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Abstract

Pose-invariant face recognition is a practically useful but
challenging task. This paper introduces a novel method to
learn pose-invariant feature representation without normaliz-
ing profile faces to frontal ones or learning disentangled fea-
tures. We first design a novel strategy to learn pose-invariant
feature embeddings by distilling the angular knowledge of
frontal faces extracted by teacher network to student network,
which enables the handling of faces with large pose varia-
tions. In this way, the features of faces across variant poses
can cluster compactly for the same person to create a pose-
invariant face representation. Secondly, we propose a Pose-
Adaptive Angular Distillation loss to mitigate the negative ef-
fect of uneven distribution of face poses in the training dataset
to pay more attention to the samples with large pose varia-
tions. Extensive experiments on two challenging benchmarks
(IJB-A and CFP-FP) show that our approach consistently out-
performs the existing methods.

Introduction
Pose-Invariant Face Recognition(PIFR) has drawn great at-
tention under either controlled lab environment or unre-
stricted environment due to the increasing demand for face
recognition (FR) systems. Deep learning methods have re-
cently achieved great success in FR, but these approaches
heavily rely on sufficient data. However, as it is impracti-
cal to collect massive images containing faces across all the
pose variations, which will lead deep networks to be biased
towards distinguishing frontal faces.

To compensate for the pose, appearance-level face align-
ment is first conducted as the standard preprocessing. Ap-
pearance level alignment usually warps the face to the
frontal or designated pose. Consequently, the FR systems
only need to compare faces under the same pose. Although
these approaches have achieved the state-of-the-art perfor-
mance in pose-invariant face recognition, they inevitably
bring an extra processing burden and may introduce some ar-
tifacts, harming face recognition (Cao et al. 2018b). To avoid
these limitations, feature level alignment methods explore a
discriminative identity feature space, regardless of pose vari-
ations (Kan et al. 2016, 2014). Thanks to deep learning de-
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velopment, disentangled representation learning has become
one of the most effective approaches to learn discriminative
identity features. However, in order to supervise the extrac-
tion of disentangled features, the auxiliary information is
usually needed (Peng et al. 2017), which inevitably leads
to additional estimation errors or domain bias.

Our proposed approach tries to overcome the weaknesses
of the above methods. Firstly, to tackle the limitation of
appearance-level face alignment, we follow the line of fea-
ture level alignment and propose to learn a pose-invariant
discriminant identity feature. To tackle the limitation of fea-
ture disentanglement methods, we try to learn the pose-
invariant feature without manual label annotation of poses,
which is needed in feature disentanglement.

In this paper, to assure the pose-invariance and represen-
tation capacity of features, we propose to recover the feature
of the frontal face from the features extracted from faces of
arbitrary poses with the same identity. However, the main
difficulty is the full information of the frontal face cannot be
inferred from a profile face, leading to an ill-posed task. We
utilize the frontal face as a supervision signal and encourage
the student network to mimic the feature of the frontal face
when dealing with the non-frontal face.

To implement this perspective, we propose a Pose-
Adaptive Angular Distillation (PAD) loss to distill the angu-
lar knowledge of frontal faces from teacher network to stu-
dent network. In this way, the features of faces across variant
poses can cluster compactly for the same person, to create a
pose-invariant face representation with small intra-class dis-
tance and large inter-class distance. Besides, the PAD loss
endows each sample with different weights according to its
pose and hard level so as to overcome the limitation of the
uneven distribution of pose.

We conduct extensive qualitative and quantitative experi-
ments on two challenging benchmarks: CFP (Sengupta et al.
2016) and IJB-A (Klare et al. 2015). The results illustrate
the effectiveness of our method of recognizing faces with
extreme poses and the superiority over the exsiting methods
on CFP and IJB-A.
• We propose a new perspective to learn pose-invariant fea-

ture embeddings: recovering the feature of the frontal
face from the features extracted from faces of arbitrary
poses with the same identity.

• A Pose-Adaptive Angular Distillation(PAD) loss that
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overcomes the limitation of uneven distribution of pose
and further improves the performance of PIFR on the
challenging benchmarks.

• Experiments on two challenging benchmarks (CFP and
IJB-A) demonstrate that our approach favorably per-
forms against the existing methods of pose-invariant face
recognition.

Related Work
Deep-learning Approaches of PIFR Deep learning has
dominated the field of pose-invariant face recognition. Re-
cently, there are two main categories of methods that achieve
quite a competitive performance in this field: Face Frontal-
ization and Feature Disentangle. Face frontalization mainly
normalizes faces with different poses to frontal faces of the
same identity in image space before recognition (Dovgard
and Basri 2004; Ferrari et al. 2016; Hassner 2013; Hass-
ner et al. 2015; Zhu et al. 2015). Such methods are mainly
based on the Generative Adversarial Network(GAN) (Good-
fellow et al. 2014). For instance, DR-GAN (Tran, Yin, and
Liu 2017), TP-GAN (Huang et al. 2017), CAPG-GAN (Hu
et al. 2018), CR-GAN (Tian et al. 2018), and PIM (Zhao
et al. 2018a) treat the normalization process as a 2D image-
to-image translation problem. In order to take the intrinsic
3D properties of the human face into consideration, sev-
eral methods, including FF-GAN (Yin et al. 2017), 3D-
PIM (Zhao et al. 2018b), UV-GAN (Deng et al. 2018) and
HF-PIM (Cao et al. 2018a) make an attempt to introduce
prior knowledge of 3D face, such as the 3DMM (Blanz and
Vetter 1999) coefficients to supervise the frontalization pro-
cess. On the other hand, feature disentangle methods have
emerged to learn features invariant to some factors in both
face recognition and person re-identification (Peng et al.
2017; Huang et al. 2020; Chanho and Bumsub 2019). For ex-
ample, the work in (Peng et al. 2017) explicitly disentangles
identity and pose features through aligning the features re-
constructed across various combinations of identity and pose
features, which are extracted from two faces with the same
identity but different poses.

Knowledge Distillation
In general, the main usage of knowledge distillation is to
transfer the knowledge from several networks to another
one (Hinton, Dean, and Vinyals 2014; Feng et al. 2020;
David et al. 2016). Our work is closely related to the fol-
lowing very recent knowledge distillation work for recog-
nition. Oki (Feng et al. 2020) proposes to introduce Triplet
loss to knowledge distillation. The Triplet Distillation aims
to reduce the distance between similar samples and increase
the gap between dissimilar samples. Truong (Truong et al.
2020) proposes the method of Angular Distillation, which
aims to minimize the angular distance between the outputs
of the student network and teacher network. Porrello (An-
gelo, Luca, and Simone 2020) proposes the View Knowl-
edge Distillation to transfer the view knowledge of persons
from the teacher network to the student network, learning a
robust feature representation for person re-identification.

In our work, motivated by (Angelo, Luca, and Simone
2020), we aim to transfer the knowledge of frontal face rep-
resentation to the student network when dealing with profile
faces. The knowledge in the teacher network is a complete
and compact representation without the distortion caused by
pose changes.

Proposed Approach
Overall Distillation Framework

As is illustrated in Fig. 1, our framework contains a teacher
network FθT and a student network FθS . θS and θT are the
parameters of the teacher network and student network.FθS ,
FθT :RW×H×3 7→ RD map each face image to a fixed-size
representation. We use the average of all frontal face fea-
tures of the same identity within a batch, called frontal cen-
ter, to provide the knowledge of frontal faces. We leverage
the teacher network to generate the frontal center of every
identity during training. Especially, Positive Frontal Cen-
ter (PFC) is defined for each identity: the frontal center of
the same identity class. The positive frontal center can repre-
sent features extracted from different frontal samples of the
same class approximately. Similarly, we define the Negative
Frontal Center (NFC) for every identity: the frontal centers
of other identity classes.

As for the student network, we feed a batch of faces
with different pose variations into the student network. Each
batch contains N classes the same as the teacher network
and each class contains M faces. We denote the batch of
faces as XN,M .

During the training stage, we sample a batch of near-
frontal faces, including N identity classes and C samples
per class. This batch is fed into the teacher network and N
frontal centers can be obtained to represent the N identity
classes. We denote the batch of near-frontal faces as XFN×C
and the frontal center can be calculated as:

fCn =
1

C

C∑
c=1

FθT
(
XFn,c

)
, n = 1, .., N (1)

where n indicates the nth class in the batch. For the nth
identity class, the PFC is defined as: fPn = fCn , which is the
frontal center with the same identity. The set of NFC of the
nth class is defined as: FNn = {fCk }k 6=n. For clarity, we use
the lowercase f to represent the single feature and use the
uppercase F to represent the feature set.

Hilton (Hinton, Dean, and Vinyals 2014) suggests that
we can transfer the knowledge to the student network by
training it with a soft target distribution produced from the
teacher network. In our work, the PFC can be fed into the
pretrained classier to obtain the soft target distribution. The
Kullback-Leibler loss can be used to ask the student to
mimic the PFC of the same identity.

LKL =
1

NM

N∑
n=1

M∑
m=1

[
KL

(
ŷPn , ŷn,m

)]
(2)
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Figure 1: An overview of the proposed approach. a) The input of the teacher is a batch with N × C samples and the input
of students is a batch with N ×M samples. b) The supervision losses contain three parts: the classification loss Lcls, LKL
and LPAD. LPAD minimizes the angular distance between a feature and the positive frontal center(PFC) and simultaneously
maximizes the angular distance between a feature and the negative frontal center(NFC).

ŷPn = SoftMax

(
hPn
τ

)
, ŷn,m = SoftMax

(
hn,m
τ

)
(3)

where hn,m and hPn are the classifier outputs of face Xn,m ∈
XN,M and the corresponding frontal center. ŷPn and ŷn,m
are the smooth labels of fPn and fn,m, which are both
smoothed by a temperature τ = 10 (Angelo, Luca, and Si-
mone 2020), respectively.Lcls is cross-entropy loss with Ar-
cFace head (Deng et al. 2019), which supervises the student
network to learn the identity feature.

Lcls = −
1

NM
·

N∑
n=1

M∑
m=1

log

(
es·cos(θyn,m+m)

es·cos(θyn,m+m) +
∑N
j=1,j 6=yn,m

es·cosθj

)
(4)

where yn,m is the actual label of fn,m and θyn,m
is the angle

between fn,m and the corresponding weight in the hyper-
space. s andm are the feature scale and margin, respectively.

We notice that both LKL and Lcls perform the feature
alignment on the label level. To further guarantee the stu-
dent network to mimic the teacher network, we further de-
ploy a metric-learning-based loss function to supervise the
knowledge transduction between the teacher and the stu-
dent, which is named as Pose-Adaptive Angular Distillation
Loss. In this way, the features of faces across variant poses
can cluster compactly for the same person, to create a pose-
invariant face representation with small intra-class distance
and large inter-class distance.

Pose-Adaptive Angular Distillation Loss
The distribution of face poses is uneven in the training
dataset and most faces have small pose variations. The stu-
dent network will be biased towards samples with small pose
variations and cannot perform well on samples with extreme
poses when trained on such a dataset.

Inspired by the Proxy-Anchor (Kim et al. 2020) loss, we
propose a Pose-Adaptive Angular Distillation (PAD) loss to
address this issue. The PAD loss distills the angular knowl-
edge of frontal faces extracted by teacher network to student
network, which deals with faces with different pose varia-
tions. Hence, the features of faces across variant poses clus-
ter compactly to create a pose-invariant face representation.

Definition

LPAD =

1

NM

N∑
n=1

M∑
m=1

{φ
[
αn,mmax{dcos

(
fn,m, f

P
n

)
− δ1(n), 0}

]
+

1

|SN
n |

∑
fN
n ∈SN

n

φ
[
αn,mmax{δ2(n)− dcos

(
fn,m, f

N
n

)
, 0}
]
}

(5)
where φ(x) = log (1 + ex) is the Softplus function and
αn,m is the weight coefficient which is adaptive to the pose
of face. δ1(n) and δ2(n) are the margins which are adaptive
to the identity class. SNn is the subset of the NFC set FNn ,
which is selected according to the distance between NFCs
and the PFC. Specifically, if |SNn | = K, for the nth identity
class, we will selectK NFCs from FNn , which are the firstK
closest with the PFC fPn . Minimizing LPAD is equivalent to
minimizing dcos

(
fn,m, f

P
n

)
when dcos

(
fn,m, f

P
n

)
> δ1(n)

and maximizing dcos
(
fn,m, f

N
n

)
when dcos

(
fn,m, f

N
n

)
<

δ2(n).
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Geometric Interpretation The PAD loss also has a clear
geometric interpretation from the perspectives of angular
and hypersphere as shown in Fig. 1. The whole space of
hypersphere can also be divided into four parts. ϕ1(n) and
ϕ2(n) (shown as ϕ1 and ϕ2 in Fig. 1) can be derived from
δ1(n) and δ2(n) directly, where ϕ1(n) = arccos(1−δ1(n))
and ϕ2(n) = arccos(1−δ2(n)). This figure shows a simple
case of our loss, in which |SNn | = 2.

Part A: The feature lies inside the cone region with
fPn as the center and ϕ1(n) as the angle range, where
dcos

(
fn,m, f

P
n

)
< δ1(n). Since max{dcos

(
fn,m, f

P
n

)
−

δ1(n), 0} = 0 is a constant, the gradient of LPAD at
dcos

(
fn,m, f

P
n

)
will be zero. Hence, the loss will not pull

the feature embedding towards the PFC. This means if a fea-
ture fn,m is very close to fPn , this corresponding sample will
not make contribution to the total gradient, which can reduce
the weight of samples with a small pose variation.

Part B: In this region, dcos
(
fn,m, f

P
n

)
> δ1(n) and

dcos
(
fn,m, f

N
n

)
> δ2(n). The feature fn,m will be only

pulled by the PFC fPn and will not be pushed by the NFC
fNn since fn,m is far enough from fNn .

Part C: In this region, dcos
(
fn,m, f

P
n

)
> δ1(n) and

dcos
(
fn,m, f

N
n

)
< δ2(n). The feature only lies inside the

pushing scope of one NFC. Thus, the feature fn,m will be
pulled by the PFC fPn and pushed by only one NFC.

Part D: The case is similar to Part C, but the feature lies
inside the intersection of pushing scopes of the two NFCs.
The feature fn,m will be pulled by the PFC fPn and pushed
by the two NFCs at the same time.

Adaptive to large-pose variation and hard samples The
PAD loss is adaptive to samples with large-pose vari-
ations and hard samples. This characteristic is demon-
strated by the gradient of our loss with respect to
dcos

(
fn,m, f

P
n

)
and dcos

(
fn,m, f

N
n

)
, which is given by

(when dcos
(
fn,m, f

P
n

)
− δ1(n) > 0 and dcos

(
fn,m, f

N
n

)
−

δ2(n) < 0)

∂LPAD
∂ (dcos (fn,m, fPn ))

= αn,m

(
1− 1

1 + h+ (fn,m)

)
(6)

∂LPAD
∂ (dcos (fn,m, fNn ))

= −αn,m
|SNn |

(
1− 1

1 + h− (fn,m)

)
(7)

h+ (fn,m) = exp
[
αn,m

(
dcos

(
fn,m, f

P
n

)
− δ1(n)

)]
h− (fn,m) = exp

[
αn,m

(
δ2(n)− dcos

(
fn,m, f

N
n

))] (8)

αn,m = σ

(
4

π
yaw(Xn,m)− 1

)
(9)

The yaw angle in radian unit can be predicted using
FDN (Zhang et al. 2020) and the Equation 9 is quoted from
(Cao et al. 2018b), which is a non-linear function of the yaw
angle. σ(.) is the sigmoid function and the sample with a
larger yaw angle will get a larger αn,m. Hence, in Equation 6
and Equation 7, the absolute value of gradient with respect

to dcos
(
fn,m, f

P
n

)
and dcos

(
fn,m, f

N
n

)
will become larger.

This demonstrates the property of pose adaptation and the
loss will pay more attention to faces with large yaw angles.
Furthermore, we exploit the adaptation of hard samples. For
a hard sample with the larger distance from PFC and a
smaller distance from NFCs, h+ (fn,m) and h− (fn,m) will
become larger simultaneously. Hence, the absolute value
of gradient respect to dcos

(
fn,m, f

P
n

)
and dcos

(
fn,m, f

N
n

)
will become larger at the same time, which makes the net-
work focus on the hard samples.

Adaptive to identity class Furthermore, we set the margin
δ1(n) and δ2(n) be adaptive to identity class.

δ1(n) =
µ1

σ2
P (n)

πP (n)

δ2(n) =
µ2

πN (n)

πP (n) =
1

M

M∑
m=1

dcos(fn,m, f
P
n )

πN (n) =
1

|SNn |
∑

fN
n ∈SN

n

dcos(f
N
n , f

P
n )

σ2
P (n) =

1

M

M∑
m=1

(
dcos(fn,m, f

P
n )− πP (n)

)2

(10)

where µ1 and µ2 are the hyper-parameters. πP (n) is the
mean distance and σ2

P (n) is the variance of distance between
feature embeddings and the PFC fPn of the nth class in each
batch. πN (n) is the mean distance between the PFC fPn and
the NFC fNn in SNn .

For δ1(n), if the variance σ2
P (n) is larger, the features

scatter more loosely and δ1(n) should be turned smaller to
pull more features towards PFC. If the mean value of dis-
tance πP (n) is smaller, the features have a relatively smaller
intra-class distance. The δ1(n) should be smaller to guaran-
tee more features to be pulled towards the PFC. For δ2(n),
if the πN (n) is small, it means the PFC of the nth class is
close to the NFC fNn in the SNn . The δ2(n) should be larger
to guarantee more features to be pushed away from the NFC.

Combined with the PAD loss, the overall loss can be writ-
ten as:

L (θS) = Lcls + λ1LKL + λ2LPAD (11)

where λ1 and λ2 are the weights of LKL and LPAD.

Experiments
Experimental Settings
We use the popular dataset MS-Celeb-1M (Guo et al. 2016)
for training both teacher network and the student network.
We cleaned the dataset by selecting the identity containing
at least 10 near-frontal faces (yaw angle ≤ 10◦) and 5 non-
frontal faces (yaw angle > 10◦). It results in 4.6M images
and 50.3K identities. For evaluation, we adopt two bench-
marks for pose-invariant face recognition: CFP-FP (Sen-
gupta et al. 2016) and IJB-A (Klare et al. 2015) datasets with

3393



Methods Acc on CFP-FP
Human 94.57
DA-GAN (Zhao et al. 2019) 95.96
PF-cpGAN (Taherkhani et al. 2020) 93.78
DR-GAN (Tran, Yin, and Liu 2017) 93.41
DREAM (Cao et al. 2018b) 93.98
PIM (Zhao et al. 2018a) 93.10
HF-PIM (Cao et al. 2018a) 95.42
TAL (Zhang et al. 2021) 97.21

Ours 97.78

Table 1: Face verification performance (%) comparison on
CFP-FP. The results are averaged over 10 testing splits.

official evaluation protocols (Sengupta et al. 2016; Klare
et al. 2015). For data pre-processing, we first resize the
aligned face images to 112 × 112 and then linearly nor-
malize the pixel values of RGB images to [−1, 1] (Deng
et al. 2019). The initial learning rate is 0.001 and the default
hyper-parameters of our method are λ1 = 0.5, λ2 = 0.5,
µ1 = 0.01 and µ2 = 0.4. We set N = 20, C = 5 and
M = 8. For all the models during inference stage, we extract
the 512-D feature embeddings and use cosine distance as the
metric. We use 4 GeForce GTX 1080 GPUs for training and
we select ResNet50, ResNet34 and ResNet18 as backbones
due to the limitation of computation capacity.

Comparison with the State-of-the-Art Methods on
CFP-FP and IJB-A BenchMark

We conduct evaluations on IJB-A and CFP-FP benchmarks
and make comparison with the state-of-the-art methods in
the field of PIFR. We first evaluate our method on a chal-
lenging benchmark IJB-A that covers full pose variation.
The dataset contains 500 subjects with of 5.7K images and
20.4K frames extracted from videos. Following the standard
protocol in (Klare et al. 2015), we evaluate our method on
both verification (1 : 1) and identification tasks (1 : N).
CFP-FP is a challenging dataset created to examine the prob-
lem of frontal to profile face verification in the wild. The
dataset contains 500 celebrities, each of which has 10 frontal
and 4 profile face images. Evaluation systems report the
mean of accuracy over the 10 splits for the frontal-profile
face verification settings.

As is illustrated in Table. 2, we compare the face verifica-
tion and identification performance of our proposed method
with other PIFR methods on the IJB-A dataset. From Ta-
ble. 2, our result with the setting of ResNet50 + KL + PAD
significantly outperforms the performance of other PIFR
approaches. In addition, we also make comparison of the
face verification performance between our proposed meth-
ods and other approaches on the CFP-FP benchmark. Ta-
ble. 1 demonstrates that our result with the setting ResNet50
+ KL + PAD also has a better verification performance on
the CFP-FP benchmark than other PIFR methods. Therefore,
both Table. 2 and Table. 1 verify the effectiveness and supe-
riority of our method.

Ablation Study of the KL Loss and PAD Loss

As is shown in Table. 3, we conduct our ablation study us-
ing ResNet18, ResNet34 and ResNet50. We use the setting
ResNet + ArcFace as the baseline. Firstly, we verify the val-
idation of our teacher-student network with the Kullback-
Leibler loss. In this experiment, the teacher network is in-
troduced to obtain the frontal center for each identity and
we add the KL loss to transfer the knowledge of frontal cen-
ter to the student network. When KL loss is added to dif-
ferent backbone networks, the verification accuracy of the
CFP-FP dataset is improved by 0.68%, 0.54% and 0.14%
respectively. Then, we verify the validation of PAD loss by
adding it to the teacher-student network. When PAD loss is
added to the networks with different backbones, the veri-
fication accuracy of CFP-FP dataset is improved by 1.7%,
1.37% and 0.96% respectively.

As is shown in Table. 4, there are similar analyses on
the IJB-A benchmark, and we can see that both the teacher-
student network with the KL loss and the Pose-adaptive An-
gular Distillation loss make remarkable improvements in the
performance of face verification and identification. This in-
dicates it will help enhance the performance on profile faces
by minimizing the distance between the feature embedding
and the PFC and maximizing the distance between the fea-
ture embedding and the NFCs.

Visualization of Feature Space and Statistical
Analysis

We sample 9 identities from the IJB-A dataset, and faces
are across different poses. The t-SNE visualization result of
their feature embeddings is shown in Fig. 2. We can see that
the features extracted under the setting of PAD loss cluster
more compactly compared with the ones without PAD loss.
It can be concluded that compared with the Baseline, the
teacher-student paradigms, together with the PAD loss, can
significantly reduce the intra-class distance and enlarge the
inter-class distance between different identities, and this is
consistent with the geometric meaning of our proposed loss.

In addition to the qualitative visual illustration of
the inter-class distance and intra-class distance, we also
make a quantitative statistical analysis to show the ef-
fectiveness of our teacher-student paradigm together with
the PAD loss. We use the mean distance between the
feature embeddings and their corresponding PFCs to
measure the intra-class distance, which is defined as
1

NM

∑N
n=1

∑M
m=1 dcos(fn,m, f

P
n ). N is the number of

sampled identity classes, and M is the number of sam-
ples of each identity. We use the mean distance between
different frontal centers of all sampled identity classes
to measure the inter-class distance, which is defined as

1
N(N−1)

∑N
n=1

∑N
m=1,m 6=n dcos(f

C
n , f

C
m). dcos(fCn , f

C
m) is

the distance between the frontal center of the identity n and
the frontal center of identity m. As is shown in Fig. 3, after
we introduce the teacher-student paradigm and add the PAD
loss, the mean inter-class distance becomes larger, and the
mean intra-class distance becomes smaller.
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Methods↓ Verification Identification
Metrics→ TAR @ FAR=0.01 TAR @ FAR=0.001 Rec @ Rank-1 Rec @ Rank-5
DR-GAN (Tran, Yin, and Liu 2017) 77.4± 2.7 53.9± 4.3 85.5± 1.5 94.7± 1.1
FF-GAN (Yin et al. 2017) 85.2± 1.0 66.3± 1.3 90.2± 0.6 95.4± 0.5
DREAM (Cao et al. 2018b) 89.1± 1.6 76.4± 3.1 94.6± 1.1 96.8± 1.0
PIM (Zhao et al. 2018a) 93.1± 1.1 87.5± 1.8 94.1± 1.1 —
HF-PIM (Cao et al. 2018a) 95.2± 0.7 89.7± 1.4 96.1± 0.5 97.9± 0.2
PF-cpGAN (Taherkhani et al. 2020) 95.8± 0.8 91.2± 1.3 — —
TAL (Zhang et al. 2021) 95.8± 1.2 90.2± 1.9 96.5± 1.2 98.0± 0.7

Ours 96.4± 1.1 91.5± 1.4 96.9± 1.3 98.2± 0.8

Table 2: Verification and Identification performance analysis on IJB-A benchmark. Results reported are the ”average± standard
deviation” over the 10 folds specified in the IJB-A protocol.

Figure 2: Feature distribution visualization of different settings

Figure 3: Statistical Analysis of intra-class distance and
inter-class distance.

Evaluation on CFP-FF and LFW

We conduct experiments on the CFP-FF (Sengupta et al.
2016) and LFW (Huang et al. 2008) datasets. As shown
in Table. 5, our approach does not reduce the performance
on CFP-FF and LFW. In particular, the knowledge from
the positive frontal center hardly affects the performance of
non-profile face recognition since the frontal center encodes
more compact and complete identity information, which
prevents the network from losing the discriminative infor-
mation. This shows that our approach does not have the loss
of discriminative information, which is mentioned in (Huang

Methods Acc on CFP-FP
ResNet-18 + ArcFace 93.88
ResNet-18 + ArcFace + KL 94.52
ResNet-18 + ArcFace + KL + PAD 96.14

ResNet-34 + ArcFace 94.42
ResNet-34 + ArcFace + KL 94.93
ResNet-34 + ArcFace + KL + PAD 96.23

ResNet-50 + ArcFace 96.74
ResNet-50 + ArcFace + KL 96.85
ResNet-50 + ArcFace + KL + PAD 97.78

Table 3: Face verification performance (%) comparison on
CFP-FP. The results are averaged over 10 testing splits.

et al. 2020).

Analysis on Influences of |SN
n |

From Table. 6, we notice that by increasing |SNn | within a
relatively small range, the performance can be improved.
This is because more NFCs will push the feature embed-
dings to enlarge the inter-class distance. However, if the
|SNn | is too large, the performance will turn worse. From
the geometric perspective, we think it is because too many
NFCs are involved in every training step, and the influence
of different NFCs may be canceled out.
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Methods↓ Verification Identification
Metrics→ TAR @ FAR=0.01 TAR @ FAR=0.001 Rec @ Rank-1 Rec @ Rank-5
ResNet-18 + ArcFace 93.2± 2.1 83.5± 1.3 93.8± 1.6 95.9± 1.1
ResNet-18 + ArcFace + KL 93.6± 1.2 86.2± 1.7 94.3± 0.9 96.8± 1.6
ResNet-18 + ArcFace + KL + PAD 95.3± 1.3 89.8± 1.2 95.5± 1.6 97.4± 0.7

ResNet-34 + ArcFace 93.9± 0.8 86.1± 1.7 94.2± 1.8 96.6± 0.7
ResNet-34 + ArcFace + KL 94.3± 1.2 87.9± 1.8 94.8± 0.9 97.0± 0.6
ResNet-34 + ArcFace + KL + PAD 95.6± 0.8 90.8± 1.5 95.9± 1.1 97.7± 0.9

ResNet-50 + ArcFace 94.4± 0.6 88.7± 1.5 95.7± 0.8 97.5± 0.3
ResNet-50 + ArcFace + KL 95.1± 1.2 89.2± 1.8 96.2± 0.9 97.8± 0.6
ResNet-50 + ArcFace + KL + PAD 96.4± 1.1 91.5± 1.4 96.9± 1.3 98.2± 0.8

Table 4: Verification and Identification performance analysis on IJB-A benchmark. Results reported are the ”average± standard
deviation” over the 10 folds specified in the IJB-A protocol.

settings Acc on CFP-FF Acc on LFW
ArcFace 99.72 99.75
ArcFace + KL 99.73 99.75
ArcFace + KL + PAD 99.75 99.77

Table 5: Comparative performance analysis on CFP-FF and
LFW. The backbone is ResNet-50.

|SNn | setting Acc on CFP-FP TAR on IJB-A
|SNn | = 1 97.61 91.1± 1.2
|SNn | = 3 97.69 91.4± 1.1
|SNn | = 5 97.78 91.5± 1.4
|SNn | = 10 97.66 91.1± 1.2
|SNn | = 15 97.58 90.6± 1.7

Table 6: Comparative analysis of different |SNn | settings.
Evaluation is conducted on CFP-FP and IJB-A. Results are
reported as Acc and TAR @ FAR=0.001.

Analysis on Influences of αn,m

We conduct the ablation experiment on different settings of
αn,m. From Table. 7, we can know that the performance
with Equation 9 is better than the one with αn,m = 1. This
result shows that we can improve the performance by as-
signing different weights to different samples with different
poses since this will eliminate the influence of the uneven
distribution of poses.

Analysis on Influences of the Adaptive Setting of
Margin δ1(n) and δ2(n)
We conduct the ablation experiment on different margin set-
tings, where the margin is the constant value or adaptive
to the different identity classes. The adaptive setting is de-
fined in Equation 10 and Equation 11. By making the margin
δ1(n) and δ2(n) adaptive to the identity class, the face recog-
nition performance on CFP-FP and IJB-A benchmark can be
improved, as is shown in Table. 8.Hence, Table. 8 shows the
superiority of the identity adaptive setting.

αn,m setting Acc on CFP-FP TAR on IJB-A
αn,m = 1 97.44 90.14± 1.3
Nonlinear setting 97.78 91.5± 1.4

Table 7: Comparative analysis of αn,m setting. Evaluation
is conducted on CFP-FP and IJB-A. Results are reported as
Acc and TAR @ FAR=0.001.

δ1(n), δ2(n) setting Acc on CFP-FP TAR on IJB-A
δ1 = 0.1, δ2 = 0.4 97.66 90.62± 1.3
Adaptive Setting 97.78 91.5± 1.4

Table 8: Comparative analysis of δ1(n) and δ2(n) setting.
Evaluation is conducted on CFP-FP and IJB-A. Results are
reported as Acc and TAR @ FAR=0.001.

Conclusion
In summary, our first contribution is to propose a new per-
spective to learn pose-invariant feature embeddings: recov-
ering the feature of the frontal face from the features ex-
tracted from faces of arbitrary poses with the same identity
by distilling the angular knowledge of frontal faces extracted
by teacher network to student network. Directed by this per-
spective, we effectively make features cluster more com-
pactly around the PFC, which can create a pose-invariant
and complete feature representation to enhance the perfor-
mance on faces with large variations. Our second contribu-
tion is the Pose-Adaptive Angular Distillation loss. The PAD
loss treats each sample with different weights according to
its pose and hard level so as to overcome the limitation of the
uneven distribution of pose. Finally, we achieve competitive
performance on both CFP-FP and IJB-A benchmarks.
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