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Abstract

Even though considerable progress has been made in deep
learning-based 3D point cloud processing, how to obtain
accurate correspondences for robust registration remains a
major challenge because existing hard assignment methods
cannot deal with outliers naturally. Alternatively, the soft
matching-based methods have been proposed to learn the
matching probability rather than hard assignment. However,
in this paper, we prove that these methods have an inherent
ambiguity causing many deceptive correspondences. To ad-
dress the above challenges, we propose to learn a partial per-
mutation matching matrix, which does not assign correspond-
ing points to outliers, and implements hard assignment to pre-
vent ambiguity. However, this proposal poses two new prob-
lems, i.e. existing hard assignment algorithms can only solve
a full rank permutation matrix rather than a partial permuta-
tion matrix, and this desired matrix is defined in the discrete
space, which is non-differentiable. In response, we design a
dedicated soft-to-hard (S2H) matching procedure within the
registration pipeline consisting of two steps: solving the soft
matching matrix (S-step) and projecting this soft matrix to
the partial permutation matrix (H-step). Specifically, we aug-
ment the profit matrix before the hard assignment to solve an
augmented permutation matrix, which is cropped to achieve
the final partial permutation matrix. Moreover, to guarantee
end-to-end learning, we supervise the learned partial permu-
tation matrix but propagate the gradient to the soft matrix in-
stead. Our S2H matching procedure can be easily integrated
with existing registration frameworks, which has been veri-
fied in representative frameworks including DCP, RPMNet,
and DGR. Extensive experiments have validated our method,
which creates a new state-of-the-art performance.

Introduction
3D point cloud registration is a well-known task in 3D vi-
sion with wide applications including object pose estimation
(Wong et al. 2017), 3D reconstruction (Deschaud 2018), si-
multaneous localization and mapping (Shiratori et al. 2015;
Ding and Feng 2019), etc. Although the increasingly pros-
perous deep learning technique has achieved great success in
point cloud registration (Lu et al. 2019), how to obtain accu-
rate correspondences for robust registration remains a stub-
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born problem, which can be formulated as solving a match-
ing matrix to relate the input two point clouds. And each
entry indicates the point pair is a correspondence or not.

For ideal consistent point clouds, where the inputs are ex-
actly the same except for the pose, i.e. each point can find a
corresponding point in the other point cloud, the correspon-
dences are built by searching a permutation matching ma-
trix, which implements the one-to-one matching principle.
However, in practical applications, input point clouds are
usually not consistent due to the outliers (i.e. the points with-
out corresponding points). To handle the outliers, a widely
adopted strategy is to select reliable correspondences after
the initial matching (Choy, Dong, and Koltun 2020; Probst
et al. 2019; Pais et al. 2020; Deng, Birdal, and Ilic 2018b,a;
Bai et al. 2021). Nonetheless, this remedial operation is
complicated. Alternatively, we propose to handle the out-
liers in the matching stage synchronously. In this case, the
desired matching matrix is turned to a partial permutation
matrix (notated as PPM) formulated by a binary matrix,
where the sum of row or column corresponding to inlier/out-
lier is one/zero. PPM embeds two important principles: one-
to-one matching and outliers pruning. Unfortunately, exist-
ing hard assignment algorithms are not competent to directly
solve this PPM since they cannot distinguish inliers and out-
liers, and they will solve a full rank permutation matrix as-
signing corresponding points to outliers incorrectly.

Moreover, PPM is defined in the discrete space, and the
hard assignment algorithm is non-differentiable, which is
fatal for the deep learning pipeline. To address this issue,
soft matching-based methods are proposed. They relax the
discrete matching matrix into a continuous one, where each
entry is either zero or one, and then the virtual points are
achieved by performing weighted average to replace the real
corresponding points. However, since the geometric con-
straint is ignored, the network does not learn the underly-
ing physics, which results in an inherent ambiguity making
the distribution of the virtual points degenerate seriously.
DCP (Wang and Solomon 2019a) is a typical soft matching
method, which suffers from this drawback as shown in Ta-
ble 1. RPMNet (Yew and Lee 2020) applies the Augmented-
Sinkhorn algorithm replying to outliers in the soft matching
process, where the “trash bin” strategy (Sarlin et al. 2020)
is employed. However, the degeneration has not been re-
mitted. To avoid this ambiguity trap, DeepVCP (Lu et al.
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Methods DCP (Soft matching) RPMNet (Soft matching) PRNet (Hard matching) Ours (Hard matching)

Matrix
Constraints

mij ∈ [0, 1]∑NY
j mij = 1

mij ∈ [0, 1]∑NX
i mij ∈ [0, 1]∑NY
j mij ∈ [0, 1]

mij ∈ {0, 1}∑NY
j mij = 1

mij ∈ {0, 1}∑NX
i mij ∈ {0, 1}∑NY
j mij ∈ {0, 1}

Matching
Results

Table 1: Comparison of learning-based point cloud registration methods based on “soft” matching and “hard” matching. Points
with different colors indicate the source (green), target (blue), and virtual points (red). mij is the entry of matching matrix
M ∈ RNX×NY , where NX , NY are size of the source and target. (The matching result of ours is returned by SHMDCP.)

2019) takes an unconvincing assumption, i.e. accurate ini-
tial motion parameters are provided as prior. PRNet (Wang
and Solomon 2019b) and CorrNet3D (Zeng et al. 2021) ad-
vocate turning the learned soft matching matrix to a hard
matrix by taking the most similar points as the correspond-
ing points of the source points. However, this strategy leads
to the drawback of one-to-many matching.

In this paper, we first theoretically analyze the inherent
ambiguity in these soft matching-based methods, and then
devote to achieving the real PPM matrix to handle the out-
liers and prevent ambiguity synchronously for robust 3D
point cloud registration. However, as mentioned above, two
problems block our pace. 1) Although it is well-known that
the full rank permutation matrix can be solved by existing
hard assignment algorithms, how to solve a PPM has yet
not been explored; 2) PPM is defined in the discrete space,
which is non-differentiable. To resolve these issues, we de-
sign a dedicated soft-to-hard (S2H) matching procedure con-
sists of S-step: solving the soft matching matrix, and
H-step: projecting this soft matrix to the PPM. Specif-
ically, we propose to augment the profit matrix before the
hard assignment to solve an augmented permutation matrix,
which is cropped to achieve the final real PPM. Moreover,
to guarantee end-to-end learning, we supervise the learned
final PPM but propagate the gradient to the soft matrix in-
stead. Our matching procedure can be easily integrated with
existing 3D registration frameworks, which has been veri-
fied in DCP, RPMNet, and DGR (Choy, Dong, and Koltun
2020). Extensive experiments on benchmark datasets show
that our method achieves state-of-the-art performance.

Our main contributions can be summarized as follows:
• We theoretically analyze the inherent ambiguity in the

soft matching-based methods, which causes serious de-
generation of the learned virtual corresponding points.

• We propose a novel S2H matching procedure to learn the
PPM, which handles the outliers and prevents ambiguity
synchronously. This matching procedure not only solves
a real PPM, but also guarantees end-to-end learning.

• Remarkable performance on benchmark datasets veri-
fies the proposed method, which achieves state-of-the-art
performance in robust 3D point cloud registration.

Related Works
Herein, we briefly review the learning-based point cloud reg-
istration methods. More detailed summaries have been pro-

vided in (Rusinkiewicz and Levoy 2001; Pomerleau, rancis
Colas, and Siegwart 2015; Zhang, Dai, and Sun 2020).
Correspondences-free methods: These methods estimate
the rigid motion by comparing the global representations of
input two point clouds, and generally consist of two stages:
global feature extraction and rigid motion estimation. Point-
NetLK (Aoki et al. 2019) utilizes PointNet (Qi et al. 2017a)
to extract global features, and then a modified LK algorithm
is applied to solve the rigid motion. From the perspective of
reconstruction, Huang et al. (Huang, Mei, and Zhang 2020)
utilize an encoder-decoder structure network to learn a more
comprehensive global feature.
Correspondences-based methods: These methods esti-
mate the rigid motion based on correspondences, which gen-
erally consists of feature extractor, correspondences build-
ing, and rigid motion estimation modules. For feature ex-
tractors, various well-designed networks are used, such as
set abstraction module (Qi et al. 2017b; Yew and Lee 2018),
DGCNN (Wang et al. 2019; Wang and Solomon 2019a),
FCGF (Choy, Park, and Koltun 2019; Choy, Dong, and
Koltun 2020), globally informed 3D local feature (Deng,
Birdal, and Ilic 2018b), KPConv (Thomas et al. 2019; Bai
et al. 2020), capsule network (Zhao et al. 2020) and vari-
ous rotation invariant features (Deng, Birdal, and Ilic 2018a;
Gojcic et al. 2019). With the rise of deep learning, learning-
based feature extractors have approached standard compo-
nents, which can be integrated easily. For correspondence
building, both soft matching-based (Lu et al. 2019; Zhang
et al. 2022) and hard matching-based (Wang and Solomon
2019b) methods are representative. (Yew and Lee 2020;
Huang et al. 2021) build correspondences on the identified
inliers only. Besides, reliable correspondences selection is
the widely adopted subsequent step. It is achieved by learn-
ing the reliability weight of each initial correspondence (Pais
et al. 2020; Choy, Dong, and Koltun 2020; Probst et al. 2019)
or selecting consistent correspondences (Deng, Birdal, and
Ilic 2018b; Bai et al. 2021). For motion estimation, Pro-
crustes (Gower 1975) is the most widely used algorithm in
(Wang and Solomon 2019b; Yew and Lee 2020). Recently,
regressing the motion parameters directly has become a new
hot spot (Pais et al. 2020).

Preliminaries
Given the source point cloud X = [xi]3×NX and the tar-
get point cloud Y = [yj ]3×NY , where NX and NY repre-
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sent the sizes of the two point clouds, 3D point cloud regis-
tration aims at solving a rigid motion to best align X with
Y . Here, we model the rigid motion by the rotation ma-
trix R ∈ SO(3) and the translation vector t ∈ R3. Since
the Procrustes algorithm (Gower 1975) can optimally solve
the rigid motion based on the correspondences, point match-
ing becomes crucial, which is formulated as searching for a
matching matrix M = [mij ]NX×NY to relate the source and
target point clouds, and the entry mij = 1 or 0 indicates
point xi and point yj are correspondence or not.

Ideally, X and Y are consistent, i.e. points in X and Y are
exactly one-to-one correspondence. In this case, the match-
ing matrix M is a permutation matrix, i.e. mij ∈ {0, 1},∑N

i=1 mij = 1, ∀j and
∑N

j=1 mij = 1, ∀i, where NX =
NY = N . However, in practical applications, outliers al-
ways exist without corresponding points. They challenge
the matching problem, and turn it into a special assignment
problem while the desired matching matrix becomes a PPM
for outliers pruning. We reformulate this special PPM M as,

{M | mij ∈ {0, 1};∑NX

i=1
mij ∈{0, 1}, ∀j;

∑NY

j=1
mij ∈{0, 1}, ∀i}.

(1)

If the point is an inlier, the sum of the corresponding row/-
column equals to 1. Otherwise, the point is an outlier and the
sum of the corresponding row/column equals to 0.

Ambiguity in Soft Matching-Based Methods
As introduced above, different from the hard matching-
based methods that build correspondences on the real points,
the soft matching-based methods use the virtual correspond-
ing points instead. Specifically, these soft matching-based
methods generate a “soft map” between the source and tar-
get, i.e. xi ∈ X is assigned to Y by a probability vector.
In this case, the matching matrix M becomes a soft proba-
bility matrix P. In DCP (Wang and Solomon 2019a), P is
a single stochastic matrix, where pij ∈ [0, 1],

∑NX
i=1 pij =

1, ∀j. In RPMNet (Yew and Lee 2020), P is optimized to
a partial doubly stochastic matrix (notated as PDSM) by
the Augmented-Sinkhorn algorithm, where pij ∈ [0, 1],∑NX

i=1 pij ≤ 1, ∀j and
∑NY

j=1 pij ≤ 1, ∀i. Then, the vir-
tual corresponding points Y ′ are obtained by performing
weighted average on Y using P, i.e. Y ′ = YPT.

However, there is an ambiguity trap here. The geometric
constraints and underlying physics are ignored by relaxing
the hard matching matrix to a soft probability matrix, hence,
the distribution of virtual corresponding points is not unique
resulting in serious degeneration. We can conclude as fol-
lows. The theoretical proof and more analysis are provided
in supplementary materials.
Theorem 1 Considering the consistent subset point clouds
X, Y with ground truth motion R, t, there exists more than
one soft matching matrix P satisfying YPT = RX+ t.

Since there will be an infinite number of virtual point
cloud distributions corresponding to the same rigid motion,
this inherent ambiguity will cause serious degeneration of
virtual points as shown in Table 1. Essentially, the process

of weighted average can also be regarded as a special defor-
mation of the point cloud. Although a seemingly good trans-
formation estimation is obtained (Yew and Lee 2020), this
process violates the rigid motion assumption, which cannot
be supported by the Procrustes algorithm (Gower 1975).

Soft-to-Hard Matching for Registration
In this paper, we devote to solving a PPM to handle the out-
liers and prevent the ambiguity synchronously and thus de-
sign a meticulous S2H matching procedure. In this section,
to clearly present S2H and how to integrate it into existing
registration pipeline, we give a pipeline example as shown
in Fig. 1. Finally, the proposed loss function is presented.

Feature Extractor and Similarity Matrix Solving
To achieve robust point matching, distinguished descriptors
are crucial. With the rise of deep learning, many standard
modules for deep features are proposed. These feature ex-
tractors can be easily integrated into our robust point cloud
registration pipelines according to different requirements.

We denote the point features of the source and target as
ΦX ∈ RNX×c,ΦY ∈ RNY×c. c is the feature dimension.
Then, based on a certain similarity metric e.g. scale dot prod-
uct attention (Vaswani et al. 2017), the similarity matrix is
returned as S = [sij ]NX×NY , where each entry sij repre-
sents the similarity between points xi ∈ X and yi ∈ Y .

S2H Matching
A well-known solution to hard matching is to formulate it as
a special assignment problem, i.e. zero-one integer program-
ming problem. However, two natural but challenging prob-
lems exist for learning-based pipeline. 1) Existing integer
programming algorithms usually achieve a row or column
full rank permutation matrix (rank(M) = min(NX , NY))
rather than a PPM. It means all points of the source or target
will be assigned corresponding points without distinguish-
ing inliers and outliers. 2) PPM is defined in the discrete
space, which is non-differentiable. This characteristic is fatal
for the deep learning pipeline. To solve these problems, we
propose to augment the profit matrix to solve the PPM and
design an S2H matching procedure for end-to-end learning.

• Augmenting the profit matrix to solve PPM: Con-
ventionally, the matching task is formulated as a zero-one
integer programming problem taking S as the profit matrix,

M∗ = arg max
M∈MN

< M,S >F , (2)

where MN denotes the set of partial permutation matrices.
< M,S >F = trace(MTS) denotes the (Frobenius) inner
product. Note that the traditional assignment algorithm will
achieve a full rank permutation solution. In response to out-
liers, we propose to augment the profit matrix by adding ad-
ditional rows and columns to solve an augmented permuta-
tion matrix. Then the PPM will be returned by cropping this
augmented permutation matrix as shown in Fig. 1. Thus, the
following two questions should be addressed properly.

1. How many rows and columns should be added? In the
Augmented-Sinkhorn algorithm (Yew and Lee 2020), which
solves a soft matching matrix, one row and one column
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Figure 1: S2H matching procedure in registration pipeline. Given the source and target, the similarity matrix is obtained based
on the point features. Then, S2H is applied for the final PPM. Finally, the rigid motion is estimated by the weighted Procrustes.

are added as “trash bin”. However, for partial permutation
matching, the number of rows and columns augmented to
the profit matrix is more crucial since it implies the upper
bound of the number of outliers potentially. Thus, we pro-
pose to supplement the original NX ×NY profit matrix to
a (NX + NY) × (NX + NY) matrix, which is a maximum
redundant operation replying to the case of all points are out-
liers. Specifically, as shown in Fig. 1, left upper is the origi-
nal matrix, right upper block is a NX ×NX diagonal matrix
and left bottom block is a NY ×NY diagonal matrix, and
right bottom block is a NY ×NX zero matrix.

2. What value to set? As aforesaid, the right upper block
and the left bottom block are two diagonal matrices, what
values should be set to these diagonal positions? Note that
these values are roughly used as thresholds to distinguish
outliers and inliers potentially. Meanwhile, we observe that
in the profit matrix, if the row/column corresponds to an out-
lier, the entries in this row/column approximate a uniform
distribution with low value, which means the outliers have
no similar points in another point cloud. Otherwise, if the
row/column corresponds to the inlier, in this row/column,
the entries are close to a unimodal distribution, which means
the inlier has only one similar point in another point cloud
ideally. Thus, we propose to self-adaptively fill the diagonal
position with σ according to the corresponding row/column
of the input profit matrix: σ=1/ var(v), v is the correspond-
ing row/column vector, and var(·) is the variance function.
In this case, for outlier, the filled value is large, which en-
forces the learned augmented permutation matrix to make
the value of this position as one to gain more profit. For in-
lier, the filled value is low, the value of this position in the
learned augmented permutation matrix is enforced to zero.

• S2H matching in end-to-end learning: Since M is
defined in the discrete space, and the integer programming
algorithm is non-differentiable, we design the S2H match-
ing procedure to guarantee end-to-end learning. Specifically,
S-step learns a soft matrix and H-step projects this soft
matrix to discrete solution space for final PPM.
S-step: To deal with the outliers, we use Augmented-

Sinkhorn (Yew and Lee 2020) to obtain a soft matrix by
adding an additional row and column of ones to the input
matrix during the Sinkhorn normalization. In Augmented-
Sinkhorn, the additional row and column are regarded as
“trash bin”, and the matching weights of outliers are ex-

pected to “flow” to these additional row and column to
distinguish outliers and inliers. Specifically, given the ob-
tained similarity matrix S ∈ RNX×NY , this soft matrix
P ∈ RNX×NY is achieved by cropping the output (NX +
1)× (NY + 1) matrix as shown in Fig. 1. P is a PDSM.
H-step: The resultant PDSM P is still a soft matrix,

and we project it to PPM by applying the proposed profit ma-
trix augmenting strategy to P and solving this zero-one inte-
ger programming problem. In our implementation, we chose
the classical Hungarian algorithm (Kuhn 1955) to solve this
assignment problem. After cropping the output augmented
matrix, the final PPM M ∈ RNX×NY is obtained.

For a clearer understanding, we stress the ingeniousness
of the proposed S2H matching structure from two folds:

1. End-to-end learning. We propose a deceptive operation
as shown in the left of Fig. 2 to guarantee end-to-end learn-
ing. During the forward propagation, the loss is calculated
based on the learned PPM M. However, during the back-
ward propagation, the gradient is not propagated to the PPM,
but directly skipped to the learned PDSM P instead. This in-
genious structure guarantees the accuracy of the calculated
loss and the backward propagation simultaneously.

2. Hard Matching vs. S2H Matching. To solve a PPM,
we give a more straightforward hard matching method in
the right of Fig. 2, which can also make sense by learn-
ing M considering the augmented similarity matrix as the
profit matrix. Nonetheless, there is an obvious local super-
vision risk in this case. That is, the gradient will be propa-
gated to the input similarity matrix directly if only use the
hard matching. And the correlation of entries, which is con-
sidered in the integer programming process, is ignored in
backward propagation. In other words, the loss calculated
from mij can only supervise sij . This will result in only a
few sparse points being supervised by the ground truth and
the remaining positions will be trained without supervision.
For example, assuming mij = 1, the gradient will be prop-
agated to sij directly, and enforce the feature extractor to
enlarge sij . However, the positions where mij = 0 are not
supervised (refer to loss function section for more details).
Hence, the corresponding point features will not suppress
their similarity. An extreme result is that all entries of the
similarity matrix are very large since the point features lose
the distinctiveness and each point in X is very similar to all
points in Y . This will result in a divergence of training.
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Figure 2: Comparison of our S2H matching (Left) and hard
matching (Right). Yellow and red lines represent the forward
and backward propagation respectively.

Our S2H solution effectively avoids the local supervision
risk by propagating the gradient to all entries in S-step,
i.e. the correlation of all entries is reconsidered. As shown in
the left of Fig. 2, during the backward propagation, the sim-
ilarity of the correct correspondence will be boosted, mean-
while the similarity of the incorrect correspondence will be
effectively suppressed.

Weighted Procrustes
When we get a PPM M, the corresponding point set of
X could be achieved as Y ′ = YMT. However, the corre-
sponding points of outliers in Y ′ are obtained as [0, 0, 0]T,
which should be filtered out when estimating the transfor-
mation. To this end, the weighted Procrustes algorithm is
used here. Given X , Y ′, the weight vector w is obtained as
w =

∑NY
j=1 mij , where w ∈ {0, 1}NX .

Then, w is normalized to w̄. Inspired by DGR (Choy,
Dong, and Koltun 2020), the rigid motion is computed as
follows: H = Y ′KWKXT, where W = diag(w̄), K =

I −
√
w̄
√
w̄

T
. I is an identity matrix. Then, R = UEVT,

t = (Y ′ − RX )W1, where UDVT = SVD(H), 1 =
(1, ..., 1)T and E = diag(1, ..., 1, det (U) det (V)).

Loss Function
In this paper, we supervise the matching matrix directly,
which is defined as:

L1 = −

∑NX
i=1

∑NY
j=1

(
mpred

ij mgt
ij

)
∑NX

i=1

∑NY
j=1

(
mgt

ij

) , (3)

where the superscript “pred” and “gt” represent the predic-
tion and ground truth respectively. When mgt

ij = 1, mpred
ij is

enforced to 1. But when mgt
ij = 0, mpred

ij diverges without
supervision. Moreover, due to the introduction of augmenta-
tion operation, all points tend to be labeled as outliers, which
makes the learned PPM close to a full zero matrix. To avoid
this degeneracy, we encourage the number of inliers by:

L2 = −
∑NX

i=1

∑NY
j=1(m

pred
ij )

NX +NY
. (4)

Besides, we also supervise the final rigid motion, i.e.,

L3 = ∥RgtTRpred − I3∥2 + ∥tgt − tpred∥2, (5)

where I3 is a 3×3 identity matrix. Then, our final loss func-
tion is reached as L = λ1L1 + λ2L2 + λ3L3, the trade-off
parameters are set to λ1 = λ2 = λ3 = 1 in this paper.

Experiments and Evaluation
In this section, we evaluate the proposed S2H matching
procedure in several representative point cloud registra-
tion frameworks including DCP, RPMNet and DGR, on
benchmark datasets including ModelNet40 (Wu et al. 2015),
3DMatch (Zeng et al. 2017) and KITTI (Geiger et al. 2013).
Implementation details. To validate the proposed matching
method can be generally integrated, we evaluate S2H match-
ing within three typical frameworks, i.e. DCP, RPMNet, and
DGR, notated as SHMDCP, SHMRPMNet, and SHMDGR re-
spectively. These three frameworks are typical and repre-
sentative, where DCP and RPMNet are soft matching-based
methods using different feature extractors, and mainly con-
centrate on the synthetic dataset, ModelNet40. DGR is a
hard matching-based method focusing on large-scale real
datasets, 3DMatch and KITTI. Note that PRNet (Wang and
Solomon 2019b) also inherits the framework of DCP, which
is compared with SHMDCP herein. The complete loss is used
in SHMDCP, SHMRPMNet. Only L3 is used in SHMDGR. Refer
to supplementary materials for more details.

Evaluation on Synthetic Dataset: ModelNet40
In this section, we validate our proposed S2H matching pro-
cedure with SHMDCP, SHMRPMNet on a synthetic dataset,
ModelNet40. Following DCP and RPNet, we construct a
point cloud by randomly sampling 1024 points, and then ap-
ply a rigid transformation to this point cloud, where the ro-
tation and translation are uniformly sampled from [0◦, 45◦]
and [−0.5, 0.5]3 respectively along each axis. Next, we ran-
domly sample 768 points from the original point cloud and
the transformed point cloud as the source and target to en-
sure the random distribution of the outliers.

In addition, following DCP and RPMNet, we test ours on
two different dataset settings. 1) Unseen categories (clean):
ModelNet40 will be divided into training and test splits
based on the object category, i.e. the first 20 categories are
selected for training and the rest categories for testing. 2)
Noisy data (noisy): For robustness testing, random Gaus-
sian noise (i.e., N (0, 0.01)) is added to each point, while
the sampled noise out of the range of [−0.05, 0.05] will be
clipped. The dataset splitting strategy is the same as clean.
Matching. Accurate correspondences estimation is crucial
for robust point cloud registration. Here, we evaluate the
constructed correspondences for a clear comparison.

• Metric: We calculate the discrepancy between the pre-
dicted and the ground truth corresponding points. The pre-
dicted corresponding points Y ′

pred of X can be obtained by
two methods. First, based on the predicted matching matrix
Mpred, Y ′

pred can be obtained by Y ′
pred = YMpredT. Second,

inspired by the iteration strategy in ICP, Y ′
pred can be ob-

tained based on the predicted transformation {Rpred, tpred}
and nearest neighbor principle, i.e. Y ′

pred = NNY(R
predX +

tpred), where NNY(·) solves the nearest neighbor point in
Y . Given the ground truth corresponding points Y ′

gt, the
root mean squared error (RMSE) and mean absolute error
(MAE) in Euclidean distance between Y ′

pred and Y ′
gt, notated

as RMSE(dis) and MAE(dis) are presented.
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Methods RMSE(dis) ↓ MAE(dis) ↓ RMSE(dis) ↓ MAE(dis)↓
clean noisy clean noisy clean noisy clean noisy

DCP-v2 0.500 0.466 0.705 0.657 0.088 0.095 0.078 0.095
PRNet 0.311 0.303 0.357 0.351 0.046 0.057 0.023 0.036
SHMDCP 0.106 0.188 0.027 0.082 0.033 0.053 0.008 0.019
RPMNet 0.139 0.137 0.182 0.181 0.019 0.028 0.004 0.013
SHMRPMNet 0.057 0.121 0.009 0.041 0.007 0.027 0.001 0.010

Table 2: Discrepancy based on predicted matching matrix
(Left) and predicted transformation, nearest neighbor prin-
ciple (Right).

We also report the matching recall (%) based on a pro-
posed self-adaptive threshold, τi = (1/K)

∑K
j=1 dy′

π(i)
,yj

,
where y′

π(i) is the correct corresponding point of xi, yj ∈
KNNY(y

′
π(i)), KNNY(·) solves the K-nearest neighbor

points (exclude the self-point) in Y with pre-defined param-
eter K, dy′

π(i)
,yj

is the distance between y′
π(i) and yj . To

sum up, for the i-th point, τi is computed as the average dis-
tance of K-nearest points around the correct corresponding
point in Y . If the distance between the correct correspond-
ing point and the predicted one is less than the threshold, this
pair will be confirmed as a correct matching pair.

• Evaluation: In Table 2, we report RMSE(dis) and
MAE(dis) results in clean and noisy. For the discrepancy
based on the predicted matching matrix, our method im-
proves the performance with a big margin in both DCP and
RPMNet frameworks. These obtained results are reason-
able because the DCP-v2, RPMNet are virtual point-based
methods, where the corresponding points degenerate seri-
ously with a large distance to correct corresponding points.
PRNet presents weaker matching performance due to the
one-to-many matching. For the discrepancy based on the
predicted transformation and nearest neighbor principle, all
methods achieve superior performance, whereas SHMDCP,
SHMRPMNet remain the overall best performance.

Besides, we also draw the matching recall with different
thresholds in Fig. 3. For the results based on the predicted
matching matrix, the DCP-v2, RPMNet fail to obtain accu-
rate correspondences. And ours obtains the best results. For
the results based on the predicted transformation and nearest
neighbor principle, all methods achieve better performance,
and SHMDCP, SHMRPMNet remain the best performance.
Registration. In this section, we evaluate the rigid motion
estimation performance of SHMDCP, SHMRPMNet.
• Metric: Following DCP, RMSE and MAE between the

ground truth and prediction in Euler angle and translation
vector are used as the evaluation metrics here, notated as
RMSE(R), MAE(R), RMSE(t) and MAE(t) respectively.

• Evaluation: The evaluation results are provided in Ta-
ble 3. Both SHMDCP and SHMRPMNet outperform the hand-
craft registration methods, ICP (Besl and McKay 1992),
FGR (Zhou, Park, and Koltun 2016). Furthermore, in clean,
SHMDCP achieves more accurate performance than DCP-v2
and PRNet in all metrics, SHMRPMNet is more accurate than
RPMNet in all metrics. In noisy, we train and test ours and
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Figure 3: Matching recall with different thresholds based
on the predicted matching matrix ((a-1), (a-2)) and the pre-
dicted transformation, nearest neighbor principle ((b-1), (b-
2)). (a-1), (b-1) are conducted in clean and (a-2), (b-2) in
noisy. The X-axis is the number of K-nearest points for
threshold, and K = 0 means τi = 0.

Methods RMSE(R)↓ MAE(R)↓ RMSE(t)↓ MAE(t)↓
clean noisy clean noisy clean noisy clean noisy

ICP 12.545 12.723 5.438 5.298 0.046 0.045 0.024 0.023
FGR 20.042 40.829 7.203 21.065 0.035 0.060 0.019 0.039
DCP-v2 6.265 6.347 3.990 4.294 0.014 0.016 0.011 0.012
PRNet 3.532 4.321 1.760 1.826 0.013 0.013 0.010 0.010
SHMDCP 2.522 3.886 0.833 1.510 0.005 0.006 0.003 0.004
RPMNet 0.886 1.631 0.345 0.565 0.006 0.011 0.003 0.004
SHMRPMNet 0.514 1.456 0.247 0.378 0.004 0.008 0.002 0.003

Table 3: Registration perfomance on clean, noisy.

Figure 4: For each pair of point clouds, left upper is the
transformed source using the predicted rigid motion and
right bottom is the target. The same color represents the cor-
respondences, and black indicates the abandoned points.

Methods DCP PRNet SHMDCP RPMNet SHMRPMNet

Time(ms) 10.66 45.48 98.03 54.75 409.95

Table 4: Inference time of learning-based methods.

all baselines with noisy data. And the methods with our S2H
matching also achieves the best performance in these two
frameworks in all evaluation metrics. These evaluations val-
idate the improvement of our S2H matching, which creates
a new state-of-the-art results. More intuitively, we provide
some qualitative registration performance in Fig. 4.

• Time-efficiency: We counted the average inference
time of learning-based methods in Table 4. The experiments
are conducted in noisy on ModelNet40 using a Xeon E5-
2640 v4@2.40GHz CPU and a GTX 1080Ti. S2H matching-
based methods are slower because the integer programming
algorithm is time-consuming. SHMRPMNet is slower than
SHMDCP due to the iteration in RPMNet framework.
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Methods TE(cm)↓ RE(deg)↓ Recall(%)↑ Time(s)↓
ICP 18.1 8.25 6.04 0.25
FGR 10.6 4.08 42.7 0.31
Go-ICP 14.7 5.38 22.9 771.0
Super4PCS 14.1 5.25 21.6 4.55
RANSAC 9.16 2.95 70.7 2.32
DCP-v2 21.4 8.42 3.22 0.07
PointNetLK 21.3 8.04 1.61 0.12
DGR w/o safeguard 7.73 2.58 85.2 0.70
DGR 7.34 2.43 91.3 1.21
PointDSC 6.55 2.06 93.28 0.09
SHMDGR 6.41 1.75 91.7 37.2

Table 5: Evaluation on 3DMatch dataset.

Evaluation on Real Indoor Data: 3DMatch
In this part, we evaluate our S2H matching in SHMDGR on
real indoor dataset, 3DMatch (Zeng et al. 2017). SHMDGR
takes the S2H matching replacing the original matching of
DGR (Choy, Dong, and Koltun 2020) (more details can be
seen in supplementary materials). Following DGR, the input
point clouds have been voxelized with the voxel size of 5cm,
then each of them contains ∼50k points.

• Metric: For a fair comparison, we follow the protocols
and evaluation metrics of DGR here. The average Rotation
Error (RE: arccos((trace(Rpred−1

Rgt)− 1)/2) 180π ), aver-
age Translation Error (TE: ∥tpred − tgt∥22), recall, and time-
efficiency are reported. Recall indicates the ratio of success-
ful pairwise registrations. Here, the successful pair is con-
firmed if the RE and TE are smaller than pre-defined thresh-
olds (i.e., RE<15◦, TE<30cm).
• Evaluation: From the Table 5, we find that ICP achieves

the weak registration result since the dataset contains chal-
lenging sequences with large motion while no reliable prior
is provided. Super4PCS (Mellado, Aiger, and Mitra 2014),
and Go-ICP (Yang et al. 2015), which are sampling-based
algorithm and the variant of ICP with branch-and-bound
search respectively, present similar performance here. FGR
and RANSAC perform better due to the extracted point fea-
tures. 3DRegNet (Pais et al. 2020) is also tested here, how-
ever, it does not converge, which outputs the error above 30◦
and 1m. DGR is the state-of-the-art learning-based method,
which is designed for scene data specifically. However, DGR
also takes the most similar points as the corresponding
points ignoring the one-to-one matching principle. SHMDGR
achieves better registration performance including transfor-
mation estimation and recall comparing with the original
DGR. PointDSC (Bai et al. 2021) achieves the best recall
but the registration performance is weaker than SHMDGR.

Evaluation on Real Outdoor Data: KITTI
We evaluate SHMDGR on the real outdoor data, KITTI
(Geiger et al. 2013). Here, we also follow the protocols
of DGR, where the evaluation metrics are identical to the
3DMatch evaluation. The thresholds to confirm the success-
ful pair are set to 0.6m and 5◦. From Table 6, the SHMDGR
achieves the best performance with respect to rigid transfor-
mation estimation and recall, which outperforms the original
DGR and the state-of-the-art method, PointDSC.

Methods TE(cm)↓ RE(deg)↓ Recall(%)↑ Time(s)↓
FGR 40.7 1.02 0.2 1.42
RANSAC 25.9 1.39 34.2 1.37
FCGF 10.2 0.33 98.2 6.38
DGR 21.7 0.34 96.9 2.29
PointDSC 20.94 0.33 98.20 0.31
SHMDGR 9.32 0.28 99.3 52.4

Table 6: Evaluation on KITTI dataset.

Methods RMSE(R)↓ MAE(R)↓ RMSE(t)↓ MAE(t)↓
clean noisy clean noisy clean noisy clean noisy

SHM−
DCP 3.325 4.570 1.039 1.683 5.056 6.624 3.204 4.316

SHM+
DCP 2.522 3.886 0.833 1.510 4.780 5.758 3.052 3.774

SHM−
RPMNet 0.760 1.537 0.270 0.449 4.927 10.120 2.356 3.602

SHM−
RPMNet 0.514 1.456 0.247 0.378 3.883 8.421 2.328 3.145

Table 7: Comparison between the end-to-end learning and
post-processing setting. “-” indicates the post-processing,
and “+” indicates the end-to-end learning. Note: RMSE(t)
and MAE(t) results (×1000) are reported.

Ablation Studies
End-to-end vs. post-processing. In this paper, we advocate
learning the one-to-one matching in an end-to-end manner,
i.e. achieving the PPM in the matching stage. Oppositely,
another natural idea is to solve the PPM in post-processing,
i.e. using only the S-step to learn the soft matrix during
the training and adding the H-step during the test for the
final hard matrix, PPM. The comparison of these two ideas
is given in Table 7, where the experiments are conducted
on ModelNet40. We can see that the end-to-end learning
achieves better results in all metrics because more accurate
loss are calculated in this pipeline.
Other important ablation studies. Due to the limitation of
space, we provide some other import experiments in supple-
mentary materials, including the robustness to different out-
liers generation strategy, the robustness to different outliers
ratio, the influence of different loss function combinations,
and more qualitative results of registration, etc.

Conclusion
In this paper, we tackle the point matching problem in robust
3D point cloud registration. First, we analyze the inherent
ambiguity in soft matching-based methods. Second, to re-
solve the ambiguity and handle the outliers in the matching
stage, we propose to learn the partial permutation matching
(PPM) matrix. To address the consequent problem that PPM
is defined in non-differentiable space and cannot be solved
by existing hard assignment algorithms, we design a soft-
to-hard matching method. We have validated the effective-
ness by integrating it with various registration frameworks
including DCP, RPMNet, and DGR and conducting exten-
sive experiments in both synthetic data and real scan data,
which created a new state-of-the-art performance for robust
3D point cloud registration. In the future, we plan to extend
our framework to non-rigid point cloud registration.
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