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Abstract

3D meshes are widely employed to represent geometry struc-
ture of 3D shapes. Due to limitation of scanning sensor preci-
sion and other issues, meshes are inevitably affected by noise,
which hampers the subsequent applications. Convolultional
neural networks (CNNs) achieve great success in image pro-
cessing tasks, including 2D image denoising, and have been
proven to own the capacity of modeling complex features at
different scales, which is also particularly useful for mesh
denoising. However, due to the nature of irregular structure,
CNNs-based denosing strategies cannot be trivially applied
for meshes. To circumvent this limitation, in the paper, we
propose the local surface descriptor (LSD), which is able to
transform the local deformable surface around a face into
2D grid representation and thus facilitates the deployment
of CNNs to generate denoised face normals. To verify the
superiority of LSD, we directly feed LSD into the classical
Resnet without any complicated network design. The exten-
sive experimental results show that, compared to the state-of-
the-arts, our method achieves encouraging performance with
respect to both objective and subjective evaluations.

Introduction
3D sensing and scanning techniques have been extensively
employed to capture deformable surfaces of real physical
objects, which are typically represented as meshes. These
digital representations facilitate a variety of applications, in-
cluding movie industry, digital games, virtual reality and so
on. However, due to limitation of scanning sensor precision
and computational issues, the derived 3D meshes inevitably
contain noise, which hinders the subsequent applications.
Mesh denoising is thus one of the most fundamental research
topics in 3D geometry processing.

Mesh denoising is a challenging ill-posed problem. The
desired denoising result owes to the ability of smoothing a
noisy surface, as well as preserving the “original” object fea-
tures, without introducing unnatural geometric distortions.
Due to the brisk demand coming from different applica-
tions, there exist a rich literature on mesh denoising, ranging
from filtering-based (Zheng et al. 2011; Zhang et al. 2015),
optimization-based (He and Schaefer 2013; Wang et al.
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2014) to the most recent data-driven methods (Wang, Liu,
and Tong 2016; Li et al. 2020a). In particular, data-driven
strategies for mesh denoising have gained great interest re-
cently, boosted by the success of deep learning in 2D image
denoising (Zhang et al. 2017).

Convolutional neural networks (CNNs) have massively
impacted denoising tasks in 2D images, and are ubiqui-
tous in many state-of-the-art approaches. CNNs have been
proven to own the ability of modeling complex features
at different scales, which is also very useful for mesh de-
noising since meshes contain multi-scale features, such as
large-scale curvature changes, fillet radii, small scale details
and corners. However, the application of CNNs-based de-
noising strategy to mesh denoising is not straightforward.
CNNs require regular 2D grid as input, while meshes ex-
hibit irregular 3D topology. Moreover, compared to point
clouds, 3D meshes contain vertex connectivity in addition
to vertex coordinates. These issues prevent the deployment
of CNNs in mesh denoising. Accordingly, different from 2D
image denoising in which CNNs-based strategy has become
the basic methodology (Zhang et al. 2017), to the best of
our knowledge, there are only a few deep learning based
schemes for mesh denoising (Wang, Liu, and Tong 2016;
Li et al. 2020a,b; Armando, Franco, and Boyer 2020; Zhao
et al. 2021; Shen et al. 2021).

To denoise a mesh, a common practice among the most ef-
ficient methods is to first denoise the face normals and then
update the vertex positions accordingly, so as to benefit from
the scale invariance of the face normals (Fleishman, Drori,
and Cohen-Or 2003; Sun et al. 2007; Armando, Franco, and
Boyer 2020). Existing CNNs-based methods mostly adopt
this strategy, which train networks to regress face normals.
For instance, in (Li et al. 2020a), an end-to-end mesh normal
denoising network called as DNF-Net is proposed, which
takes patches of facet normals as inputs and directly outputs
the corresponding denoised facet normals. However, in this
method, the noisy normals are simply organized as matrices,
which discard the surface geometry information, leading to
lost in discriminative representation. To achieve satisfactory
denoising performance, the proposed DNF-Net is carefully
designed, which includes a tailored multi-scale feature em-
bedding unit, a residual learning strategy to remove noise,
and a deeply-supervised joint loss function.

Another feasible manner is to extend convolutional layers
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Figure 1: Sample 40 × 40 points with (a) uniformly dis-
tributed polar coordinates, in which the sampling density
tends to be sparser with increased r. (b) with uniformly dis-
tributed virtual Cartesian coordinates, in which the sampling
density remains unchanged with (vx, vy).

of standard CNNs to graph, such that graph convolutional
networks (GCNs) can be employed. For instance, in (Ar-
mando, Franco, and Boyer 2020), the noisy normals and the
noisy positions are organized into a graph. A fully end-to-
end learning strategy is then performed based on graph con-
volutions, which operates on a graph of facets, directly on
the existing topology of the mesh, and follows a multi-scale
design to extract geometric features at different resolution
levels. The inputs of the network also discard the surface
geometry information of faces. Moreover, this network op-
erates on the whole mesh, and thus is limited in the ability
of local feature preservation. Similarly, in (Shen et al. 2021),
GCN-Denoiser is proposed very recently, which takes a tri-
angular mesh as input and employs multiple GCNs to pro-
gressively regress the noise-free normals of the underlying
surface patches. Although these methods achieve promising
results, the performance of which largely relies on the power
of GCNs. Unfortunately, GCNs itself is a tool under devel-
opment, whose maturity is far from CNNs.

As reviewed above, it can be found that the state-of-the-
art neural network based methods are relying on carefully-
tailored CNN/GCN network. A natural question is raised:
do we have to fall into the arms race of network architecture
design like that are taking place in image denoising? In this
paper, we revisit this issue and argue that the performance
gain can also come from well-organized face normals. The
main contributions of this work are highlighted as follows:

• We propose the local surface descriptor (LSD) to trans-
form normals of local deformable surface into 2D grid
representation. Compared to other deep learning based
schemes, LSD contains both face normal and surface ge-
ometry information, and thus owns stronger discrimina-
tive representation ability.

• We propose the LSD-net, which straightforwardly lever-
ages the classical Resnet for mesh denoising without the
need of designing elaborated network structure, since
LSD has regular 2D form.

• We provide extensive experimental comparison with the
state-of-the-art methods on multiple datasets to show that
our scheme achieves the best mesh denoising perfor-
mance so far with respect to average objective metric and

(a) (b) (c)

Figure 2: An example of geodesic propagation. (a) The
geodesics starts from the centre of fa and reaches eab. (b)
fb is rotated to the same plane as fa around eab. (c) The
geodesics is continued on fb.

subjective metric, which demonstrates the power of LSD.

Local Surface Descriptor
In this section, we introduce in detail the generation pro-
cess of local surface descriptor (LSD). The goal of LSD is
to transform the local structure around a face from 3D to
2D while preserving the the geometric information, which
is achieved by uniformity sampling a set of points on the
3D irregular surface and organizing the normals of sample
points into a 2D matrix.
Notations. Given a face f in a noisy mesh with c as its cen-
ter, which is regarded as the target face, we attempt to sam-
ple a set of points

{
p(i,j)

}
, i, j ∈ [−ts, ts] from the surface

around ci, where ts is a parameter that controls the number
of sampling points. The normals

{
n(i,j)

}
of these points are

then organized as the local surface descriptor L of f , which
further serves as the input to the denoising neural network.
Coordinate System Selection. There is a fundamental chal-
lenge for sampling points on mesh: how to build a coordinate
system {s} = {s1, s2, · · · , sn} to which a certain point on
the mesh surface is projected to facilitate the sampling pro-
cess? When the surface is planar, the sampling process can
be straightforwardly done by building a 2D Cartesian coor-
dinate system on the surface. However, this no longer works
well for the case of noisy surface since it generally has non-
trivial curvature. In (Kokkinos et al. 2012), an alternative
approach was proposed to build a polar coordinate system
{s} = {r, ϕ} on the mesh surface by shooting geodesic
with the radial coordinate r and the angular coordinate ϕ,
which has the ability of handling curved surface. The sur-
face is then segmented into multiple bins, and the intrinsic
equivalents in each bin are transformed as the shape context
descriptor. However, there is a certain drawback associated
with the use of polar coordinate. When sampling points are
with uniformly distributed (r, ϕ), the sampling density tends
to be sparser with increased r, as shown in Fig. 1-(a), lead-
ing to the loss of geometry detail information. In contrast,
as shown in Fig. 1-(b), in the Cartesian coordinate system
{s} = {x, y}, the sampling density remains unchanged with
uniformly distributed (x, y).
Local Surface Descriptor Generation. Considering the
pros and cons of these two coordinate systems, we gener-
ate the local surface descriptor via a coordinate transforma-
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Figure 3: An illustration of LSD generation.

tion strategy, which integrates the respective superiority of
the Cartesian and polar coordinate systems. As illustrated in
Fig. 3, it includes the following main steps:

• Step 1: Polar Coordinate System Building. Firstly, a
polar coordinate system {s} = {r, ϕ} is built on f with c
as the pole. Point sampling is done by shooting geodesic
according to (r, ϕ). The orientation of polar axis can be
arbitrary. In this work, we set the ray from c to one of the
midpoint of f ’s edges as the polar axis.

• Step 2: Coordinate Transformation. Secondly, a po-
lar coordinate set {(r, ϕ)} of sampling points

{
p(i,j)

}
are generated via the coordinate transformation strat-
egy. Specifically, a virtual Cartesian coordinate system
{(vx, vy)} is built firstly. Considering that the scales of
meshes are various, the distance between sampling points
should be adaptive to the scale, thus the corresponding
virtual Cartesian coordinate of p(i,j) is set to:

(vx, vy) =

(
da
ps
i,
da
ps
j

)
(1)

where da is the average Euclidean distance of adjacent
face centers in the noisy mesh, which can be regarded
as an estimation of scale; ps is the parameter that con-
trols the precision of sampling. Then the polar coordinate
(r, ϕ) of p(i,j) is computed as:

r =

√
(vx)

2
+ (vy)

2

ϕ = arctan vy
vx

(2)

The polar coordinate set {(r, ϕ)} forms a square that can
preserve uniform sampling density.
In this way, we achieve the consistency of sampling den-
sity regardless of the radial coordinate r, as illustrated in
Fig. 1-(b).

• Step 3: Points Sampling by Shooting Geodesics. With
the transformed polar coordinate set, we then perform
point sampling on the mesh surface. It is worth noting
that, for a point in the curved surface, even though we
know its polar coordinate (r, ϕ), it is not straightforward
to be located. We thus leverage the following propagation

process for locating the points to sample: At the begin-
ning, a geodesic is shot from ci with angle ϕ. When the
geodesic reaches an edge, it is further propagated to the
adjacent face by the standard unfolding procedure (Bron-
stein, Bronstein, and Kimmel 2006; Kimmel and Sethian
1998), as shown in Fig. 2. Specifically, supposing that
the geodesic is in fa, the adjacent face is denoted as
fb and the edge between them is eab. fb is then rotated
to the same plane as fa around eab, which enables the
geodesic to be continued on the plane until it reaches an-
other edge. This process is repeated until the total length
of the geodesic is equal to r and the terminal point is re-
garded as the sampling point.

• Step 4: Organize Normals as Matrix. Finally, the nor-
mals

{
n(i,j)

}
of all the sampling points

{
p(i,j)

}
are or-

ganized into a matrix according to their subscripts, which
serves as the LSD L. To enable the generated LSD have
the property of rotation-invariance, we propose to apply
a rotation matrix R to normalize

{
n(i,j)

}
in L. Suppose

nt is a fixed direction, we propose to rotate the normal
n of the target face f to nt, and the rotation angle is θ.
Considering that the normal is corrupted with noise, we
propose to use the average normal n∗ of the 2-ring faces
around f as an estimate of n. We then computeR by the
Rodrigues’ rotation formula (Liang 2018):

R = I+ (sinθ)N+ (1− cosθ)N2 (3)

where N is the skew-symmetric cross-product matrix of
n∗ × nt. R is further applied to

{
n(i,j)

}
to obtain the

normalized ones:

ñ(i,j) = Rn(i,j) (4)

which are then organized as a matrix that serves as the
final LSD L̃.

An example of LSD generation is illustrated in Fig. 3. In
this case, we set ts = 20 and ps = 8. To verify the effective-
ness of shooting geodesics, four points are marked with red
in Step 2, and the corresponding geodesics are drawn in Step
3. It can be observed that the geodesics can be propagated
on the noisy surface, and the sampling points are regularly
distributed. In Step 4, the LSD is visualized by normalized
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Figure 4: The framework of LSD-net. The noisy mesh will be iteratively processed. During each iteration, the LSD of each face
is built firstly. Then it is fed to the Resnet to obtain denoised normal. Finally, the new coordinates of the vertices are updated
according to the denoised normals.

Figure 5: The objective comparison on the Kinect V1
dataset. The lower, the better.

normal values to RGB. As illustrated, the LSD is a piece-
wise smooth 2D grid representation, which preserves both
the normal and geometry information.

Mesh Denoising Based on LSD
With the generated LSD, the irregular mesh structure is
transformed to regular 2D grid. It facilitates the following
normal denoising process, since we can directly leverage the
popular CNNs-based network for our purpose. In this sec-
tion, we apply the classical Resnet (He et al. 2016) on LSD
for mesh denoising, which is referred to as LSD-net.
Overall Pipeline. LSD-net follows the popular iterative nor-
mal filtering framework, which is repeated for Nf times.
Each iteration consists of the following three main steps: 1)
The normalized LSD L̃ of each face f is generated. 2) The
denoised normal n̂ is obtained by employing a Resnet with
L̃ as the input:

n̂ = R−1RESNET(k)
(
L̃
)

(5)

where k represents the iteration number. Note that here the
denoised normals should be restored by rotating with the in-
verse matrix of R before vertex updating. 3) The position
pv of vertex v is updated Nv times according to the restored
denoised normals (Zhang et al. 2015):

p′v = pv +
1

|fv|
∑
|fv|

n̂ (n̂ · (c− pv)) (6)

where |fv| is the set of faces that contain v as one of the
vertexes, c and n are the centre and normal of a face in |fv|.
Network Structure. We employ a Resent with three resid-
ual blocks to process the input LSD L̃. Each of the residual
block contains seven 3×3 convolution layers. The first layer
is with a stride of 2, which performs down-sampling. Three
residual connections are introduced to connect the output of
layer 1, 3, 5 to layer 3, 5, 7. The channel numbers of each
block are 32, 48 and 64, respectively. Then, a global average-
pooling layer and two fully connected (FC) layers are ap-
plied, the channel numbers of the two FC layers are 128 and
3 to directly generate the denoised normal. All the convolu-
tion and FC layers are equipped with ReLU and batch nor-
malization, expecting the last FC layer which is equipped
with Tanh to ensure that the output lies in [-1,1], aiming to
output the denoised normal.
Network Training. We separately train three series of
RESNET(k) corresponding to the training sets released
by (Wang, Liu, and Tong 2016), including the Synthetic
set (60 meshes), Kinect V1 set (72 meshes) and Kinect V2
set (72 meshes). For a certain series, the training input of
RESNET(1) is obtained by randomly choosing 800,000
faces from the training set and generating their normalized
LSDs, while their corresponding ground truth normals are
employed as the targets. Notice that the ground truth nor-
mals should also be rotated with R to ensure consistency.
Then RESNET(1) is trained with the mean-squared-error
(MSE) loss between the denoised normals and the target
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Figure 6: The objective comparison on the Kinect V2
dataset. The lower, the better.

Figure 7: The objective comparison on the synthetic dataset.
The lower, the better.

ones, using the Adam optimizer (β1 = 0.9, β2 = 0.999,
learning rate = 0.0001, batch size = 80). The following net-
work RESNET(k+1) is trained with the same parameters
on the new training set generated by applying RESNET(k)

on the former training set.

Experimental Results
In this section, extensive experimental results are provided
to demonstrate the superiority of our method compared with
the state-of-the-arts. All the experiments are conducted on a
server with two Tesla V100 GPUs.
Comparison Group. We compare our LSD-net with sev-
eral state-of-the-art schemes in terms of both objective and
subjective criterion:

• Learning-based schemes: 1) Cascaded normal regres-
sion (CNR) (Wang, Liu, and Tong 2016), 2) Facet
graph convolutions (FGC) (Armando, Franco, and Boyer
2020), 3) Normalf-net (NFN) (Li et al. 2020b), 4) Nor-
malNet (NNT) (Zhao et al. 2021), 5) GCN-Denoiser
(GCN) (Shen et al. 2021).

• Traditional schemes: 6) Guided normal filtering
(GNF) (Zhang et al. 2015), 7) Non-local low-rank
normal filtering (NLF) (Li et al. 2018).

Dataset Kinect V1 Kinect V2 Synthetic Scanned
Nf 4 3 2 2
Nv 20 20 20 20

Table 1: The settings of Nf and Nv for different datasets.

The source codes and per-trained models of CNR, FGC,
GNF and NLF are kindly released by their authors or imple-
mented by a third party. We adopt their default parameters in
experiments. The denoising results of NFN, NNT and GCN
are provided by their authors.
Parameters Setting. For the parameters of generating LSD,
we set ts = 40 and αc = 8. The direction of nt can be ar-
bitrarily chosen, so we set nt = (1, 0, 0). Under these con-
ditions, the proposed LSD contains a large region (8-9 ring
around the central face) on the surface and provides enough
information to infer the denoised normal.

We validate our scheme on four datasets: 1) Kinect V1
dataset; 2) Kinect V2 dataset; 3) Synthetic dataset; 4) Real-
scanned dataset. The parameters of iteration are individually
set for different datasets to achieve better results, which are
shown in Table 1. In the following, we provide the detailed
comparison results.

Results on Kinect Meshes
Dataset Details. We first provide the comparison on the
Kinect V1/V2 datasets (Wang, Liu, and Tong 2016), which
consist of 73 and 72 scanned meshes. These meshes are cap-
tured from 4 sculptures: Boy (24 meshes), Girl (25 Kinect
V1 and 24 Kinect V2 meshes), Cone (12 meshes) and Pyra-
mid (12 meshes). Since the authors of FGC only provide the
pre-trained model of Synthetic dataset, and the source code
of NLR can only process the watertight meshes, FGC and
NLR are not included into this comparison.
Comparison Results. We first provide the objective com-
parisons of the Kinect V1 dataset in Fig. 5 and Kinect V2
dataset in Fig. 6 with respect to the average angle error. The
meshes in the Kinect V1/V2 dataset have different noise pat-
terns from the Gaussian noise. LSD is capable of indicating
the pattern by preserving the geometry information in a large
region. Therefore, LSD-net achieves the best performance
on all the categories in the two datasets.

Then the subjective comparison of Kinect V1 dataset is
shown in Fig. 8, including Cone16 and Pyramid02. It can
be observed that the noise has a step-like appearance, which
will be treated as pseudo-feature by the traditional scheme
GNF. On the other hand, most of the learning-based schemes
can avoid this and recover the smooth part in the red box but
failed on recovering the feature. Due to the preserving of ge-
ometry information, LSD-net can explore the hidden struc-
ture under noise, leading to the best feature recovery results.
Similar denoising results can be observed in Fig. 9, includ-
ing Kinect V2 meshes Boy02 and Girl24, LSD-net consis-
tently explores the feature under noise.

Results on Synthetic Meshes
Dataset Details. Secondly, we conduct the comparison on
the synthetic dataset (Wang, Liu, and Tong 2016), which
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(a) (b) (c) (d) (e) (f) (g) (i)

Figure 8: Denoising results of meshes Cone16 and Pyramid02 from Kinect V1 dataset.(a) noisy meshes; (b) to (g) denoising
results of GNF, CNR, NFN, NNT, GCN and LSD-net; (i) ground truth. Please enlarge the PDF to see more details.

(a) (b) (c) (d) (e) (f) (g) (i)

Figure 9: Denoising results of meshes Boy02 and Girl24 from Kinect V2 dataset. (a) noisy meshes; (b) to (g) denoising results
of GNF, CNR, NFN, NNT, GCN and LSD-net; (i) ground truth. Please enlarge the PDF to see more details.

(a) (b) (c) (d) (e) (f)

Figure 10: Denoising results of real-scanned meshes Angel and Eagle. (a) noisy meshes; (b) to (f) are the results of CNR, NNT,
FGC, GCN and LSD-net. Please enlarge the PDF to see more details.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 11: Denoising results of CAD mesh Carter100K, smooth mesh Plane-sphere and feature mesh Nicolo from synthetic
dataset. (a) noisy meshes; (b) to (i) denoising results of GNF, NLF, CNR, NFN, NNT, FGC, GCN and ours; (j) ground truth.

consists of 29 noise-free meshes. These meshes are cor-
rupted by Gaussian noise with three standard deviations: 0.1,
0.2 and 0.3 of the average edge length of each mesh. There-
fore, there are 87 test meshes in total and they are divided
into three categories: CAD (42 meshes with sharp edges),
smooth (21 meshes with curved surface and plane), and fea-
ture (24 meshes with rich details). All the compared schemes
are tested on this dataset.
Comparison Results. We first provide the objective com-
parison in Fig. 7. As illustrated, our scheme achieves the
best average denoising performance compared with other
state-of-the-art methods. It is worth noting that GCN intro-
duces bilateral filtering-based normal refinement after ob-
taining the denoised normals to improve the overall per-
formance. However, this filtering-based refinement cannot
distinguish small-scale features from noise, which results in
over-smoothing outputs as shown in Fig. 10 and 11.

Then we provide the subjective comparison in Fig. 11,
including CAD mesh Carter100K, smooth mesh Plane-
sphere and feature mesh Nicolo. For Carter100K, GCN
over-smooths the internal gear in the red box which agrees
with the findings above. NLF, NFN and FGC preserve the in-
ternal gear but fail on noise removal. For Plane-sphere and
Nicolo, LSD-net shows the capability of recovering smooth
region as well as detailed regions.

Results on Real-scanned Meshes
Dataset Details. Finally, we offer the comparison results on
two real-scanned meshes, Angel and Eagle, which are pro-
vided by (Zhang et al. 2015) and (Yadav, Reitebuch, and
Polthier 2018). There are no ground truth meshes provided,

and thus we cannot provide objective comparison results.
To evaluate the generalization capability, the compared

methods are trained on the Synthetic dataset. Since the au-
thors of NFN do not provide the denoising results of these
meshes, it is not included into this comparison.
Comparison Results. As illustrated in Fig. 10, for Angel,
CNR over-smooths the structure. FGC and GCN can pre-
serve the structure but fail on removing the noise. LSD-
net achieves a good balance between noise smoothing and
feature preservation. For Eagle, LSD-net can preserve the
small-scale feature well, while the other schemes over-
smooth the region in the red box.

Conclusion
In this work, we presented a local surface descriptor, which
is capable of transforming normals of local deformable sur-
face into 2D grid representation. In this way, we can straight-
forwardly exploit the the classical Resnet for mesh denois-
ing without the requirement of designing elaborated network
structure. Extensive experimental results show that, com-
pared to the state-of-the-art mesh denoising schemes, our
method achieves the best average objective results and can
effectively recover fine-scale features and avoid introducing
pseudo-features in subjective comparisons.
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