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Abstract
Hierarchical structures are popular in recent vision transform-
ers, however, they require sophisticated designs and massive
datasets to work well. In this paper, we explore the idea of
nesting basic local transformers on non-overlapping image
blocks and aggregating them in a hierarchical way. We find
that the block aggregation function plays a critical role in
enabling cross-block non-local information communication.
This observation leads us to design a simplified architec-
ture that requires minor code changes upon the original vi-
sion transformer. The benefits of the proposed judiciously-
selected design are threefold: (1) NesT converges faster and
requires much less training data to achieve good general-
ization on both ImageNet and small datasets like CIFAR;
(2) when extending our key ideas to image generation, NesT
leads to a strong decoder that is 8 times faster than previ-
ous transformer-based generators; and (3) we show that de-
coupling the feature learning and abstraction processes via
this nested hierarchy in our design enables constructing a
novel method (named GradCAT) for visually interpreting the
learned model. Source code is available https://github.com/
google-research/nested-transformer.

Introduction
Vision Transformer (ViT) (Dosovitskiy et al. 2021) model
and its variants have received significant interests recently
due to their superior performance on many core visual ap-
plications (Cordonnier, Loukas, and Jaggi 2020; Liu et al.
2021). ViT first splits an input image into patches, and then
patches are treated in the same way as tokens in NLP ap-
plications. Following, several self-attention layers are used
to conduct global information communication to extract
features for classification. Recent work (Dosovitskiy et al.
2021; Cordonnier, Loukas, and Jaggi 2020) shows that ViT
models can achieve better accuracy than state-of-the-art con-
vnets (Tan and Le 2019; He et al. 2016) when trained on
datasets with tens or hundreds of millions of labeled sam-
ples. However, when trained on smaller datasets, ViT usually
underperforms its counterparts based on convolutional lay-
ers. Addressing this data inefficiency is important to make
ViT applicable to other application scenarios, e.g. semi-
supervised learning (Sohn et al. 2020) and generative mod-
eling (Goodfellow et al. 2014; Zhang et al. 2019).
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Lack of inductive bias such as locality and translation
equivariance, is one explanation for the data inefficiency of
ViT models. Cordonnier, Loukas, and Jaggi (2020) discov-
ered that transformer models learn locality behaviors in a
deformable convolution manner (Dai et al. 2017): bottom
layers attend locally to the surrounding pixels and top lay-
ers favor long-range dependency. On the other hand, global
self-attention between pixel pairs in high-resolution images
is computationally expensive. Reducing the self-attention
range is one way to make the model training more computa-
tionally efficient (Beltagy, Peters, and Cohan 2020). These
type of insights align with the recent structures with lo-
cal self-attention and hierarchical transformer (Han et al.
2021; Vaswani et al. 2021; Liu et al. 2021). Instead of
holistic global self-attention, these perform attention on lo-
cal image patches. To promote information communication
across patches, they propose specialized designs such as the
“haloing operation” (Vaswani et al. 2021) and “shifted win-
dow” (Liu et al. 2021). These are based on modifying the
self-attention mechanism and often yields in complex archi-
tectures. Our design goal on the other hand keeping the at-
tention as is, and introducing the design of the aggregation
function, to improve the accuracy and data efficiency, while
bringing interpretability benefits.

The proposed NesT model stacks canonical transformer
blocks to process non-overlapping image blocks individu-
ally. Cross-block self-attention is achieved by nesting these
transformers hierarchically and connecting them with a pro-
posed aggregation function. Fig. 1 illustrates the overall ar-
chitecture and the simple pseudo code to generate it. Our
contributions can be summarized as:

1. We demonstrate integrating hierarchically nested trans-
formers with the proposed block aggregation func-
tion can outperform previous sophisticated (local) self-
attention variants, leading to a substantially-simplified
architecture and improved data efficiency. This pro-
vides a novel perspective for achieving effective cross-
block communication.

2. NesT achieves impressive ImageNet classification ac-
curacy with a significantly simplified architectural de-
sign. E.g., training a NesT with 38M/68M parameters
obtains 83.3%/83.8% ImageNet accuracy.The favor-
able data efficiency of NesT is embodied by its fast
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Pseudo code: NesT
# embed and block image to (#block,seqlen,d)
x = Block(PatchEmbed(input_image))

for i in range(num_hierarchy):
# apply transformer layers T_i within each block
# with positional encodings (PE)
y = Stack([T_i(x[0] + PE_i[0]), ...])
if i < num_hierarchy - 1:

# aggregate blocks and reduce #block by 4
x = Aggregate(y, i)

h = GlobalAvgPool(x) # (1,seqlen,d) to (1,1,d)
logits = Linear(h[0,0]) # (num_classes,)

def Aggregate(x, i):
z = UnBlock(x) # unblock seqs to (h,w,d)
z = ConvNormMaxPool_i(x) # (h/2,w/2,d)
return Block(z) # block to seqs

Figure 1: (Left) Illustration of NesT with nested transformer hierarchy; (right) the simple pseudo code to generate the archi-
tecture. Each node T i processes an image block. The block aggregation is performed between hierarchies (num hierarchy= 3
here) to achieve cross-block communication on the image (feature map) plane.

convergence, such as achieving 75.9%/82.3% training
with 30/100 epochs. Moreover, NesT achieves matched
accuracy on small datasets compared with popular con-
volutional architectures. E.g., training a NesT with 6M
parameters using a single GPU results in 96% accuracy
on CIFAR10 .

3. We show that when extending this idea beyond classi-
fication to image generation, NesT can be repurposed
into a strong decoder that achieves better performance
than convolutional architectures meanwhile has com-
parable speed, demonstrated by 64×64 ImageNet gen-
eration, which is an important to be able to adopt trans-
formers for efficient generative modeling.

4. Our proposed architectural design leads to decoupled
feature learning and abstraction, which has signifi-
cant interpretability benefits. To this end, we propose
a novel method called GradCAT to interpret NesT rea-
soning process by traversing its tree-like structure. This
providing a new type of visual interpretability that ex-
plains how aggregated local transformers selectively
process local visual cues from semantic image patches.

Related Work
Vision transformer-based models (Cordonnier, Loukas, and
Jaggi 2020; Dosovitskiy et al. 2021) and self-attention
mechanisms (Vaswani et al. 2021; Ramachandran et al.
2019) have recently attracted significant interest in the re-
search community, with explorations of more suitable ar-
chitectural designs that can learn visual representation ef-
fectively, such as injecting convolutional layers (Li et al.
2021; Srinivas et al. 2021; Yuan et al. 2021) and building
local or hierarchical structures (Zhang et al. 2021; Wang
et al. 2021b). Existing methods focus on designing a variety
of self-attention modifications. Hierarchical ViT structures
becomes popular both in vision (Liu et al. 2021; Vaswani
et al. 2021) and NLP (Zhang, Wei, and Zhou 2019; Santra,
Anusha, and Goyal 2021; Liu and Lapata 2019; Pappagari

et al. 2019). However, many methods often add significant
architectural complexity in order to optimize accuracy.

One challenge for vision transformer-based models is data
efficiency. Although the original ViT (Dosovitskiy et al.
2021) can perform better than convolutional networks with
hundreds of millions images for pre-training, such a data re-
quirement is not always practical. Data-efficient ViT (DeiT)
(Touvron et al. 2021a,b) attempts to address this problem
by introducing teacher distillation from a convolutional net-
work. Although promising, this increases the supervised
training complexity, and existing reported performance on
data efficient benchmarks (Hassani et al. 2021; Chen et al.
2021) still significantly underperforms convolutional net-
works. Since ViT has shown to improve vision tasks beyond
image classification, with prior work studying its applicabil-
ity to generative modeling (Parmar et al. 2018; Child et al.
2019; Jiang, Chang, and Wang 2021; Hudson and Zitnick
2021), video understanding (Neimark et al. 2021; Akbari
et al. 2021), segmentation and detection (Wang et al. 2021a;
Liang et al. 2020; Kim et al. 2021), interpretability (Chefer,
Gur, and Wolf 2021; Abnar and Zuidema 2020), a deeper
understanding of the data efficiency and training difficulties
from the architectural perspective is of significant impact.

Proposed Method
Main Architecture
According to Fig. 1, our overall design stacks canonical
transformer layers to conduct local self-attention on every
image block independently, and then nests them hierarchi-
cally. Coupling of processed information between spatially
adjacent blocks is achieved through a proposed block ag-
gregation between every two hierarchies. The overall hi-
erarchical structure can be determined by two key hyper-
parameters: patch size S × S and number of block hierar-
chies Td. All blocks inside each hierarchy share one set of
parameters.

Given an input of image with shape H × W × 3, each
image patch with size S × S is linearly projected to an
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Figure 2: Example results of the proposed GradCAT. Given the left input image (containing four objects), the figure visualizes
the top-4 class traversal results (4 colors) using an ImageNet-trained NesT (with three tree hierarchies). Each tree node denotes
the averaged activation value (ĥl defined in Algorithm 1). The traversals can correctly find the model decision path along the
tree to locate an image patch belonging to the objects of given target classes.

embedding in Rd. Then, all embeddings are partitioned to
blocks and flattened to generate input X ∈ Rb×Tn×n×d,
where b is the batch size, Tn is the total number of blocks
at bottom of the NesT hierarchy, and n is the sequence
length (the number of embeddings) at each block. Note that
Tn × n = H ×W/S2.

Inside each block, we stack a number of canonical trans-
former layers, where each is composed of a multi-head self-
attention (MSA) layer followed by a feed-forward fully-
connected network (FFN) with skip-connection (He et al.
2016) and Layer normalization (LN) (Ba, Kiros, and Hin-
ton 2016). Trainable positional embedding vectors (Touvron
et al. 2021a) are added to all sequence vectors in Rd to en-
code spatial information before feeding into the block func-
tion T :

multiple ×
{
y = x+ MSANesT(x

′, x′, x′), x′ = LN(x)

x = y + FFN(LN(y))

(1)

The FFN is composed of two layers: max(0, xW1+b)W2+b.
Given input X ∈ Rb×Tn×n×d, since all blocks at one NesT
hierarchy share the same parameters, MSANesT basically
MSA is applied (Vaswani et al. 2017) to all blocks in par-
allel:

MSANesT(Q,K, V ) = Stack(block1, ..., blockTn
),

where blocki = MSA(Q,K, V )WO.
(2)

blocki has shape b× n× d. Lastly, we build a nested hierar-
chy with block aggregation – every four spatially connected
blocks are merged into one. The overall design makes NesT
easy to implement, requiring minor code changes to the orig-
inal ViT.

Block Aggregation
From a high-level view, NesT leads to hierarchical repre-
sentations, which share similarity with several pyramid de-
signs (Zhang et al. 2021; Wang et al. 2021b). However, most
of these works use global self-attention throughout the lay-
ers, interleaved with (spatial) down-sampling. In contrast,
we show that NesT, which leverages local attention, can

lead to significantly improved data efficiency. In local self-
attention, non-local communication is important to main-
tain translational equivariance (Vaswani et al. 2021). To this
end, Halonet (Vaswani et al. 2021) allows the query to at-
tend to slightly larger regions than the assigned block. Swin
Transformer (Liu et al. 2021) achieves this by shifting the
block partition windows between consecutive self-attention
layers to connect adjacent blocks; applying special masked
self-attention to guarantee spatial continuity. However, both
add complexity to the self-attention layers and such sophisti-
cated architectures are not desired from implementation per-
spective.

On the other hand, every block in NesT processes in-
formation independently via standard transformer layers,
and only communicate and mix global information dur-
ing the block aggregation step via simple spatial opera-
tions (e.g. convolution and pooling). One key ingredient of
block aggregation is to perform it in the image plane so
that information can be exchanged between nearby blocks.
This procedure is summarized in Fig. 1. The output Xl ∈
Rb×#block×n×d at hierarchy l is unblocked to the full im-
age plane Al ∈ Rb×H′×W ′×d′

. A number of spatial op-
erations are applied to down-sample feature maps A′l ∈
Rb×H′/2×W ′/2×d. Finally, the feature maps are blocked
back to Xl+1 ∈ Rb×#block/4×n×d′

for hierarchy l + 1. The
sequence length n always remains the same and the total
number of blocks is reduced by a factor of 4, until reduced to
1 at the top (i.e. #block/4(Td−1) = 1). Therefore, this pro-
cess naturally creates hierarchically nested structure where
the “receptive field” expands gradually. d′ ≥ d depends on
the specific model configuration.

Our block aggregation is specially instantiated as a 3× 3
convolution followed by LN and a 3 × 3 max pooling. Fig-
ure A2 in Appendix explains the core design and the im-
portance of applying it on the image plane (i.e. full im-
age feature maps) versus the block plane (i.e. partial feature
maps corresponding to 2 × 2 blocks that will be merged).
The small information exchange through the small convolu-
tion and max. pooling kernels across block boundaries are
particularly important. We conduct comprehensive ablation
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studies to demonstrate the importance of each of the design
components.

Note that the resulting design shares some similarities
with recent works that combine transformer and convolu-
tional networks (Wu et al. 2021; Yuan et al. 2021; Bello
2021) as specialized hybrid structures. However, unlike
these, our proposed method aims to solve cross-block com-
munications in local self-attention, and the resulting archi-
tecture is simple as a stacking of basic transformer layers.

Transposed NesT for Image Generation
The data efficiency and straightforward implementation of
NesT makes it desirable for more complex learning tasks.
With transpose the key ideas from NesT to propose a de-
coder for generative modeling, and show that it has better
performance than convolutional decoders with comparable
speed. Remarkably, it is nearly a magnitude faster than the
transformer-based decoder TransGAN (Jiang, Chang, and
Wang 2021).

Creating such a generator is straightforward by transpos-
ing NesT (see Table A6 of Appendix for architecture de-
tails). The input of the model becomes a noise vector and
the output is a full-sized image. To support the gradually in-
creased number of blocks, the only modification to NesT
is replacing the block aggregation with appropriate block
de-aggregation, i.e. up-sampling feature maps (we use pixel
shuffle (Shi et al. 2016)). The feature dimensions in all hi-
erarchies are (b, nd) → (b, 1, n, d) → (b, 4, n, d′), ...,→
(b,#blocks, n, 3). The number of blocks increases by a fac-
tor of 4. Lastly, we can unblock the output sequence tensor
to an image with shape H×W ×3. The remaining adversar-
ial training techniques are based on (Goodfellow et al. 2014;
Zhang et al. 2019) as explained in experiments. Analogous
to our results for image classification, we show the impor-
tance of careful block de-aggregation design, in making the
model significantly faster while achieving better generation
quality.

GradCAT: Interpretability via Tree Traversal
Different from previous work, the nested hierarchy with
the independent block process in NesT resembles a deci-
sion tree in which each block is encouraged to learn non-
overlapping features and be selected by the block aggrega-
tion. This unique behavior motivates us to explore a new
method to explain the model reasoning, which is an impor-
tant topic with significant real world impact in convnets (Sel-
varaju et al. 2017; Sundararajan, Taly, and Yan 2017).

We present a gradient-based class-aware tree-traversal
(GradCAT) method (Algorithm 1). The main idea is to find
the most valuable traversal from a child node to the root
node that contributes to the classification logits the most. In-
tuitively, at the top hierarchy, each of four child nodes pro-
cesses one of 2 × 2 non-overlapping partitions of feature
maps ATd

. We can use corresponding activation and class-
specific gradient features to trace the high-value informa-
tion flow recursively from the root to a leaf node. The nega-
tive gradient −∂Yc

Al
provides the gradient ascent direction to

Algorithm 1: GradGAT

Define:Al denotes the feature maps at hierarchy l. Yc is the logit
of predicted class c. [·]2×2 indexes one of 2×2 partitions of input
maps.
Input: {Al|l = 2, ..., Td}, αTd = ATd , P = []
Output: The traversal path P from top to bottom
for l = [Td, ..., 2] do
hl = αl · (− ∂Yc

αl
) # obtain target activation maps

ĥl = AvgPool2×2(hl) ∈ R2×2

n∗
l = argmax ĥl, P = P + [n∗

l ] # pick the maximum index
αl = Al[n

∗
l ]2×2 # obtain the partition for the index

end for

Arch. base Method C10 (%) C100 (%)

Convolutional Pyramid-164-48 95.97 80.70
WRN28-10 95.83 80.75

Transformer
full-attention

DeiT-T 88.39 67.52
DeiT-S 92.44 69.78
DeiT-B 92.41 70.49

PVT-T 90.51 69.62
PVT-S 92.34 69.79
PVT-B 85.05? 43.78?

CCT-7/3×1 94.72 76.67

Transformer
local-attention

Swin-T 94.46 78.07
Swin-S 94.17 77.01
Swin-B 94.55 78.45

NesT-T 96.04 78.69
NesT-S 96.97 81.70
NesT-B 97.20 82.56

Table 1: Test accuracy on CIFAR with input size 32×32. The
compared convolutional architectures are optimized models
for CIFAR. All transformer-based architectures are trained
from random initialization with the same data augmentation.
DeiT uses S = 2. Swin and our NesT uses S = 1. ? means
model tends to diverge.

maximize the class c logit, i.e., a higher positive value means
higher importance. Fig. 2 illustrates a sample result.

Experiments
We first show the benefit of NesT for data efficient learning
and then demonstrate benefits for interpretability and gener-
ative modeling. Finally, we present ablation studies to ana-
lyze the major constituents of the methods.
Experimental setup. We follow previous work (Dosovit-
skiy et al. 2021) to generate three architectures that have
comparable capacity (in number of parameters and FLOPS),
noted as tiny (NesT-T), small (NesT-S), and base (NesT-
B). Most recent ViT-based methods follow the training tech-
niques of DeiT (Touvron et al. 2021a). We follow the set-
tings with minor modifications that we find useful for local
self-attention (see Appendix for all architecture and training
details). We do not explore the specific per-block configura-
tions (e.g. number of heads and hidden dimensions), which
we believe can be optimized through architecture search
(Tan and Le 2019).
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Arch. base Method #Params Top-1 acc. (%)

Convolutional
ResNet-50 25M 76.2
RegNetY-4G 21M 80.0
RegNetY-16G 84M 82.9

Transformer
full-attention

ViT-B/16 86M 77.9
DeiT-S 22M 79.8
DeiT-B 86M 81.8

Transformer
local-attention

Swin-T 29M 81.3
Swin-S 50M 83.0
Swin-B 88M 83.3

NesT-T 17M 81.5
NesT-S 38M 83.3
NesT-B 68M 83.8

Table 2: Comparison on the ImageNet dataset. All models
are trained from random initialization. ViT-B/16 uses an im-
age size 384 and others use 224.

ViT-B/16 Swin-B Nest-B

ImageNet Acc. (%) 84.0 86.0 86.2

Table 3: Comparison on ImageNet benchmark with
ImageNet-22K pre-training.

Comparisons to Previous Work
CIFAR. We compare NesT to recent methods on CIFAR
datasets (Krizhevsky, Hinton et al. 2009) in Table 1, to in-
vestigate the data efficiency. It is known that transformer-
based methods usually perform poorly on such tasks as they
typically require large datasets to be trained on. The mod-
els that perform well on large-scale ImageNet do not nec-
essary work perform on small-scale CIFAR, as the full self-
attention based models require larger training datasets. DeiT
(Touvron et al. 2021a) performs poorly and does not im-
prove given bigger model size. PVT (Wang et al. 2021b) has
also a full self-attention based design, though with a pyra-
mid structure. PVT-T seems to perform better than DeiT-T
when model size is small, however, the performance largely
drops and becomes unstable when scaling up, further sug-
gesting that full self-attention at bottom layers is not de-
sirable for data efficiency. Other transformer-based methods
improve slowly with increasing model size, suggesting that
bigger models are more challenging to train with less data.
We attribute this to to their complex design (i.e. shifted win-
dows with masked MSA) requiring larger training datasets,
while NesT benefiting from a judiciously-designed block ag-
gregation. We also include comparisons with convolutional
architectures that are specifically optimized for small CI-
FAR images and show that NesT can give better accuracy
without any small dataset specific architecture optimizations
(while still being larger and slower, as they do not incorpo-
rate convolutional inductive biases). The learning capacity
and performance of NesT get better with increased model
size. Most variants of NesT in Fig. A1 of Appendix out-
perform compared methods with far better throughput. E.g.,
NesT3-T (S = 2) leads to 94.5% CIFAR10 accuracy with
5384 images/s throughout, 10× faster than the best com-
pared result 94.6% accuracy. More details can be found in

Appendix.
ImageNet. We test NesT on standard ImageNet 2012 bench-
marks (Deng et al. 2009) with commonly used 300 epoch
training on TPUs in Table 2. The input size is 224 × 224
and no extra pre-training data is used. DeiT does not use
teacher distillation, so it can be viewed as ViT (Dosovit-
skiy et al. 2021) with better data augmentation and reg-
ularization. NesT matches the performance of prior work
with a significantly more straightforward design (e.g. NesT-
S matches the accuracy of Swin-B, 83.3%). The results
of NesT suggest that correctly aggregating the local trans-
former can improve the performance of local self-attention.
ImageNet-22K. We scale up NesT to ImageNet-22K fol-
lowing the exact training schedules in (Liu et al. 2021;
Dosovitskiy et al. 2021). The pre-training is 90 epoch on
224×224 ImageNet21K images and finetuning is 30 epoch
on 384×384 ImageNet images. Table 3 compares the results.
NesT again achieves competitive results, with a significantly
more straightforward design.

Visual Interpretability
GradGAT results. Fig. 3 (left) shows the explanations ob-
tained with the proposed GradGAT. For GradGAT, each tree
node corresponds to a value that reflects the mean activa-
tion strength. Visualizing the tree traversal through image
blocks, we can get insights about the decision making pro-
cess of NesT. The traversal passes through the path with the
highest values. As can be seen, the decision path can cor-
rectly locate the object corresponding to the model predic-
tion. The Lighter example is particularly interesting because
the ground truth class – lighter/matchstick – actually defines
the bottom-right matchstick object, while the most salient
visual features (with the highest node values) are actually
from the upper-left red light, which conceptually shares vi-
sual cues with a lighter. Thus, although the visual cue is a
mistake, the output prediction is correct. This example re-
veals the potential of using GradGAT to conduct model di-
agnosis at different tree hierarchies. Fig. A5 of Appendix
shows more examples.
Class attention map (CAM) results. In contrast to ViT
(Dosovitskiy et al. 2021) which uses class tokens, NesT uses
global average pooling before softmax. This enables con-
veniently applying CAM-like (Zhou et al. 2016) methods
to interpret how well learned representations measure ob-
ject features, as the activation coefficients can be directly
without approximate algorithms. Fig. 3(right) shows quan-
titative evaluation of weakly-supervised object localization,
which is a common evaluation metric for CAM-based meth-
ods (Zhou et al. 2016), including GradCAM++ (Chattopad-
hay et al. 2018) with ResNet50 (He et al. 2016), DeiT with
Rollout attention (Abnar and Zuidema 2020), and our NesT
CAM (Zhou et al. 2016). We follow this toolkit1 to use an
improved version of Rollout. NesT with standard CAM, out-
performs others that are specifically designed for this task.
Fig. 4 shows a qualitative comparison (details in the Ap-
pendix), exemplifying that NesT can generate clearer atten-
tion maps which converge better on objects.

1https://github.com/jacobgil/vit-explain
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Figure 3: Left: Output visualization of the proposed GradGAT. Tree nodes annotate the averaged responses to the predicted
class. We use a NesT-S with three tree hierarchies. Right: CAM-based weakly supervised localization comparison on the
ImageNet validation set. § indicates results obtained by us.
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Figure 4: Visualization of CAM-based attention results. All models are trained on ImageNet. CAM (vanilla) with NesT achieves
accurate attention patterns on object regions, yielding finer attention to objects than DeiT Rollout (Abnar and Zuidema 2020)
and less noise than ResNet50 GradCAM++ (Chattopadhay et al. 2018).

Overall, decoupling local self-attention (transformer
blocks) and global information selection (block aggrega-
tion), which is unique to our work, shows significant poten-
tial for making models easier to interpret.

Generative Modeling with Transposed NesT
We evaluate the generative ability of Transposed NesT on
ImageNet (Russakovsky et al. 2015) where all images are
resized to 64 × 64 resolution. We focus on the uncondi-
tional image generation setting to test the effectiveness of
different decoders. We compare Transposed NesT to Trans-
GAN (Jiang, Chang, and Wang 2021), that uses a full Trans-
former as the generator, as well as a convolutional baseline
following the widely-used architecture from (Zhang et al.
2019) (its computationally expensive self-attention module
is removed). Fig. 5 shows the results. Transposed NesT ob-
tains significantly faster convergence and achieves the best
FID and Inception score (see Fig. A6 of Appendix for re-
sults). Most importantly, it achieves 8× throughput over
TransGAN, showing its potential for significantly improv-

ing the efficiency of transformer-based generative modeling.
More details are explained in the Appendix.

It is noticeable from Fig. 5 (middle) that appropriate un-
sampling (or block de-aggregation) impacts the generation
quality. Pixel shuffle (Shi et al. 2016) works the best and the
margin is considered surprisingly large compared to other
alternatives widely-used in convnets. This aligns with our
main findings in classification, suggesting that judiciously
injecting spatial operations is important for nested local
transformers to perform well.

Ablation Studies
We summarize key ablations below (more in Appendix).
Fast convergence. NesT achieves fast convergence, as
shown in Fig. 6 (top) for Imagenet training with
{30, 60, 100, 300} epochs. NesT-B merely loses 1.5% when
reducing the training epoch from 300 to 100. The results
suggest that NesT can learn effective visual features faster
and more efficiently.
Less sensitivity to data augmentation. NesT uses several
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different popular un-sampling methods for block de-aggregation, including combinations of pixel shuffling (PS), Conv3x3 (C3),
and nearest neighbor (NN). Right: The number of parameters and throughput of compared generators.
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RandAugment 79.6 81.2
CutMix&MixUp 75.8 79.8

Figure 6: Top: Training convergence. NesT achieves better
performance than DeiT with the same total epoch of train-
ing (each point is a single run). Bottom: Data augmentation
ablations. Results of DeiT-B (Touvron et al. 2021a) are re-
ported by its paper. NesT shows less reliance on data aug-
mentation.

kinds of data augmentation following (Touvron et al. 2021a).
As shown in Fig. 6 (right) and Fig. A4, our method shows
higher stability in data augmentation ablation studies com-
pared to DeiT. Data augmentation is critical for global self-
attention to generalize well, but reduced dependence on do-
main or task dependent data augmentation helps with gener-
alization to other tasks.
Impact of block aggregation. Here we show that the design
of block aggregation is critical for performance and data ef-
ficiency. We study this from four perspectives: (1) whether
unblocking to the full image plane is necessary; (2) how
to use convolution; (3) what kinds of pooling to use; and
(4) whether to perform query down-sampling inside self-
attention (Vaswani et al. 2021). Fig. 7 and Fig. A3 of Ap-
pendix compare the results of different plausible designs.

The results show that: (1) when performing these spa-
tial operations, it is important to apply it on the holistic
image plane versus the block plane although both can rea-
sonably introduce spatial priors; (2) small kernel convolu-
tion is sufficient and has to be applied ahead of pooling; (3)
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Figure 7: Demonstration of the impact of block aggrega-
tion on CIFAR and ImageNet. NesT-T is used. Conv3x3 has
stride 2. AvgPool3x3 on ImageNet is followed by Conv1x1
to change hidden dimensions of self-attention. Four plausi-
ble block aggregation designs are shown in x-axis, and ap-
plied on the image plane and block plane both for compar-
ison. Note that Ours in x-axis is Conv3x3 followed by LN
and MaxPool3x3 (stride 2). More alternatives are validated
in Fig. A3 of Appendix.

max. pooling is far better than other options, such as stride-
2 sub-sampling and average pooling; (4) sub-sampling the
query sequence length (similar to performing sub-sampling
on the block plane as illustrated in Fig. A2), as used by
Halonet (Vaswani et al. 2021), performs poorly on data ef-
ficient benchmarks. We also experiment PatchMerge from
Swin Transformer (Liu et al. 2021) on both CIFAR and Im-
ageNet. Our block aggregation closes the accuracy gap on
ImageNet, suggesting that a conceptually negligible differ-
ence in aggregating nested transformers can lead to signifi-
cant differences in model performance.

Conclusion

We have shown that aggregating nested transformers can
match the accuracy of previous more complex methods
with significantly improved data efficiency and convergence
speed. In addition, we have shown that this idea can be
extended to image generation, where it provides signifi-
cant speed gains. Finally, we have shown that the decou-
pled feature learning and feature information extraction in
this nested hierarchy design allows for better feature inter-
pretability through a new gradient-based class-aware tree
traversal method. In future work we plan to generalize this
idea to non-image domains.
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