datasets
(i.e., FGVC Aircraft (Maji et al. 2013), CUB-200-
2011 (Xiao et al. 2015), Stanford Cars (Krause et al.
2013), and “Orchid” Plant) to fine-grained segmentation
datasets. In our experiments, the proposed CGCWNet
has achieved state-of-the-art results on PASCAL VOC
2012 (Hariharan et al. 2011) and expanded six fine-
grained image sets.

Related Work
Encoder-Decoder. Encoder-Decoder architectures are
widely used for semantic segmentation, where an encoder
is used to reduce the feature maps and enlarge the recep-
tive fields, and a decoder is used to recover the spatial
information. Ronneberger et al. (Ronneberger, Fischer, and
Brox 2015) introduce skip-connections to combine the low-
level feature maps with the higher-level ones, which can
enrich the details of segmentation results. SegNet (Badri-
narayanan, Kendall, and Cipolla 2017) uses the pool
indices to recover the reduced spatial information. Recently,
DeepLabv3+ (Chen et al. 2018b) has achieved better perfor-
mance by taking advantage of encoder-decoder architecture
and atrous convolution. Some other works (Oliveira et al.
2020; Wang et al. 2020; Arani et al. 2021; Nirkin, Wolf, and
Hassner 2021) also use the encoder-decoder architecture to
improve the performance of semantic segmentation.
Global Context. Context can enlarge the receptive field to
improve the performance of semantic segmentation. Yu et
al. (Yu et al. 2018a,b) utilize global average pooling (GAP)
to generate image-level context information. The atrous spa-
tial pyramid pooling (ASPP) (Chen et al. 2017) is proposed
to capture the spatial context based on different dilated rates.
PSPNet (Zhao et al. 2017) uses the pyramid pooling module
to partition the feature map into different scale regions. Sev-
eral works (Liu, Rabinovich, and Berg 2015; Zhang et al.
2018; Liu et al. 2020; Chen et al. 2020) adopt global pool-
ing to harvest the context. In contrast to the global context
described above, in this paper, we propose a CGW module,
which harvests the global context information from a cate-
gorical perspective. To be specific, we use category proba-
bilities as global information to guide fine-grained semantic
segmentation to unify semantic labels for all pixels of the
same object, inherently considers intra-class consistency.
Attention Mechanism. Attention mechanism has shown its
effectiveness in improving the performance of image recog-
nition (Zhao, Jia, and Koltun 2020; Hou, Zhou, and Feng
2021; Vaswani et al. 2021), object detection (Hu et al. 2018;
Zhang et al. 2020a), and semantic segmentation (Zhang et al.
2018; Fu et al. 2019; Huang et al. 2019; Zhong et al. 2020;
Liu et al. 2021). For the task of semantic segmentation, Chen
et al. (Chen et al. 2016) learn an attention mechanism to
weight the multi-scale features softly. Zhong et al. (Zhong
et al. 2020) design a squeeze-and-attention network archi-
tecture that leverages the squeeze-and-attention (SA) mod-
ule to account for two distinctive characteristics (i.e., pixel-
group attention and pixel-wise prediction) of segmentation.
Numerous works (Zhang et al. 2018; Yu et al. 2018b,a) adopt
channel attention to select the desired feature maps. Some
researchers (Wang et al. 2018; Zhu et al. 2019) recently uti-
lize self-attention to aggregate long-range contextual infor-
mation. The previous works only explore first-order statis-
tics, while ignoring the statistics higher than first-order, thus
hindering the discriminative ability of the network. In this
paper, we adopt second-order feature statistics to achieve the
interaction between channels to enhance the distinction of
features, thereby enlarging inter-class distinction.
Second-order Statistics. Second-order statistics have been
studied in the context of texture recognition (Dai, Yue-
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Figure 2: The flowchart for the CGW module and the CRA module, where +, ∗ and × represent the element-wise addition,
matrix multiplication, and matrix outer products, respectively.

Hei Ng, and Davis 2017) through so-called Region Covari-
ance Descriptors (RCD), and further applied to image recog-
nition (Gao et al. 2019; Koniusz and Zhang 2020) and image
super-resolution (Dai et al. 2019). Some approaches (Lin,
RoyChowdhury, and Maji 2015; Koniusz and Zhang 2020)
perform second-order pooling for fine-grained image recog-
nition. Li et al. (Li et al. 2017) propose a matrix normal-
ized covariance (MPN-COV) for exploring the second-order
statistics in large-scale classification. Dai et al. (Dai et al.
2019) design a second-order attention network to achieve
more powerful feature representation and feature correlation
learning, thereby achieving accurate image super-resolution.
Our work is inspired by second-order statistics and we ap-
ply it to build CGW and CRA modules to alleviate the prob-
lems of intra-class inconsistency and inter-class indistinction
in fine-grained semantic segmentation. Instead of comput-
ing second-order statistics of activations in the last convo-
lutional layer as image representations in previous works,
we use it to construct a channel relationship matrix to adap-
tive weight the original features to obtain the higher-level
semantic features with high distinguishable ability.

Methodology
In this section, we first elaborate on the details of three pro-
posed modules and how they can effectively handle the is-
sues of intra-class inconsistency and inter-class indistinc-
tion. Then, we introduce our CGCWNet architecture.

Class Guided Weighting Module
Class Guided Weighting (CGW) module aims to alleviate
the problem of intra-class inconsistency. In the design of
the CGW module, we make the outer product of the fea-
ture maps as higher-level features for subsequent opera-
tions. The outer product of the feature maps can be consid-
ered as the second-order feature statistics, which can obtain
higher-level semantic information to improve the identifi-
cation ability and robustness of the network. Furthermore,
we use the image-level fine-grained category probabilities
as global information to improve the consistency of the same
sub-category.

Specifically, given the input feature map (e.g., output of
ResNet-101) F ∈ ℜC×H×W (C, H , W represent the num-
ber of channels, height, width), we apply one 1 × 1 con-

volution layer on F for channel reduction to obtain a low-
dimensional feature map A ∈ ℜĈ×H×W . Then A is copied
to two same branches P,Q. Next, the channel relationship
matrix M(i,j) ∈ ℜĈ×Ĉ at a location (i, j) in H ×W can be
calculated by an outer product as:

M(i,j) = P(i,j) ×Q(i,j) (1)

where P(i,j), Q(i,j) ∈ ℜ1×Ĉ are the feature vectors P,Q
at location (i, j). Then, the sum pooling aggregates the fea-
tures across all the locations in the image to obtain an image
descriptor Φ =

∑
(i,j) M(i,j),Φ ∈ ℜĈ×Ĉ . Φ is then passed

through the square root step (Z = sign(Φ)
√
|Φ|), and fol-

lowed by l2 normalization (X = Z/||Z||2) inspired by
(Perronnin, Sánchez, and Mensink 2010). The Φ captures
the pairwise correlations between feature channels and can
model part-feature interactions, so that the response chan-
nels of a specific category can be aggregated to highlight its
feature representation, thereby enhancing the discrimination
of features and avoiding confusion between different sub-
categories.

Traditional semantic segmentation methods are limited by
local perception, leading to inconsistent prediction results.
We use the image-level fine-grained category probabilities
as the weights to enhance the class-dependent feature maps,
which encourages the prediction of our network to unify se-
mantic labels for pixels of the same object and avoid confu-
sion between different sub-categories. Specifically, we use
a fully-convolutional layer on the top of the feature X with
a sigmoid function, which outputs the category-based pre-
diction probabilities γ = δ(ωX), where ω denotes the layer
weights, and δ is the sigmoid function. Then, the output of
this module γ will be used as global information to weight
semantic segmentation. The overall structure for the CGW
module is shown in Figure 2.

Channel Relationship Attention Module
In fine-grained semantic segmentation, the prediction is al-
ways confused between different sub-categories with similar
appearance. The inter-class indistinction problem is mainly
due to the lack of distinguishing features. To this end, we
build a CRA module, which enables the communication be-
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the element-wise addition and channel-wise multiplication, respectively.

tween channels to adaptively weight features with a high dis-
tinguishable ability to enlarge the inter-class distinction.

As illustrated in Figure 2, given the input feature map
F ∈ ℜC×H×W , we first feed it into a 1×1 convolution layer
to generate a new feature map B ∈ ℜĈ×H×W . Then we re-
shape B into ℜĈ×N , where N = H × W . After that, we
perform a matrix multiplication between B and the channel
relationship matrix Φ, and reshape the size to ℜĈ×H×W . Φ
comes from the CGW module, and it can aggregate response
channels of the specific category to highlight its feature rep-
resentation. In this way, the network will pay more attention
to these channels (and their relationship) to enhance the dis-
tinction of features. Finally, in order to model the long-range
semantic dependence between feature maps, we apply a 1×1
convolution operation to increase the channel dimension to
C and perform an element-wise addition operation with the
feature map F to obtain the final output E ∈ ℜC×H×W .

Detail Enhanced Guided Filter Module
When max-pooling layers and sub-sampling operations
are used in semantic segmentation networks (Chen et al.
2018b,a), their outputs are typically in low resolutions and
result in coarse segmentation maps. The guided filter (He,
Sun, and Tang 2013) is an edge-preserving operator, which
can be applied to edge-aware smoothing, detail enhance-
ment, image matting, etc. It can extract the edge contour in-
formation from the original image, and such edge contour
information can be used as a cue to refine the contour of the
object mask. However, due to the low contrast of the origi-
nal image, the extracted edge contour is imprecise, making
it difficult to refine the object mask. Based on these obser-
vations, we proposed the DEGF module. It first employs the
guided filter to enhance the details of the original image, and
then uses the enhanced image to extract edge contour infor-
mation to refine the object mask. As illustrated in Figure 3,
the original image is first processed by the guided filter to
enhance the detail. Two 1×1 convolution layers are then ap-
plied to extract the low-level features Ic. Finally, the coarse
segmentation map L and the low-level features Ic are fed to
a guided filter to output the refined object mask.
Guided Filter for Image Detail Enhancement. We use a
guided filter to extract the edge contour coefficients from the
original image, then such coefficients are used to weight the

input image for generating the enhanced one. The enhanced
image e at a pixel i can be achieved as follows:

ei =
∑
j

Rij(I)Ij (2)

where i and j are pixel indexes. Rij is the edge contour co-
efficient about the pixel i and pixel j. Following the similar
derivations in (He, Sun, and Tang 2013), the expression of
Rij is:

Rij(I) =
1

|w|2
∑

k:(i,j)∈wk

(
1 +

(Ii − µk)(Ij − µk)

σ2
k + ε

)
(3)

where µk and σ2
k are the mean and variance of the image

patch in the local square window wk centered at the pixel
k. |w| is the number of pixels in wk and ε is a regulariza-
tion parameter. More details of the guided filter can be found
in (He, Sun, and Tang 2013).
Guided Filter for Object Mask Refinement. After getting
the enhanced image e, two 1 × 1 convolution layers are ap-
plied to extract the low-level features Ic. Here, we set the
channel size of the first and second convolution layers to 64
and the number of categories, respectively. In the end, the
coarse segmentation map L and the low-level features Ic are
fed to a guided filter. The refined mask g at a pixel i is pre-
sented as follows:

gi =
∑
j

R̂ij(Ic)Lj (4)

where R̂ij is calculated similarly to Eq. (3).

Class Guided Channel Weighting Network
The overall network structure is depicted in Figure 3. The
input image is first passed through a fully-convolutional net-
work (e.g., ResNet-101) to produce a feature map F . After
that, F is fed into the proposed CGW module, outputting
a weight vector γ. At the same time, F is fed into the
CRA and ASPP (Chen et al. 2017) modules to obtain the
feature map F̂ with rich information. Then, we use global
class weighting to obtain the coarse segmentation map L =

bilinear(F̂ + F̂ · γ). F̂ · γ is a channel-wise multiplication
between the input feature map F̂ and the weight vector γ.
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Figure 4: Some images and their corresponding pixel-level labellings in the Stanford Cars, CUB-200-2011, FGVC Aircraft,
and our “Orchid” Plant image sets.

bilinear is used to upsample F̂ + F̂ · γ to the spatial size
of the original image. Finally, the DEGF module is used to
refine the coarse segmentation map.

We use three losses to jointly optimize our network. They
are a class cross-entropy loss la behind CGW module and
two class-balanced cross-entropy losses (Xie and Tu 2015)
lc, lf behind ASPP module and DEGF module for coarse
segmentation and fine segmentation respectively. The over-
all loss can be formulated as shown in Eq. (5):

L = λala + λclc + λf lf (5)

where λa, λc, and λf are balance parameters.

Experimental Results and Analysis
Base Network Architecture
We utilize three base networks to verify the generality and
effectiveness of our proposed CGW, CRA, and DEGF mod-
ules. The first one is ResNet-101 (He et al. 2016) and the
others are ResNet-101 with Atrous Spatial Pyramid Pool-
ing (ASPP) (Chen et al. 2017) and DeepLabv3+ (Chen et al.
2018b). Note that the DeepLabv3+ uses ResNet-101 as the
network backbone.

Datasets and Evaluation Metrics
PASCAL VOC 2012. The PASCAL VOC 2012 is a se-
mantic segmentation benchmark with 20 foreground object
classes and one background class. The dataset is augmented
by the extra labellings provided by (Hariharan et al. 2011),
which has 10,582, 1,449, and 1,456 images for network
training, validation, and testing, respectively.
Fine-Grained Datasets. Existing datasets only provide
pixel-level labellings at the super-category level rather than
at the sub-category level. To achieve fine-grained seman-
tic segmentation, we extend the fine-grained classification
datasets to fine-grained segmentation datasets. Specifically,
we use the method proposed by Zhang et al. (Zhang et al.
2020b) to automatically generate binary masks and manu-
ally fine-tune these masks. Finally, we use the image-level
sub-category to label each pixel. Figure 4 shows some sam-
ples from the Stanford Cars, CUB-200-2011, FGVC Air-
craft, and our “Orchid” Plant image sets, with their corre-

Datasets #Class #Training #Testing
CUB-200-2011 200 5,994 5,794
FGVC Aircraft 100 6,667 3,333
Stanford Cars 196 8,144 8,041
“Orchid” Plant 252 103,179 4,300

Table 1: Statistics of fine-grained datasets used in this paper.

sponding masks at sub-category level. A detailed summary
of these datasets is provided in Table 1.
Evaluation Metrics. We use Mean IoU (mean of class-wise
intersection over union) as our main evaluation metric.

Implementation Details
For network training, we use min-batch stochastic gradient
descent (SGD) optimizer with the batch size 6, initial learn-
ing rate 4e−3, weight decay 0.0002, and momentum 0.9 for
Stanford Cars, CUB-200-2011, FGVC Aircraft, “Orchid”
Plant, and PASCAL VOC 2012 image sets. Following some
previous works (Chen et al. 2018a; Yu et al. 2018b), we
use the “poly” learning rate policy where the learning rate
is multiplied by the factor (1 − iter/max iter)0.9. In the
DEGF module, the values of r and ε are first determined by
grid search on the validation set, and then we use the same
parameters to train the CGCWNet. In our network, C and Ĉ
are set to 2048 and 512 respectively. The loss weights λa,
λc, and λf in Eq. (5) are set to 0.4, 0.6, and 1.0 respectively.

Ablation Studies
To verify the generality and effectiveness of our CGCWNet,
we conduct some ablation experiments over PASCAL VOC
2012, CUB-200-2011, and Stanford Cars validation sets.

In Table 2, we evaluate the effectiveness of our proposed
CGW, CRA, and DEGF modules by using different base
networks. Specifically, we use ResNet-101, ResNet-101-
ASPP, and DeepLabv3+ as the backbone architectures, re-
spectively. By adding a CGW module, we achieve at least
1.11% improvement on PASCAL VOC 2012 validation set
and obtain a better improvement (at least 2.04%) on fine-
grained segmentation datasets (CUB-200-2011 and Stan-

3348



Methods VOC CUB Cars
ResNet-101 66.46 43.87 48.46
ResNet-101+DEGF 68.45 44.36 50.17
ResNet-101+CRA 69.54 45.87 50.77
ResNet-101+CGW 69.88 46.17 51.71
ResNet-101+CRA+CGW+DEGF 70.31 46.58 52.29
R-ASPP 73.47 56.75 63.69
R-ASPP+DEGF 74.23 57.32 64.41
R-ASPP+CRA 74.65 58.64 66.20
R-ASPP+CGW 74.93 58.79 66.45
R-ASPP+CRA+CGW+DEGF 75.35 59.23 66.80
DeepLabv3plus 75.49 64.29 65.83
DeepLabv3plus+DEGF 76.49 65.19 67.62
DeepLabv3plus+CRA 76.58 65.88 68.31
DeepLabv3plus+CGW 76.60 66.51 68.66
DeepLabv3plus+CRA+CGW+DEGF 78.25 67.23 69.59

Table 2: Ablation studies for CGW, CRA, and DEGF mod-
ules on PASCAL VOC 2012, CUB-200-2011, and Stanford
Cars validation sets. DeepLabv3plus and R-ASPP represent
the DeepLabv3+ and ResNet-101+ASPP, respectively.

Methods VOC CUB Cars
DeepLabv3plus 75.49 64.29 65.83
DeepLabv3plus+GAP 76.04 64.37 66.55
DeepLabv3plus+SE 76.39 64.41 66.58
DeepLabv3plus+CGW 76.60 66.51 68.66
DeepLabv3plus+NL 75.57 64.64 66.92
DeepLabv3plus+APNB 75.63 64.87 67.23
DeepLabv3plus+CA 76.42 62.91 66.85
DeepLabv3plus+PSA 76.44 63.25 68.14
DeepLabv3plus+HaloNet 76.53 62.17 67.12
DeepLabv3plus+CRA 76.58 65.88 68.31

Table 3: Comparison with different global context extraction
and attention methods on PASCAL VOC 2012, CUB-200-
2011, and Stanford Cars validation sets.

ford Cars). A reasonable explanation is that using image-
level fine-grained probabilities to guide semantic segmen-
tation can alleviate the intra-class inconsistency problem.
By adding a CRA module, we achieve at least 1.09% im-
provement on PASCAL VOC 2012 validation set and at least
1.59% improvement on fine-grained segmentation datasets.
It shows that using the channel relationship matrix to weight
highly discriminative features is useful to cope with the
inter-class indistinction problem in fine-grained datasets. By
adding a DEGF module, we achieve at least 0.49% improve-
ment on three datasets, proving that the DEGF module can
improve segmentation results.

Experiments on PASCAL VOC 2012 and
Fine-Grained Datasets
In this subsection, we present the comparison results with
the different semantic segmentation modules and methods
on PASCAL VOC 2012 and fine-grained datasets.

Comparison with other global context extraction mod-
ules Our proposed CGW module is related to some global
context extraction modules. In this section, we compare our

Methods mIoU(%) Methods mIoU(%)
*DenseCRF 72.69 *DGF 73.58
AG-Net 60.90 R-ASPP+DEGF 74.23

Table 4: Quantitative Comparison. * indicates implementa-
tion from DGF.

proposed CGW module with two different global context ex-
traction modules (i.e., Global Average Pooling (GAP) (Yu
et al. 2018a) and Squeeze-and-Excitation (SE) (Hu, Shen,
and Sun 2018)) on PASCAL VOC 2012, CUB-200-2011,
and Stanford Cars validation sets by using DeepLabv3+ as
the base network. As shown in Table 3, adding GAP and
SE can slightly improve the performance, which verifies the
effectiveness of the global context. Meanwhile, our CGW
module can achieve better performance than these modules.
The reason is that SE and GAP focus on exploring differ-
ent spatial strategies to capture richer global contextual in-
formation, but they cannot distinguish pixels from different
classes explicitly when calculating the context. However,
our CGW harvests the global context information from a
categorical perspective, which can distinguish pixels from
different classes and unify semantic labels for all pixels
of the same object. Compared with DeepLabv3plus+GC
(i.e, global context block in GCNet (Cao et al. 2019)),
our DeepLabv3plus+CGW achieves better mIoU on
CUB-200-2011 dataset (65.34% vs. 66.51%). Moreover,
we compare DeepLabv3plus+CRA+CGW+DEGF with
DeepLabv3plus+CRA+SE+DEGF. The experimental re-
sults show that our DeepLabv3plus+CRA+CGW+DEGF
achieves better performance on the CUB-200-2011 (66.12%
vs. 67.23%) and Stanford Cars (68.72% vs. 69.59%)
datasets.

Comparison with other attention methods We further
compare our proposed CRA module with several attention
methods. The attention methods for comparison include:
Non-local Block (NL) (Wang et al. 2018), Asymmetric Pyra-
mid Non-local Block (APNB) (Zhu et al. 2019), Coordi-
nate Attention (CA) (Hou, Zhou, and Feng 2021), PSA (Liu
et al. 2021), and HaloNet (Vaswani et al. 2021). Experimen-
tal results are presented in Table 3. One can easily observe
that our CRA module can achieve better performance than
all these attention methods. The main reason is that these
modules only consider the feature interaction on the first-
order feature statistics, while ignoring the statistics higher
than first-order, thus hindering the discriminative ability of
the network. However, we use second-order statistics to
construct a channel relationship matrix to adaptive weight
the original features to enhance the distinction of features,
thereby enlarging inter-class distinction.

Comparison with other guided filter methods We fur-
ther compare our DEGF with several different guided fil-
ter methods (i.e., DenseCRF (Krähenbühl and Koltun 2012),
DGF (Wu et al. 2018), and AG-Net (Zhang et al. 2019b)) on
PASCAL VOC 2012 validation set. The results in Table 4
show that our method outperforms existing approaches. We
attribute that our DEGF can enhance the details of the origi-
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Methods Aircraft CUB “Orchid” Plant Cars Multi-Object Aircraft
DeepLabv2 (Chen et al. 2018a) 54.90 54.21 71.50 58.34 53.17
DeepLabv3+ (Chen et al. 2018b) 60.15 64.29 70.53 65.83 58.44
Non-local (Wang et al. 2018) 59.58 63.64 70.14 64.92 56.93
DFN (Yu et al. 2018b) 60.37 63.48 70.73 66.15 59.21
ACFNet (Zhang et al. 2019a) 58.05 59.23 67.68 60.20 57.12
WASP (Artacho and Savakis 2019) 67.16 63.96 67.23 67.41 61.49
EMANet (Li et al. 2019) 64.50 63.21 68.75 66.23 60.28
SPNet (Hou et al. 2020) 55.94 65.67 65.53 68.44 56.57
HyperSeg-L (Nirkin, Wolf, and Hassner 2021) 60.47 64.50 71.16 66.10 58.33
DSRL (Wang et al. 2020) 68.33 66.72 72.01 68.65 61.81
CTS 66.72 76.42 66.00 74.68 -
CGCWNet 68.62 67.23 75.97 69.59 62.93

Table 5: Performance on five fine-grained image sets. “-” indicates that the result cannot be obtained.

Methods mIoU(%) Methods mIoU(%)
DeepLabv3+ 53.71 WASP 55.58
EMANet 53.57 SPNet 57.35
HyperSeg-L 52.86 DSRL 57.82
CTS 56.10 CGCWNet 58.51

Table 6: Performance on AIBD-Birds image set.

nal image, thus making the extracted edge contour more pre-
cise, which is beneficial to refine the object mask.

Comparison with state-of-the-arts methods on fine-
grained datasets We compare our proposed method with
the state-of-the-art methods on five fine-grained datasets.
Specifically, we train DeepLabv3+ with CRA, CGW, and
DEGF (i.e., DeepLabv3plus+CRA+CGW+DEGF) as our
method. The results are illustrated in Table 5. From these
comparison results, one can easily observe that our method
achieves better performance than other competitors. The rea-
son may come from the following two aspects: 1) Unlike
other methods that mainly solve traditional semantic seg-
mentation task, our model is designed for the task of fine-
grained semantic segmentation, which can effectively allevi-
ate the problems of intra-class inconsistency and inter-class
indistinction; 2) Our DEGF module can transfer the bound-
aries of the enhanced image to the segmentation output, so
that the object mask can further be refined by using the en-
hanced image. It should be emphasized that the compari-
son methods in Table 5, except for ACFNet (Zhang et al.
2019a) and DFN (Yu et al. 2018b), are reproduced using
the official codes and the parameters suggested in the orig-
inal papers. Note that the Multi-Object Aircraft is our syn-
thetic dataset, which has multiple objects with pixel-level
labellings in each image. It contains 39,900 images for 100
fine-grained aircraft classes. We divide 39,900 images into
29,925 training images and 9,975 test images.

It is a very interesting experiment to compare CGCWNet
with an approach (we called Classification To Segmenta-
tion (CTS)) that simply assigns fine-grained classification
results to the foreground object of super-category segmenta-
tion. In our experiments, BCNN (Lin, RoyChowdhury, and
Maji 2015) and Deeplabv3+, which have demonstrated out-

standing performance in fine-grained image classification
and semantic segmentation tasks, are used as classification
and segmentation networks in CTS. As shown in Table 5, the
proposed CGCWNet outperforms CTS on the FGVC Air-
craft and “Orchid” Plant datasets, while performs worse than
CTS on the CUB-200-2011 and Stanford Cars datasets. The
reason is that the images in the CUB-200-2011 and Stanford
Cars datasets have much simpler and clearer backgrounds
than the “Orchid” Plant dataset. The highly recognizable ap-
pearances are easy for classifying and segmenting individu-
ally. However, once the image includes complex background
or is difficult to classify by fine-grained classification meth-
ods, the result by CTS will be reduced sharply. The joint op-
timization of classifying and segmenting in our CGCWNet
will benefit from each other to improve the performance of
the fine-grained semantic segmentation, especially on hard
images. Besides, CTS has the following potential disadvan-
tages: 1) Once the classification result is wrong, the entire
mask will become the wrong result; 2) When the variation
between the sub-categories is large, the segmentation result
of the super-category will be worse. 3) When there are mul-
tiple objects in an image, the CTS requires a detector to lo-
cate the position of the object. To verify our conclusion, we
conduct experiments on a synthesized dataset (called AIBD-
Birds) with complex backgrounds. The AIBD-Birds dataset
contains 200 fine-grained bird species. It has 11,788 images,
of which 5,994 images for training, 5,794 images for testing.
The experiment results are shown in Table 6. The proposed
CGCWNet can achieve the highest performance.

Conclusion
In this paper, a new approach, called Class Guided Channel
Weighting Network (CGCWNet), is developed to achieve
fine-grained semantic segmentation. Our CGCWNet can en-
hance feature representation by using CGW and CRA mod-
ules, which can alleviate both the intra-class inconsistency
and inter-class indistinction. Besides, we embed a DEGF
module in deep neural networks, which can further refine the
predicted object masks. Ablation studies and performance
comparison on several datasets have demonstrated the effec-
tiveness of our proposed method.
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