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Abstract

Activation maximization (AM) refers to the task of generat-
ing input examples that maximize the activation of a target
class of a classifier, which can be used for class-conditional
image generation and model interpretation. A popular class of
AM method, GAN-based AM, introduces a GAN pre-trained
on a large image set, and performs AM over its input ran-
dom seed or style embeddings, so that the generated images
are natural and adversarial attacks are prevented. Most of
these methods would require the image set to contain some
images of the target class to be visualized. Otherwise they
tend to generate other seen class images that most maximizes
the target class activation. In this paper, we aim to tackle
the case where information about the target class is com-
pletely removed from the image set. This would ensure that
the generated images truly reflect the target class informa-
tion residing in the classifier, not the target class informa-
tion in the image set, which contributes to a more faithful
interpretation technique. To this end, we propose PROBE-
GAN, a GAN-based AM algorithm capable of generating
image classes unseen in the image set. Rather than using a
pre-trained GAN, PROBEGAN trains a new GAN with AM
explicitly included in its training objective. PROBEGAN con-
sists of a class-conditional generator, a seen-class discrim-
inator, and an all-class unconditional discriminator. It can
be shown that such a framework can generate images with
the features of the unseen target class, while retaining the
naturalness as depicted in the image set. Experiments have
shown that PROBEGAN can generate unseen-class images
with much higher quality than the baselines. We also explore
using PROBEGAN as a model interpretation tool. Our code
is at https://github.com/csmiler/ProbeGAN/.

Introduction
Activation maximization (AM) refers to the technique of
generating input examples, such as images and audios, that
maximize the activation of a classifier, so that the generated
examples conform to the class characteristics as depicted by
the classifier. There are two primary uses of AM. First, it can
be used to perform class-conditional generation, e.g. Odena,
Olah, and Shlens (2017). Second and more importantly, it
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can be used as a global model interpretation technique that
shows what features the classifier is utilizing to make classi-
fication decisions (Booth et al. 2021). Although AM can be
applied to different domains, this paper will primarily focus
on the task of image generation.

To prevent AM from adversarially attacking the classifier,
existing works would impose different regularization tech-
niques to ensure that the generated images look like ‘nat-
ural’ images free of adversarial patterns (Mahendran and
Vedaldi 2016; Simonyan, Vedaldi, and Zisserman 2014; Wei
et al. 2015; Olah, Mordvintsev, and Schubert 2017). Re-
cently, GAN has emerged as a popular regularization tech-
nique to enforce a distributional match between generated
images and a given natural image set (Li et al. 2020; Nguyen
et al. 2017, 2016; Booth et al. 2021). In most cases, the im-
age set is chosen to be general enough that it contains some
images of whatever target class whose activation is being
maximized.

In this paper, we would like to tackle a much more chal-
lenging setting, where images of the target class are com-
pletely removed from the image set, a constraint we call the
class absence constraint. For example, when generating the
class of ‘truck’, no truck image would be seen in the image
set. The GAN has to completely resort to the information
residing in the image classifier. The motivation for studying
this problem is twofold. First, it constitutes a pioneering sci-
entific exploration of how much information about a class
can be elicited from a neural classifier, which we will refer
to as the classifier’s memory. Since the target class infor-
mation in the generated images completely comes from the
classifier, the more information the classifier memorizes, the
greater details the generated images would contain, and thus
the better these images would resemble the target class. The
second motivation of studying this setting is that when AM
is applied to interpreting neural classifiers, only by enforc-
ing the class absence constraint can we ensure the generated
images are faithfully reflecting the memory of the classifier,
not ‘stealing’ the information from the image set.

So far, no algorithms can generate reasonable images if
the target absence constraint is strictly enforced. For exam-
ple, the most successful paradigm so far is to pre-train a
GAN on the image set, and then perform activation maxi-
mization over the random seed or style embedding (Li et al.
2020; Nguyen et al. 2017, 2016; Booth et al. 2021). How-
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ever, the output space of the pre-trained GAN does not nec-
essarily include the target class images. It is pointed out
(Booth et al. 2021; Li et al. 2020) that if the target class is
completely unseen, such framework would tend to use seen
image classes to maximize the unseen class activation.

Motivated by this, we propose PROBEGAN, a GAN-
based activation maximization algorithm that can generate
intelligible images for a class that is completely absent from
the image set. Rather than using a pre-trained GAN, PROBE-
GAN trains a new GAN when the unseen target class is
chosen, explicitly including the activation maximization into
the training objective. PROBEGAN consists of three compo-
nents, a class-conditional generator, which generates images
for both seen and unseen classes, a seen-class conditional
discriminator, which only sees the seen-class images, and an
all-class unconditional discriminator, which sees all the fake
images. It can be shown that such a framework can gener-
ate images with the features of the unseen target class, while
retaining the naturalness as depicted in the image set.

The contribution of this paper is summarized as follows.

• PROBEGAN is among the first GAN-based activation
maximization algorithms that can generate reasonable
unseen class images.

• Experiments show that PROBEGAN can generate images
with much higher quality than the baselines do, and re-
veal that neural classifiers can memorize much greater
details than one may expect.

• We also explore the use of PROBEGAN as a model in-
terpretation tool, which can convincingly and faithfully
identify the features memorized by the classifier.

Related Work
Feature visualization Feature visualization has been
broadly explored to uncover the information retained by a
network. To visualize a feature, images are often synthe-
sized by maximizing the activation (AM) of certain neuron-
s/filters/layers of the classifier (Erhan et al. 2009; Mordvint-
sev, Olah, and Tyka 2015). However, this maximization ap-
proach can lead to unrecognizable outputs (Nguyen, Yosin-
ski, and Clune 2015) or adversarial examples (Szegedy et al.
2013). Heuristic regulations (Mahendran and Vedaldi 2016;
Simonyan, Vedaldi, and Zisserman 2014; Wei et al. 2015;
Olah, Mordvintsev, and Schubert 2017) can be applied to
improve the image quality. BigGAN-AM (Li et al. 2020) and
its variants (Dosovitskiy and Brox 2016; Nguyen et al. 2016,
2017) utilize a generator trained on 1000-class ImageNet
(Russakovsky et al. 2015) as a learned prior and can gener-
ate almost natural visualizations. However, it is ambiguous
whether the features generated come from the model being
visualized or from the prior. A robust classifier (Santurkar
et al. 2019) helps to filter adversarial generations but it re-
quires seed distribution computed from real data. The gener-
ation quality and diversity of such approaches are worse than
GANs (Karras et al. 2020; Brock, Donahue, and Simonyan
2019).

Instance-based interpretation Given an input image, a
saliency map created with gradient ascend (Simonyan,

Vedaldi, and Zisserman 2014) or deconvolution (Zeiler and
Fergus 2014) can provide visual guidance on where the
model focuses to make the decision. Visualization of acti-
vation of internal filters (Olah et al. 2018; Carter et al. 2019;
Zeiler and Fergus 2014) also provides a view of the model’s
abstraction on the input. While instance-based interpretation
may explain the classifier’s decision on individual images, it
cannot provide comprehensive knowledge of the classifier.

GANs GANs (Goodfellow et al. 2014) specialize in gen-
erating undistinguishable data that follow the distribution of
the training dataset. To mitigate the challenges of training in-
stability and mode collapse (Salimans et al. 2016; Arjovsky
and Bottou 2017), different objective functions (Mao et al.
2017; Salimans et al. 2016; Bellemare et al. 2017; Arjovsky,
Chintala, and Bottou 2017; Salimans et al. 2018; Lim and
Ye 2017; Nowozin, Cseke, and Tomioka 2016) and regula-
tions (Kodali et al. 2017; Gulrajani et al. 2017; Miyato et al.
2018; Zhang et al. 2018; Mescheder, Geiger, and Nowozin
2018) have been proposed. ProGAN (Karras et al. 2017)
trains GANs to generate high-resolution output by incre-
mentally adding layers to the network. StyleGAN (Karras,
Laine, and Aila 2019; Karras et al. 2020) maps the latent
space to a feature space to separate high-level attributes and
stochastic effects. Conditional GANs (Mirza and Osindero
2014) feed additional class information to both the genera-
tor and discriminator. AC-GAN (Odena, Olah, and Shlens
2017; Gong et al. 2019) train auxiliary classifiers to classify
the generated images, and encourage the generated images
to maximize the classification accuracy. Class information
can also be passed to batch normalization layers (De Vries
et al. 2017; Dumoulin, Shlens, and Kudlur 2017; Zhang
et al. 2019) or class embeddings (Miyato and Koyama 2018).
BigGAN (Brock, Donahue, and Simonyan 2019) generates
photo-realistic images after properly scaling up the training
of SAGAN (Zhang et al. 2019).

The PROBEGAN Algorithm
In this section, we are going to introduce our problem setup
as well as PROBEGAN. We will use upper-cased letters,
X and X, to denote random vectors (bolded) and vari-
ables (non-bolded); lower-cased letters, x and x, to denote
deterministic vectors (bolded) and scalars (non-bolded).
pY |X(y|x) denotes the probability of Y = y conditional on
X = x. To concretize our explanation, we use an image
classification task as an example, but the algorithm can be
generalized to other domains.

The Problem Setup
Denote X as the random variable of images. Denote Y as
the class label ranging from 0 to C − 1, where C is the to-
tal number of classes. The problem we are interested in can
be formulated as follows. Suppose we have two pieces of
information
1. An image classifier, whose output is p̂Y |X(y|x);
2. An generic image set.
Our goal is to probe what features the classifier memorizes
for a given target class, denoted as y∗. To do this, we propose
the following steps:
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Figure 1: PROBEGAN framework and the data flow when training different modules. G represents the generator; Dc represents
the conditional discriminator; Du represents the unconditional discriminator; C represents the classifier. Class dilution (mixing
the target class into other classes) is performed on the input to the unconditional discriminator.

1. Remove all the target-class images from the image set;

2. Design a GAN framework to generate images that:
(a) maximize the classifier’s activation of the target class,
p̂Y |X(y|x);
(b) conforms to the image set in terms of naturalness.

After the images are generated, we can then inspect if a cer-
tain feature we are interested in appears in the pictures. If
the feature appears, it indicates that it is memorized by the
classifier. We can also gauge the overall quality of the gen-
erated images. The higher the quality, the richer information
the classifier can memorize for the target class. Below are
some further explanations about the rationale behind this.

Why impose a naturalness requirement? By making the
images natural, it makes it easier for humans to subjectively
perceive what features are memorized by the classier. More
importantly, without this regularization, the generated im-
age can easily degenerate into adversarial samples (Szegedy
et al. 2013), i.e. images that can be classified as the target
class but do not look like the target class images at all.

Why excluding the target-class images from the image
set? As can be in from the steps above, we require that
the image set is that it must not contain the target class im-
ages, a constraint referred to as the target absence condition.
This is because the training of the image generation network
is informed by two information sources, the classifier and
the image set. If both sources contain information about the
target class, then it would be unclear whether the generated
images reflect the classifier’s memory or simply the image
set. Only by removing the target class from the image set
can we ensure that every class-specific feature that appears
in the generated images comes from the classifier’s memory.

The Challenges of Target Absence Constraint
Although the target absence constraint is the key to prob-
ing the information from the classifier, it creates challenges
of incorporating the image set information, particularly for
GAN-based approaches. Since the images to be generated
are naturally different from the real images in terms of class,
the discriminator can easily tell fake from real by looking
at the class differences, instead of other distributional dis-
crepancies such as naturalness, which creates an incorrect
gradient signal for the generator.

PROBEGAN
The key to solving the problem is to make the discriminator
less sensitive to the class differences, and more to the differ-
ences in naturalness. To this end, we propose PROBEGAN,
which can achieve this purpose by mixing the fake images of
the target class into the fake images of the seen classes, i.e.
classes that are present in the image set, without supplying
class labels, a step we call class dilution.

Modules As shown in Figure 1, PROBEGAN consists of
three modules. The first module is the conditional genera-
tor, denoted as G(Z, Y ), which, given a class label Y , gen-
erates images of that class from a random vector Z. The
second module is the conditional discriminator, denoted as
Dc(X, Y ), which discriminates fake images from real im-
ages given the class labels. The third module is the uncondi-
tional discriminator, denoted as Du(X), which discriminates
fake images without access to the class labels. The purpose
of the conditional discriminator is to guide the image gen-
eration of the seen class, and that of the unconditional dis-
criminator is to guide the generation of the target class.

Objectives The objective of the generator is to fool the
conditional discriminator with the generated seen class im-
ages, and to fool the unconditional discriminator with the
generated images from all the classes, while maximizing
the classifier’s logit of the corresponding classes (as shown
in Figure 1(a)); whereas the objective of the discriminators
is to discriminate fake images from the real images in the
image set (as shown in Figures 1(b) and (c)). Formally, the
general objective can be written as follows

min
G(·)

max
Dc(·,·),Du(·)

∑
y∈Y\y∗

Lc(y) + Lu + λg

∑
y∈Y

Lclass(y), (1)

where Y denotes the indices of all the classes. Y\y∗ denotes
all the classes but the target class; Lc(y) is the conditional
adversarial loss for class y, which is the same hinge loss as
in BigGAN:

Lc(y) =EX|Y =y[min(0,−1 +Dc(X, y))]

− EZ [min(0,−1−Dc(G(Z, y), y))].
(2)

Lu is the unconditional adversarial loss, which takes the
form of W-GAN loss with gradient penalty (Gulrajani et al.
2017). The unconditional adversarial loss involves fake im-
ages of all the classes, versus real images of only the seen
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classes (Y ̸= y∗), i.e.

Lu = EX|Y ̸=y∗ [Du(X)]−EZ,Y [Du(G(Z, Y ))]+λgpLgp, (3)

where Lgp is the gradient penalty loss defined in Gulrajani
et al. (2017). Finally, Lclass(y) is the classification loss for
class y, i.e.

Lclass(y) = −EZ [log p̂Y |X(y|G(Z, y))]. (4)

Class Dilution Although the primary purpose of the un-
conditional discriminator is to guide the generation of target
class images, the fake images inputted to the unconditional
discriminator involves not only the target class, but also the
seen classes, an operation we refer to as class dilution. As
shown in Figure 1(c), there exists a class difference in the
real and fake images inputted to the unconditional discrim-
inator, and the difference would be even more noticeable if
the fake images only involve the target class. For instance,
consider four classes, {A,B,C,D}, with D being the tar-
get class. If fake images are from D but the real images are
from {A,B,C}, the fake images are easily identifiable by the
class difference. On the other hand, if the fake images are
from {A,B,C,D} but the real images are from {A,B,C},
that would greatly dilute the class differences.

Experiments
In this section, we will present two sets of results. The first
set demonstrates the quality of the generated images and
how much information PROBEGAN can recover from the
classifiers. The second set of results shows how PROBE-
GAN can be used to interpret image classifiers.

Configurations
Datasets To evaluate the performance of our approach,
we conduct experiments on two image datasets, CIFAR-10
(Krizhevsky, Nair, and Hinton 2009) and Waterbird dataset
(Sagawa et al. 2019), and an audio dataset (Gemmeke et al.
2017; Veaux, Yamagishi, and MacDonald 2016). We ran-
domly select one class as the unseen class.

Baselines The following two baselines are implemented.

• BIGGAN-AM (Li et al. 2020): synthesizing images
from a classifier by using a pre-trained GAN network
from ImageNet as a strong prior and searching for em-
beddings that can be mapped to the target class.

• NAIVE: PROBEGAN without the conditional discrimi-
nator and class dilution. There is only the unconditional
discriminator distinguishing fake images of target class
from real images of seen classes. It is expected to suffer
from the challenges of discriminator focusing on class
differences instead of naturalness.

Each algorithm will be trained with a regular classifier and a
robust classifier.

Evaluation metrics Class-wise Fréchet Inception Dis-
tance (FID), i.e., the intra-FID score (Miyato and Koyama
2018), is used for quantitative evaluation on image classi-
fiers. FID score calculates the Wasserstein-2 distance of the
feature vectors of an Inception-v3 network between the gen-
erated and real images, and the lower FID score indicates

the more similar the two image sets are. Sample images are
included to qualitatively illustrate the performance. In addi-
tion, we employ Amazon Mechanical Turk (MTurk) to cat-
egorize the generated samples, and report the percentage of
correctly recognized samples of the new class. Higher recog-
nition rates indicate better resemblance to the target class.
Further details can be found in the appendix.

Implementation The generator and conditional discrim-
inator are the same as BigGAN (Brock, Donahue, and Si-
monyan 2019). The unconditional discriminator is added by
creating a linear layer branch before the last layer of the con-
ditional discriminator. In other words, the two discrimina-
tors have shared parameters in all but the last layer. Since
only the last layer of the BigGAN discriminator involves
class information, such parameter sharing will not introduce
class information to the unconditional discriminator. The pa-
rameter sharing can improve training stability. Otherwise, it
would hard to synchronize the convergence rate of the three
modules. For NAIVE approach, we remove the class infor-
mation from the generator by feeding a constant label and
the discriminator by removing the class-conditional branch
while the classifier remains. Results of BIGGAN-AM is
produced with the code1 provided by the author. Our Py-
torch implementation will be made publicly available. More
experiment details can be found in the appendix.

Main Results
Table 1 and Figure 2 present the FID results and some exam-
ple generated images on CIFAR-10, respectively. For each
case, we select one of the classes as the target class, and
the remaining nine classes are seen classes. The results for
the target classes “horse” and “truck” are reported, and the
rest of the classes are listed in the appendix. In Figure 6, the
evaluation results by MTurk are listed.

Among the methods that use the robust classifier, PROBE-
GAN-robust achieves the best intra-FID score. On the other
hand, NAIVE either generate adversarial examples with the
regular classifier or images that are morphed from other
classes (e.g., auto-like horse head and truck), which is clear
evidence that the discriminator is overfitting class differ-
ences instead of naturalness. As a result, the generated im-
ages are forced to contain features from the seen classes. Fi-
nally, the images generated by BIGGAN-AM are not natu-
ral, which validates previous observation that these methods
are only capable of generating features that are present in
the image set but they cannot generalize to unseen features.
These observations are also evident in Figure 6: PROBE-
GAN achieves the best human recognition rate, while sam-
ples generated by BIGGAN-AM are barely recognizable.

Figure 3 shows sample images when each CIFAR-10 class
serves as the target classes respectively. As can be seen,
PROBEGAN can generate images that are very faithful to re-
ality, which reveals the rather surprising abundance of infor-
mation in the classifier. For example, the generated images
mostly contain coherent backgrounds. Each class contains
great diversities in terms of color, orientation, breed/sub-
types, etc. Some horse images even show humans riding on

1https://github.com/qilimk/biggan-am
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Figure 2: Sample generated images of “horse” (left) and “truck” (right) by (a) BIGGAN-AM-regular, (b) BIGGAN-AM-
robust, (c) NAIVE-regular, (d) NAIVE-robust, (e) PROBEGAN-regular, and (f) PROBEGAN-robust (marked red).

Dataset Network FID ↓ intra-FID ↓
plane auto bird cat deer dog frog horse ship truck

CIFAR10
BigGAN 7.99 29.05 13.14 26.73 24.23 16.25 26.25 24.08 14.20 14.64 17.37
PROBEGAN-oracle 6.67 26.41 12.93 27.12 26.39 15.18 22.42 18.00 13.69 15.95 14.03

w/o horse

BIGGAN-AM-regular 168.4 - - - - - - - 227.3 - -
NAIVE-regular 31.70 - - - - - - - 101.7 - -
PROBEGAN-regular 8.99 23.38 11.60 23.98 26.45 14.24 23.44 16.69 91.35 13.31 13.56
BIGGAN-AM-robust 161.6 - - - - - - - 223.3 - -
NAIVE-robust 48.92 - - - - - - - 76.02 - -
PROBEGAN-robust 8.39 26.13 12.60 24.28 27.08 15.63 24.53 17.69 45.40 14.83 14.02

w/o truck

BIGGAN-AM-regular 114.1 - - - - - - - - - 179.3
NAIVE-regular 33.36 - - - - - - - - - 118.5
PROBEGAN-regular 8.71 24.30 12.64 23.89 25.45 13.31 22.30 16.75 13.88 14.12 105.99
BIGGAN-AM-robust 99.20 - - - - - - - - - 161.5
NAIVE-robust 56.47 - - - - - - - - - 84.21
PROBEGAN-robust 8.80 27.70 14.63 25.62 27.02 14.99 23.27 17.89 15.08 15.54 68.33

Table 1: FID results on CIFAR-10. Gray background indicates the unseen class. Results for BigGAN is from our reimplemen-
tation, which is better than that is reported in Brock, Donahue, and Simonyan (2019).

the horses. These results indicate that the classifier may con-
tain more information than previously expected.

The results also indicate that the classifier does not mem-
orize all the information. Some images for “cat” and “dog”
capture the fur or the head, suggesting that the classifier only
focuses on parts of the subject. Note that the classification
accuracy of the model on “cat” and “dog” is the lowest. In-
terestingly, the generated images of “truck” often have large
blocks of smooth color and lack finer details of texture. This
indicates that the classifier relies more on outline shapes to
recognize trucks instead of fine textures.

Importance of Target Absence Constraint
To illustrate the importance of the target absence constraint,
we use all the images of CIFAR-10 including the target class
(“truck” as an example) to train PROBEGAN, but manually

inject an artificial marker to the unseen class. Specifically,
for the unseen class “truck”, we add 8 × 8 red blocks at the
top-left and top-right corners of all the images, whereas no
blocks are added to other classes. As shown in Figure 4,
all the generated images of “truck” contain the artificial
red blocks just like the altered training images. However,
the classifier does not contain this information since it was
trained on the original CIFAR-10 dataset. This proves that it
is important to remove the samples of the target class from
the dataset, otherwise, it is ambiguous whether the generated
feature comes from the classifier or the dataset itself.

Inspection of Spurious Features

Sagawa et al. (2019) observed that on the task of classi-
fying between waterbirds and landbirds, image classifiers
trained with empirical risk minimization (ERM) are unde-
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Figure 3: Sample images of CIFAR-10 classes generated by PROBEGAN-robust. Each row corresponds to one unseen class
setting, which are, from top to bottom, plane, auto, bird, cat, deer, dog, frog, horse, ship, and truck.

Figure 4: Sample generated images of “truck” when images
of “truck” with artificial red blocks are present while other
classes remain unchanged.

sirably sensitive to the biased background, but those trained
with distributionally robust optimization (DRO) with reg-
ularizations less so. With PROBEGAN, we can investigate
whether these classifiers memorize the background features.

We use PROBEGAN to visualize two classifiers, ERM
and DRO with an ℓ2 penalty, trained with the same settings
as in Sagawa et al. (2019) (model accuracy is listed in the
appendix). When the target class is waterbird, we only in-
clude images of landbirds on land background in the image
set, which guarantees no water background are included, and
vice versa. Figure 5 shows the visualization results. As can
be seen, when waterbirds are generated based on images of
landbirds on land background, the results for DRO show the
birds on top of land background which is inherited from the
training images. This indicates that DRO does not memo-
rize the biased background, and thus PROBEGAN copies
the land background in the image set. On the contrary, the

results with ERM contain water background, which proves
that the classifier remembers water as part of waterbirds.
This is consistent with the classifier accuracy on waterbirds
with land background, 79.7% for DRO and 30.8% for ERM,
as the ERM classifier overfits some coherent background
features. When generating landbirds with images of water-
birds on water background, both DRO and ERM perform
poorly, with features of trees and bamboos (land background
in Waterbird dataset) added to the images even though the
training images only contain water background. This sug-
gests that both methods overfit to the land background.

Robust v.s. Regular Classifiers
With PROBEGAN, we are also able to answer some ques-
tions about different classifiers, the first question being how
robust classifiers are different from regular classifiers. Thus
we also implemented systems with the robust classifier re-
placed with a regular classifier (the algorithm names are
appended “-regular”). According to Table 1, the intra-FID
of PROBEGAN-regular significantly degrades compared to
that of PROBEGAN-robust. By comparing Figures 2(e) and
(f), we can see that PROBEGAN-regular generates much
less visually distinct features. It is also obvious in Figure 6
that samples generated with robust models reproduce the
target class much better than those with regular models.
These results suggest that regular classifiers tend to over-
emphasize features that are visually imperceptible, whereas
robust classifiers would only focus on the visually salient
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Figure 5: Samples of Waterbird and Landbird with classifier trained using DRO or ERM, respectively. When generating images
of waterbirds, only images of landbirds on land background are used to avoid information leak, and vice versa.
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Figure 6: Human recognition rate by MTurk. The dashed
bars represent the results using a regular classifier, while the
solid bars with a robust classifier.

ones. This is consistent with the conclusions in Ilyas et al.
(2019); Santurkar et al. (2019). The effect of classifier per-
formance is also discussed in the appendix.

Application to the Audio Modality
To demonstrate the generalizability on other modalities,
we use PROBEGAN to elicit the memory of a classifier
that recognizes men’s voice, women’s voice, and nonhu-
man sounds. Figure 7 shows sample mel-spectrograms gen-
erated by PROBEGAN . Our MTurk evaluation reports that
PROBEGAN can generate perceptually-convincing audios
for the unseen classes, with human recognition rates of 49%
/ 64% / 61% for men / women / nonhuman, respectively,
even though no real data of the target class is provided. We
encourage readers to listen to our audio clips online2. Addi-
tional details and results can be found in the appendix.

Conclusions and Limitations
We study the problem of model interpretation by feature vi-
sualization. Existing methods tend to mix the features from

2https://csmiler.github.io/ProbeGAN-demo/

Men

Women

Nonhuman

Figure 7: Sample mel-spectrograms of generated audio clips
when each of the classes, men, women, and nonhuman, is
taken as the “unseen” class.

the classifier and the prior, making interpretation impossible.
We propose PROBEGAN, which excludes the data of target
classes and generates samples conditional on unseen classes
with information from the classifier and generic natural data
of classes other than the target classes. Experiments on both
image and audio datasets demonstrate that PROBEGAN can
generate natural samples of the target classes even if no real
data of these classes are provided. By doing so, PROBEGAN
offers a way to interpret neural classifiers.

PROBEGAN has some limitations. First, one would need
to train a different PROBEGAN for each target class. Gen-
erating multiple target classes would be an interesting future
direction. Second, we observed that PROBEGAN suffers
from mode collapse, so the generated images may over em-
phasize certain features. Finally, since PROBEGAN seeks to
generate natural images, it would not probe the behavior on
OOD images, which may hide issues of the classifier. As
a result, PROBEGAN is not guaranteed to exhaust all the
features that the classifier memorizes, so the absence of a
certain feature in the generated images should not be inter-
preted as a proof that the classifier ignores this feature.
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