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Abstract

Deep learning-based approaches have shown remarkable per-
formance in the 3D object detection task. However, they suffer
from a catastrophic performance drop on the originally trained
classes when incrementally learning new classes without revis-
iting the old data. This “catastrophic forgetting” phenomenon
impedes the deployment of 3D object detection approaches in
real-world scenarios, where continuous learning systems are
needed. In this paper, we study the unexplored yet important
class-incremental 3D object detection problem and present
the first solution - SDCoT, a novel static-dynamic co-teaching
method. Our SDCoT alleviates the catastrophic forgetting of
old classes via a static teacher, which provides pseudo anno-
tations for old classes in the new samples and regularizes the
current model by extracting previous knowledge with a distil-
lation loss. At the same time, SDCoT consistently learns the
underlying knowledge from new data via a dynamic teacher.
We conduct extensive experiments on two benchmark datasets
and demonstrate the superior performance of our SDCoT over
baseline approaches in several incremental learning scenarios.
Our code is available at https://github.com/Na-Z/SDCoT.

Introduction
The success of deep learning are seen in many computer vi-
sion tasks that include point cloud-based 3D object detection.
Many deep learning-based approaches (Li, Zhang, and Xia
2016; Chen et al. 2017; Beltrán et al. 2018; Yan, Mao, and
Li 2018; Yang, Luo, and Urtasun 2018; Zeng et al. 2018;
Zhou and Tuzel 2018; Chen et al. 2019; Lang et al. 2019;
Qi et al. 2019; Shi, Wang, and Li 2019; Yang et al. 2019;
Zhou et al. 2019; Yang et al. 2020; Zheng et al. 2021) are
proposed and have shown impressive performance in localiz-
ing and categorizing objects of interest in the point cloud of a
scene. However, these approaches suffer from “catastrophic
forgetting”, i.e. a significant performance degradation on the
old classes (c.f. Row 3 of Table 1 and 2) when applied in
a class-incremental scenario where new classes are added
incrementally while old data might be unavailable due to stor-
age limitation or privacy issue. The “catastrophic forgetting”
phenomenon largely limits the use of these models in real-
world applications, where intelligent machines are required
to continually learn new knowledge without forgetting the
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Figure 1: An example of class-incremental 3D object detec-
tion.

old one. For example, the detection system on a domestic
robot is initially trained to detect several base classes such
as ‘chair’ and ‘picture’ (see the left example in Figure 1).
Subsequently, when the examples of novel classes such as
‘sofa’ and ‘table’ become available, the system needs to in-
crementally learn to detect these novel classes without losing
the ability to detect the base classes (see the right example
in Figure 1). Furthermore, the ability to do class-incremental
learning of 3D object detection gives machines a learning ca-
pability closer to humans since we do not forget old concepts
after learning new ones.

Although class-incremental learning has been studied in
several computer vision tasks (Li and Hoiem 2017; Shmelkov,
Schmid, and Alahari 2017; Michieli and Zanuttigh 2019;
Dong et al. 2021), especially image classification, class-
incremental learning of 3D object detection remains unex-
plored. To our best knowledge, we are the first to study this
unexplored yet important problem, and to present an effective
Static-Dynamic Co-Teaching solution named SDCoT. Our
SDCoT is able to incrementally detect new classes without
revisiting any data of the old classes. A challenge in class-
increment learning of object detection is the high chance of
old (in the background without labels) and new (with labels)
classes co-occurring in the new training samples. This causes
the model to wrongly suppress the old classes and thus expe-
dites the catastrophic forgetting process. To overcome this
challenge, SDCoT leverages the previous model trained on
old data to generate pseudo annotations of old classes in the
new training samples. Consequently, a mixture of pseudo
labels of the old classes and the ground-truth labels of new
classes, i.e. “mixed labels” is used to train the current model.
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Figure 2: Overview of our backbone - modified VoteNet.

A naive way of pseudo label generation leads to inaccurate
and incomplete pseudo labels that deteriorate the detection
performance. Our SDCoT alleviates this problem by introduc-
ing co-teaching from two teachers: a static teacher and a dy-
namic teacher. Specifically, the static teacher is a frozen copy
of the previous model, which teaches to distill previously
learned knowledge from old data with a distillation loss. On
the other hand, the dynamic teacher is an ensemble of the cur-
rent model across its up-to-date training steps, which teaches
to consistently learn the underlying knowledge from the new
data with a consistency loss. As a result, our SDCoT trains
the current model with supervision from the “mixed labels”
and regularizations from the two adversarial teachers. We
conduct extensive experiments on SUN RGB-D and ScanNet
datasets. The performance improvements over the baselines
under different incremental learning scenarios demonstrate
the effectiveness of our SDCoT in class-incremental 3D ob-
ject detection. Additionally, we validate the contribution of
static and dynamic teachers in knowledge exploitation by
evaluating different variants of our SDCoT. Finally, we also
show our SDCoT is compatible with examples from old data
once they are available.

Related Work
Class-incremental learning is a classical machine learning
problem, which refers to the continuous addition of new
classes into a model. Most existing class-incremental leaning
methods focus on image classification task, which can be
classified into two main categories: 1) regularization based
methods minimize the discrepancy between either the data
(Li and Hoiem 2017; Hou et al. 2019) or parameters (Kirk-
patrick et al. 2017; Aljundi et al. 2018) of the previous model
and the current model; 2) rehearsal/replay-based methods
store a subset of exemplars from previous classes (Rebuffi
et al. 2017; Castro et al. 2018; Wu et al. 2019) or produce
synthesized exemplars for previous classes using a generative
model (Shin et al. 2017; Ostapenko et al. 2019).

Recently, several works apply class-incremental learn-
ing on image-based object detection task. Most of them
(Shmelkov, Schmid, and Alahari 2017; Chen, Yu, and Chen
2019; Hao et al. 2019; Peng, Zhao, and Lovell 2020) ad-
dress this problem by exploring knowledge distillation on
network responses (i.e. data-based regularization). For exam-
ple, the first study on class-incremental image object detec-
tion (Shmelkov, Schmid, and Alahari 2017) leverages Fast
R-CNN as object detector and applies distillation losses on
the predictions of classification layer and bounding box re-
gression layer. Built upon this first work, CIFRCN (Hao
et al. 2019) additionally distills the intermediate features of

RPN by adopting Faster R-CNN. However, these knowledge
distillation methods are specifically designed for 2D object
detection backbones; how to apply knowledge distillation
(e.g. what to distill) on the point cloud-based 3D object detec-
tion backbones is unknown. We adapt a standard 3D object
detector to class-incremental 3D object detection task, and
further show the effects of different choices in employing
knowledge distillation on adapted 3D object detector. More
recently, IncDet (Liu et al. 2020) adapts Elastic weight consol-
idation (EWC) (Kirkpatrick et al. 2017), a parameter-based
regularization method, to class-incremental image object de-
tection task. IncDet circumvents the co-occurrence challenge
in class-incremental object detection by using pseudo bound-
ing box annotations of old classes in new training samples.
Similar to IncDet, we also utilize pseudo annotations of old
classes to prevent the current model from mistakenly clas-
sifying old class objects as background in the new samples.
Nonetheless, unlike its image-based counterpart, the gener-
ated pseudo annotations in 3D scenario are not very accurate
and may cause performance degradation. We solve this issue
by proposing a static-dynamic co-teaching technique.

Our Methodology
Problem Definition
In the class-incremental 3D object detection task, there are
two non-overlapped sets of classes: base classes set Cbase

and novel classes set Cnovel. A set of data Dbase is avail-
able for Cbase, and another set of data Dnovel is available
for Cnovel. We define the class-incremental 3D object de-
tection task as follows: given a well-trained 3D object de-
tector ΦB (i.e. base model) on Dbase, our goal is to learn
an incremental 3D object detector ΦB∪N (i.e. incremental
model) using only Dnovel, such that ΦB∪N is able to detect
objects from all the classes seen so far, i.e. Cbase ∪ Cnovel.
To this end, we propose SDCoT: a novel Static-Dynamic Co-
Teaching framework to achieve class-incremental learning
on 3D object detection.

Anatomy of VoteNet
We use VoteNet (Qi et al. 2019) as the prototype of our 3D
object detector because of its efficiency and simplicity in
point cloud-based 3D object detection. In this section, we
dissect the anatomy of VoteNet to reveal two observations that
we leverage to adapt VoteNet for the design of our SDCoT.

Observation 1. VoteNet inherently includes two sub-
sampling steps: 1) sub-sample M seeds (denoted as S in
Figure 2) from N input points via a feature learning back-
bone; and 2) sub-sample K votes from V as cluster centers to
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generate K proposals by aggregating neighboring votes. Due
to the stochasticity of these sub-sampling steps in VoteNet,
different sets of proposals are produced from the same input
point cloud at different times.
Remark. The stochasticity of VoteNet implies that the sets
of proposals generated from the base and the incremental
models, respectively, are not aligned even for the same input
point cloud. This impedes a direct comparison of the pro-
posals, which is essential for training an incremental model
via knowledge distillation. To circumvent this problem, we
store all the indices of the sampled points and the indices of
the sampled votes from the incremental model, and re-use
these indices in the base model. Consequently, the two sets
of proposals produced from the two models are aligned and
can be compared to measure the output discrepancy.
Observation 2. After obtaining the proposal features (de-
noted as P in Figure 2), VoteNet adopts one multi-layer per-
ceptron (MLP) layer to yield prediction scores for each pro-
posal. The prediction scores consist of 2 objectness scores,
3 center offsets, 2NH heading scores (NH heading bins),
4NC box size scores (NC size templates), andNC category
scores. Note that the box size scores include 1 classifica-
tion score and 3 size offsets for each size template, and the
size templates correspond to the class categories. The size of
prediction scores is fixed after VoteNet is trained.
Remark. The fixed prediction scores size of VoteNet after
training is problematic for class-incremental learning. To
enroll new classes in class-incremental learning, the weights
for class-aware predictions need to be dynamically updated
according to the addition of novel classes. We solve this
problem by first decoupling the last MLP layer into two
parts (i.e. regressor and classifier in Figure 2) to separate
the category prediction from the predictions of other scores,
and then adding new weights to the classifier according to
the novel classes. We concurrently replace the class-aware
size prediction with class-agnostic one to achieve a simpler
implementation for class-incremental 3D object detection.

Our SDCoT
Pseudo Label Generation. A challenge in class-
incremental learning of object detection is the high
possibility of co-occurrence of different classes in some
scenes. Concretely, there is a high probability that instances
belonging to the base classes appear as background in the
samples of Dnovel. As a result, these regions that contain the
old class objects are wrongly suppressed during incremental
class training and thus expedite catastrophic forgetting.
Moreover, the presence of base classes without annotations
confuses the incremental learning model.

To overcome the co-occurrence challenge, we take a frozen
copy of the base model ΦB to generate pseudo labels with
respect to Cbase for each training sample in Dnovel. The gen-
eration of pseudo labels from ΦB can also be considered
as a way to exploit previous knowledge. More specifically,
after obtaining the predicted 3D bounding boxes (bboxes)
from ΦB , we filter out low-confidence bboxes by setting two
thresholds with respect to the objectness score and classifi-
cation probability, denoted as τo and τc. Unfortunately, the
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Figure 3: Example of generated pseudo labels from SUN
RGB-D (left) and ScanNet (right). Red bboxes are generated
pseudo annotations w.r.t Cbase. Green and Blue bboxes are
GT annotations w.r.t Cbase and Cnovel, respectively.

resulting pseudo labels with the hard thresholding strategy
are often inaccurate and incomplete, i.e. there are missing
annotations for some objects of base classes (see examples
in Figure 3). Consequently, these inaccurate and incomplete
labels can affect the learning of the incremental model. We
alleviate the detrimental effects of these labels by a static-
dynamic co-teaching strategy.

Static-Dynamic Co-Teaching. We design our static-
dynamic co-teaching strategy based on the conjecture that
the incremental model is less susceptible to noisy and incom-
plete labels when it is able to largely exploit the underlying
knowledge from the base model and new data. Generally,
the well-trained base model encodes valuable knowledge of
base classes. In view of this, we adopt a frozen copy of the
base model as our static teacher. Through the use of pseudo
labels, we impede the catastrophic forgetting of base classes
caused by the absence of base class annotations in novel train-
ing samples. To further exploit more knowledge from the base
model, we introduce a distillation scheme with the aim of
keeping responses from the base and incremental models to
be as close as possible. Specifically, our distillation scheme
targets the predicting layer and computes a distillation loss
that measures the difference between the classification logits
with respect to Cbase from the base and incremental mod-
els. This knowledge distillation scheme can compensate for
the missing labels with respect to Cbase when the base class
objects co-occur in a scene of Dnovel. Furthermore, the re-
sponses, i.e. classification logits with respect to Cbase can
provide some useful information of the background, i.e. dark
knowledge (Furlanello et al. 2018; Hinton, Vinyals, and Dean
2015), even when there is no base class object.

To exploit more information from the new data, we also de-
sign a dynamic teacher that is able to consistently learn the
underlying knowledge in terms of both base and novel classes.
The design of our dynamic teacher is inspired by Mean
Teacher (Tarvainen and Valpola 2017): a self-ensembling
technique that is originally proposed to effectively exploit
unlabeled data for reducing over-fitting in semi-supervised
learning. SESS (Zhao, Chua, and Lee 2020) adapts this self-
ensembling technique to semi-supervised 3D object detection
task by proposing a perturbation scheme and a consistency
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Figure 4: The architecture of our SDCoT. The student and two teachers are 3D object detectors based on modified VoteNet.

loss that enforces the consensus of locations, sizes, categories
of the output proposals between a student and a teacher net-
work. More importantly, they show that their superior per-
formance under 100% labeled data is due to the consistency
regularization of the mean-teacher paradigm, which gives
their framework the capability to exploit additional under-
lying knowledge from the data. Thus, we incorporate the
dynamic teacher, and adopt the perturbation scheme and
the consistency loss of SESS in our SDCoT for a deeper
knowledge exploitation of the new data. Consequently, the
dynamic teacher guides the incremental model to be more
robust against imperfect pseudo labels in new data and also
concurrently to be more expressive on new classes.

SDCoT Details. The architecture of our SDCoT is illus-
trated in Figure 4. It consists of three networks: one student,
one static teacher, and one dynamic teacher. Both the student
and two teacher networks are 3D object detectors that use
the modified VoteNet as backbone. Particularly, the student
is the incremental detector ΦB∪N that incrementally learns
from Cnovel. It is co-taught by the static and dynamic teach-
ers. The static teacher is a frozen copy of the base model
ΦB , which is used to generate pseudo labels for objects of
Cbase in Dnovel and prevent the incremental model from
drifting too much away from the base model. The dynamic
teacher network Φ′B∪N is an exponential moving average of
the student network, which dynamically generates targets of
all classes for the student network. Note that the parameters
of the student and dynamic teacher networks are initialized
from ΦB , with the exception that the added weights in the
classifier for novel classes are randomly initialized.

Given an input point cloud denoted as X in Figure 4, our
SDCoT first forwards it to the static teacher to generate K
3D bounding boxes (i.e. proposals) for the base classes. A
subset of these 3D bboxes are selected as pseudo labels ŶB

by thresholding with τo and τc. The pseudo labels ŶB are
combined with the ground-truth labels of novel classes YN

to form “mix labels”.
Concurrently, SDCoT sub-samples the input point cloud

twice to get two point clouds, i.e. Xi and Xj in Figure 4. Xi

is directly passed to the dynamic teacher network, while Xj

is further augmented before inputting into the student and
static teacher networks. The sub-sampling and augmentation
(i.e. stochastic flipping, rotation, and scaling) are components

of the perturbation scheme, which allows the model to learn
useful knowledge rather than memorizing the training data.

As discussed in Observation 1, the two stochastic sampling
steps (i.e. the sampling of seeds and votes) cause the base
and incremental models to give unaligned proposals despite
the same input. We overcome this problem by re-using the
selected indices yielded by the student in the static teacher
network. A distillation loss Ldis is computed to measure the
discrepancy between the classification logits of the proposals
from the static teacher (i.e. pT

B in Figure 4) and the logits
corresponding to Cbase from the student (i.e. pS

B in Figure 4).
We normalize the classification logits by subtracting its mean
over class dimension, which yield p̄T

B and p̄S
B , respectively.

More formally, the distillation loss is computed as:

Ldis =
1

K

K∑
i=1

||p̄S
B,i − p̄T

B,i||2. (1)

p̄∗B,i is a |Cbase|-dimensional vector, which represents nor-
malized classification logit of i-th 3D object proposal. On the
other hand, the output proposals of the student network (i.e.
ỸB∪N in Figure 4) are compared with: 1) the mixed labels
{ŶB ,YN} transformed by the same augmentation step that
is applied on Xj to compute a supervised lossLsup

1, similar
as the multi-task loss in VoteNet; and 2) the output proposals
of the dynamic teacher network Ỹ′B∪N transformed by the
same augmentation step as above to compute a consistency
loss Lcon as in SESS, respectively.

At each training iteration t, the student network is updated
by the stochastic gradient descent based on a weighted sum
of the three losses:

L = λsLsup + λdLdis + λcLcon. (2)
After updating the student network, the dynamic teacher is
updated as an exponential moving average (EMA) of the
student parameters: Φ′t = αΦ′t−1 +(1−α)Φt

2. α is a hyper-
parameter to determine the amount of information taken from
the student network. At inference time, an input point cloud
is directly passed to the dynamic teacher network3 to predict

1The details of Lsup are provided in the supplementary material.
2The subscripts of ΦB∪N and Φ′

B∪N are omitted for brevity.
3Both the student and dynamic teacher networks can be used for

prediction during inference. We empirically found that the dynamic
teacher gives better prediction results and thus use it for inference.
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a set of 3D bounding boxes, which are post-processed by a
3D NMS module.

Discussion. Interestingly, the static teacher and the dy-
namic teacher are opposing each other. The conservative
former is preventing the student from deviating too much
from the base model, while the radical latter is pushing the
student to update with new knowledge. Nonetheless, an equi-
librium would be reached by the knowledge distilling static
teacher and the consistency regularizing dynamic teacher
when the co-training converges.

Experiments
Datasets and Settings
Datasets. We evaluate SDCoT on the SUN RGB-D 3D ob-
ject detection benchmark and ScanNet dataset. SUN RGB-D
(Song, Lichtenberg, and Xiao 2015) consists of 5,285 train-
ing samples and 5,050 validation samples for hundreds of
object classes. To be consistent with the standard evaluation
protocol in prior works (e.g. VoteNet), we perform evalua-
tion on the 10 most common categories. ScanNet (Dai et al.
2017) consists of 1,201 training samples and 312 validation
samples, where there is no amodal oriented 3D bounding
boxes but point-level semantic segmentation labels. We fol-
low VoteNet to derive the axis-aligned bounding boxes from
the point-level labeling and adopt the same 18 object classes
for evaluation. The differences between the two datasets are
highlighted in the supplementary material.

Setup. To customize the datasets to the class-incremental
learning setting, we take a subset of classes in alphabet-
ical order from each dataset as Cbase and treat the re-
maining as Cnovel, following the class splitting strategy in
class-incremental image-based object detection (Shmelkov,
Schmid, and Alahari 2017). Dbase is composed of training
samples that contain any class of Cbase and ignores annota-
tions for Cnovel. Dnovel is constructed in a similar way. Note
that Dbase and Dnovel may contain the same sample, but the
annotations of this sample are different due to the change of
interest on the classes.

Evaluation metric. We adopt the widely used metric in
3D point cloud object detection, i.e. mean average precision
(mAP). By default, we report mAP under 3D IoU threshold
0.25, denoted as mAP@0.25, in the following experiments.

Implementation Details
We set τo and τc that control the selection of pseudo labels as
0.95 and 0.9, respectively. The weights in the loss function
(i.e. Eq. 2) are set as λs=10, λd=1, λc=10. We adopt a ramp-
up technique (Tarvainen and Valpola 2017) to schedule the
respective contributions of λd and λc. Specifically, λd and
λc ramp up from 0 to their corresponding maximum value
during the first 30 epochs, using a sigmoid-shaped function
e−5(1−t)

2

, where t increases linearly from 0 to 1 during the
ramp-up period. Following SESS, we set α in EMA as 0.99
during the ramp-up period and raise it to 0.999 in the follow-
ing training. The base model ΦB and the student network
ΦB∪N are trained by an Adam optimizer. The initial learning

rate for ΦB is set to 0.001 and then decayed by 0.1 at the
80th and 120th epoch. The initial learning rate for ΦB∪N
varies based on the settings of class-incremental learning.

Baselines
We design two direct and naive baselines for class-
incremental 3D object detection. The first is “freeze and add”:
freeze the base model ΦB that is well-trained withDbase, and
then add a new classifier for Cnovel trained on Dnovel to the
classifier branch of ΦB . The other is “fine-tuning”: fine-tune
all parameters of the base model (except the old classifier)
as well as a new classifier for Cnovel (randomly initialized)
with Dnovel. In addition to the two naive baselines, we also
compare our SDCoT with its three variants, i.e. without ei-
ther the distillation loss (Ldis) or the consistency loss (Lcon).
Concretely, we remove the entire dynamic teacher when w/o
Lcon is applied; and the static teacher is just used to generate
pseudo labels when w/o Ldis is applied. Finally, joint training
that is trained on all the classes serves as the upper-bound.

Quantitative Results
We evaluate the effectiveness of SDCoT in class-incremental
3D object detection task by designing two different scenar-
ios: 1) batch incremental learning: all the novel classes are
available at once for ΦB∪N to update; and 2) sequential in-
cremental learning: the novel classes are split into subsets
and become available sequentially. Note that the next static
teacher network is updated by the current learned student
network in sequential incremental learning. Furthermore, we
consider different settings on the number of novel classes in
batch incremental learning to eliminate the bias caused by par-
ticular classes. Specifically, we evaluate on three settings: a)
|Cnovel| = |Cbase|; b) |Cnovel| < |Cbase| and |Cnovel| > 1;
c) |Cnovel| = 1.

Batch incremental learning. Table 1 and 2 show the com-
parison results of batch incremental 3D object detection per-
formed under the three settings on SUN RGB-D and ScanNet,
respectively. In each table, the upper part is a standard train-
ing on Cbase, the middle part lists the results when Cnovel is
incrementally added, and the bottom part is an upper-bound
jointly trained on Cbase ∪ Cnovel. As can be seen from the
tables, the two naive solutions (i.e. freeze and add, and fine-
tuning) lead to extremely poor performance on either novel
classes or base classes in all settings on both datasets. It is ap-
parent that the “freeze and add” solution leads to sub-optimal
results on Cnovel, although it can largely preserve the perfor-
mance on Cbase. On the other hand, “fine-tuning” the model
with new object classes leads to catastrophic forgetting of old
classes.

It is notable that incorporating pseudo labels into ground-
truth labels (see 4th row of Table 1 and 2) can greatly help the
incremental model preserve the knowledge from the previous
classes. Furthermore, compared to only using mixed labels,
the addition of the distillation loss (see 6th row of Table 1
and 2) gains various improvements on the base classes in
different settings. This shows that the distillation loss do help
exploit extra knowledge from the static teacher. We also no-
tice that the performance with Ldis surpasses that without
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Method |Cnovel| = 5 |Cnovel| = 3 |Cnovel| = 1
Base Novel All Base Novel All Base Novel All

1 Base training 57.58 – – 53.73 – – 55.10 – –
2 Freeze and add 54.24 10.61 32.42 51.94 12.64 40.16 54.63 0.9 49.26
3 Fine-tuning 3.48 54.09 28.79 4.1 60.17 20.92 14.86 1.38 13.51
4 SDCoT w/o Ldis & Lcon 52.17 50.12 51.14 38.96 63.68 46.38 26.83 24.77 26.63
5 SDCoT w/o Ldis 50.35 59.88 55.12 37.91 66.39 46.45 30.85 29.96 30.76
6 SDCoT w/o Lcon 52.92 57.11 55.01 41.81 63.45 48.30 31.61 25.78 31.02
7 SDCoT 53.61 60.80 57.21 44.48 67.41 51.36 36.81 42.69 37.40
8 Joint training 58.92 58.80 58.86 54.80 68.33 58.86 55.36 90.36 58.86

Table 1: Batch incremental 3D object detection performance (mAP@0.25) on SUN RGB-D val set. All the methods listed in the
middle table incrementally learn on |Cnovel| novel classes. Base training is with (10− |Cnovel|) base classes and joint training is
with all 10 classes.

Method |Cnovel| = 9 |Cnovel| = 4 |Cnovel| = 1
Base Novel All Base Novel All Base Novel All

1 Base training 60.75 – – 53.14 – – 56.89 – –
2 Freeze and add 58.85 4.22 31.53 49.85 3.15 39.47 56.24 0.29 53.14
3 Fine-tuning 1.91 52.39 27.15 1.09 59.44 14.05 0.25 12.98 0.96
4 SDCoT w/o Ldis & Lcon 53.09 46.42 49.76 48.27 63.87 51.74 47.91 27.89 46.80
5 SDCoT w/o Ldis 51.21 53.58 52.39 48.45 69.82 53.19 48.60 30.07 47.57
6 SDCoT w/o Lcon 53.31 51.22 52.26 48.54 67.52 52.76 49.31 30.52 48.26
7 SDCoT 53.75 54.91 54.33 49.50 70.85 54.25 52.01 31.71 50.89
8 Joint training 58.90 54.13 56.51 53.16 68.23 56.51 57.83 34.16 56.51

Table 2: Batch incremental 3D object detection performance (mAP@0.25) on ScanNet val set. All the methods listed in the
middle table incrementally learn on |Cnovel| novel classes. Base training is with (18− |Cnovel|) base classes and joint training is
with all 18 classes.

Ldis on the novel classes in most settings. The outperfor-
mance may be due to the advantage of the distillation loss in
preventing background regions from confusing the incremen-
tal model. When the consistency loss is added (see 5th row of
Table 1 and 2), we observe consistent and significant improve-
ments on the novel classes on all settings. The improvements
show that the dynamic teacher is very useful in learning the
underlying knowledge from new data. Finally, despite the
dataset and setting differences, our SDCoT combining the
three losses (see 7th row of Table 1 and 2) achieves the best
performance on both base and novel classes compared to its
three variants. This clearly demonstrates the superiority of
SDCoT in adapting to novel knowledge while maintaining
the previous knowledge. It also empirically agrees with our
conjecture, i.e. the deep distillation of knowledge from the
new data and base model makes the model be less susceptible
to noisy and incomplete pseudo labels.

It is interesting to see that in some settings, e.g. |Cnovel| =
5 on SUN RGB-D and |Cnovel| = 9 on ScanNet, SDCoT
outperforms the upper-bound on novel classes. We attribute
this outperformance to the cooperation of consistency regu-
larization provided by the dynamic teacher and the confusion
alleviation supported by the static teacher. Another interest-
ing finding is the large performance gap between SDCoT
and the upper-bound when only the “toilet” class is added
(i.e. |Cnovel| = 1) on SUN RGB-D. This is likely due to

the “toilet” class having very few instances (c.f. Table 1 in
the supplementary material) in the training set, which are
insufficient for the model to learn well.

Sequential incremental learning. In Table 3 and 4, we
show per-class average precision (AP) of SDCoT when novel
classes are added sequentially for class-incremental learning.
We evaluate with two consecutive subsets of novel classes
on SUN RGB-D and ScanNet, respectively. The incremental
model adapts to the first subset of classes from the previous
base model, it is subsequently treated as the base model and
adapts to the second subset of classes. On SUN RGB-D, we
achieve 44.13% mAP on all classes (see last entry of 3rd row
in Table 3) after adding 5 novel classes in two consecutive
batches, which is lower than 57.21% achieved by adding the
5 classes at once (see the entry at 4th column and 7th row
of Table 1). Similar pattern is found on ScanNet: the perfor-
mance (i.e. 40.89% mAP) after sequentially adding 4 novel
classes is lower than 54.25% obtained by adding 4 classes
together. According to the performance of each individual
base class in Table 3 and 4, we find that the classes which
undergoes severe performance degradation during sequential
incremental learning usually have relatively poor detection
ability at the beginning stage, i.e. base training. Despite the
performance drop of sequential incremental learning com-
pared to batch incremental learning, it does not cause a severe
catastrophic forgetting like fine-tuning.
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bathtub bed bookshelf chair desk dresser nightstand sofa table toilet mAP
1 B[1-5] 73.97 84.71 30.19 75.09 23.93 57.58
2 +N[6,7,8] 51.57 84.04 23.83 62.83 16.94 26.04 57.34 59.75 47.79
3 +N[9,10] 36.59 79.60 10.35 60.12 15.16 12.80 35.15 56.51 46.95 88.08 44.13
4 B[1-10] 78.49 84.31 32.62 73.73 25.44 30.90 58.11 64.15 50.48 90.36 58.86

Table 3: Per-class performance (AP@0.25) of SDCoT on SUN RGB-D val set. Setting: sequential incremental learning of 5
novel classes. B[1-5] denotes standard training on 5 base classes. B[1-10] denotes joint training on all classes.

bath bed bkshf cabnt chair cntr curtn desk door
B[1-14] 75.93 84.17 47.86 35.73 87.09 51.50 44.02 68.67 45.52
+N[15,16] 49.10 84.28 39.24 30.70 86.16 39.16 40.29 58.86 35.09
+N[17,18] 39.31 83.22 37.60 18.62 82.04 0.39 30.76 36.78 21.57
B[1-18] 70.85 85.12 46.70 37.37 85.79 54.15 40.83 66.08 43.17

ofurn pic refrig showr sink sofa table toil wind mAP
B[1-14] 41.47 6.86 44.08 60.13 50.97 53.14
+N[15,16] 33.60 2.66 41.51 28.72 50.02 86.65 56.66 47.67
+N[17,18] 30.48 0.11 33.38 27.48 19.70 84.32 57.18 95.34 37.73 40.89
B[1-18] 41.37 5.84 50.55 58.62 57.85 85.22 55.05 98.50 34.16 56.51

Table 4: Per-class performance (AP@0.25) of SDCoT on ScanNet val set. Setting: sequential incremental learning of 4 novel
classes. B[1-14] denotes standard training on 14 base classes. B[1-18] denotes joint training on all classes.

class center size Base Novel All
3 3 52.54 60.22 56.38
3 3 53.57 60.38 56.98
3 3 3 52.53 60.37 56.45
3 53.61 60.80 57.21

Table 5: Effects of different distillation targets under the
setting of |Cnovel| = 5 on SUN RGB-D dataset.
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Figure 5: Effects of different distillation loss functions under
the setting of |Cnovel| = 3 on SUN RGB-D dataset.

Design Choices of Distillation Loss
We investigate the effects of various designs of the distillation
loss. More specifically, we study different distillation targets
(i.e. classification logit, bounding box regression values in-
cluding center and size) and alternative loss functions (i.e.
cross-entropy and knowledge distillation losses).

What to distill? Table 5 summarizes the effects of using
different distilled targets when computing the final distillation
loss. Note that we compute the mean square error between
the corresponding outputs from ΦB and ΦB∪N for size- and

center-aware distillation losses, in addition to our original
class-aware distillation loss. As can be seen from the table,
the size- and center-aware distillation are unable to extract
more useful information from the previous knowledge. In
fact, they slightly harm the performance on the base classes
in the given setting. Consequently, we only distill knowledge
from the classification logits.

How to distill? To evaluate the effects of different loss
functions, we replace the L2 norm loss in Eq. 1 with cross-
entropy loss and knowledge distillation loss (Hinton, Vinyals,
and Dean 2015) that is an cross-entropy loss with temperature,
respectively. Figure 5 shows that the L2 norm loss is a better
choice for class-incremental 3D object detection.

Qualitative Results
Figure 7 and 8 show the qualitative results of our SDCoT
on SUN RGB-D and ScanNet, respectively. Despite the very
challenging (e.g. partially visible objects and cluttered scenes)
and diverse (e.g. bedroom, bathroom, and conference room)
scenes, our SDCoT is able to nicely detect the novel classes
as well as greatly retain the detection capacity on the base
classes in all these scenes. In addition, we provide some
failure examples in the supplementary material.

Compatibility with Replayed Exemplars
In the class-incremental learning of image classification task,
it is common to store a small set of samples from old data (i.e.
exemplars) to prevent catastrophic forgetting. However, the
amount of its contribution in the class-incremental 3D object
detection task is unclear. We adopt the simplest but effective
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Figure 6: Comparison with fine-tuning baseline on SUN RGB-D and ScanNet val sets with varying ratios of old data. Setting:
batch incremental 3D object detection with |Cnovel| novel classes.

Image of the scene Ground Truth Our SDCoT

Figure 7: Qualitative results on SUN RGB-D val set. Green
and Blue represent GT annotations w.r.t Cbase and Cnovel,
respectively.

strategy, i.e. random sampling (Chaudhry et al. 2018), to se-
lect exemplars from old data4. Interestingly, our SDCoT can
easily incorporate these exemplars into the “mixed labels”
as labeled instances without any change to the framework.
To demonstrate the effects of different number of replayed
exemplars in class-incremental 3D object detection, we sam-
ple different ratios of old data and compare the results with
the baseline method (i.e. fine-tuning) on the two datasets, as
shown in Figure 6. As can be seen, when more replayed ex-
emplars are added, fine-tuning baseline achieves significant
improvements on base classes while our SDCoT only gets
very slight improvements. This indicates that our method

4We ensure that all base classes are present in the exemplars, or
otherwise we re-sample until the condition is met.

Ground Truth Our SDCoT

Figure 8: Qualitative results on ScanNet val set. Green and
Blue represent GT annotations w.r.t Cbase and Cnovel, re-
spectively.

is capable of persevering old knowledge, which makes it
less sensitive to the addition of replayed exemplars. Further-
more, it can be seen that our SDCoT consistently outperforms
fine-tuning over all percentages of replaying (c.f. the supple-
mentary material for the numerical comparisons).

Conclusion

This paper studies the new and practical problem of class-
incremental 3D object detection. To this end, we proposed
SDCoT: an effective static-dynamic co-teaching method to
incrementally detect novel classes without revisiting any pre-
vious training sample. Our SDCoT greatly addresses the
catastrophic forgetting issue and further helps the model
adapt to the novel classes. We demonstrated the effectiveness
SDCoT over a variety of class-incremental 3D object detec-
tion scenarios on SUN RGB-D and ScanNet datasets. We
hope that our study serves as a motivation for future works
on this practical problem.
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