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Abstract

Current pre-training methods in computer vision focus on
natural images in the daily-life context. However, abstract di-
agrams such as icons and symbols are common and important
in the real world. This work is inspired by Tangram, a game
that requires replicating an abstract pattern from seven dis-
sected shapes. By recording human experience in solving tan-
gram puzzles, we present the Tangram dataset and show that
a pre-trained neural model on the Tangram helps solve some
mini visual tasks based on low-resolution vision. Extensive
experiments demonstrate that our proposed method generates
intelligent solutions for aesthetic tasks such as folding clothes
and evaluating room layouts. The pre-trained feature extrac-
tor can facilitate the convergence of few-shot learning tasks
on human handwriting and improve the accuracy in identify-
ing icons by their contours. The Tangram dataset is available
at https://github.com/yizhouzhao/Tangram.

Introduction
As many vision tasks are relevant, one would expect a
model, particularly pre-trained from one dataset, to assist
a different challenge. Traditionally, supervised pre-training
on image classification has been employed to help object de-
tection (Shinya, Simo-Serra, and Suzuki 2019) and semantic
parsing (Orsic et al. 2019). Moreover, popular unsupervised
pre-training has recently produced remarkable results in vi-
sual tasks such as image classification (Chen et al. 2020a)
and clustering (Chakraborty, Gosthipaty, and Paul 2020).
The common datasets to train basic models include PAS-
CAL VOC (Everingham et al. 2010), ImageNet (Deng et al.
2009), and COCO (Lin et al. 2014), all of which contain
photographs.

It is natural to start the pre-training process from real-life
images to solve daily vision tasks. However, one of the un-
derlying limitations of current works is their focus on con-
tent from natural images. Besides natural images, abstract
diagrams, such as texts, symbols, and signs, also carry rich
visual semantics and account for a large part of the visual
world. For instance, it is shown that emojis can express rich
human sentiments (Felbo et al. 2017), and diagrams like
icons can map the physical worlds into symbolic and aes-
thetic representations (Lagunas, Garces, and Gutierrez 2019;
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Figure 1: The left panel shows the square representation of
the Tangram that consists of five triangles of three sizes, one
parallelogram and one square. The right panel shows some
tangram puzzles: a bird, the letter M and a sailboat.

Madan et al. 2018; Karamatsu et al. 2020). Furthermore,
most of the tasks related to natural images can be accom-
plished by low-resolution vision (Land and Nilsson 2012)
(see Figure 2). Therefore, training an enormous backbone
(e.g., a deep residual network (He et al. 2016)) to solve tasks
related to abstract diagrams complicates the problem.

In this paper, we argue that we can solve the tasks related
to abstract diagrams by learning from the process of repli-
cating a tangram puzzle. The tangram, a dissection puzzle
consisting of seven planar polygons (tans), is world-famous
and has been used for many purposes, including art, design,
and education. Although it only consists of seven tans, it can
generate thousands of meaningful patterns such as animals,
buildings, letters, and numbers. Solving a tangram puzzle
associates with our cognitive and imaginative abilities.

We introduce the Tangram, a new dataset consisting of
more than 10, 000 snapshots recording the steps to solve a
total number of 388 tangram puzzles. A neural model can be
pre-trained from the Tangram to solve two groups of down-
stream tasks.

The first group is about aesthetics. We introduce two toy
tasks: folding clothes and organizing furniture (room lay-
outs). Tuning the pre-trained network from several expert
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Figure 2: Visual perception tasks ranked by the amount of spatial information. In biology, visual perception tasks are divided
into four levels based on the number of photoreceptors (Land and Nilsson 2012). Our Tangram dataset relates to many low-
resolution visual tasks, while current works usually focus on high-resolution natural images.

samples can generate an aesthetic landscape that helps make
aesthetic judgments. Experiments show that our method per-
forms best when cooperating with max-entropy inverse rein-
forcement learning (Ziebart et al. 2008) and generative ad-
versarial imitation learning (Ho and Ermon 2016).

The second group includes several recognition tasks.
In the N -way-K-shot setting, we show that conducting
pre-training on the Tangram improves the performance
of recognizing the human handwriting, including Om-
niglot (Lake, Salakhutdinov, and Tenenbaum 2019) and
Multi-digit MNIST (Sitzmann et al. 2020). This method also
improves the performance of icon recognition from con-
tours.

This paper makes three major contributions:
• To our best knowledge, by introducing Tangram, we are

the pioneers to suggest applying transfer learning from
the human gaming experience to solve vision tasks.

• We demonstrate that pre-training from the Tangram can
help solve both low-level aesthetics tasks and recognition
tasks.

• We show that pretraining on the Tangram facilitates con-
vergence in few-shot learning tasks, and improves the
performance of recognition under low-level vision.

Related Work
An abundance of related work inspires our work, including
pre-training in computer vision, rating image aesthetics with
deep learning, and few-shot learning.

Pre-training
Pre-training methods can be either supervised or unsuper-
vised. The supervised pre-training on ImageNet is conven-
tional for object recognition, localization, and segmenta-
tion (He, Girshick, and Dollár 2019). Inspired by the suc-
cess of unsupervised pre-training in natural language pro-
cessing, the community has gained much interest in studying

unsupervised pre-training in computer vision, such as con-
trastive training (Chen et al. 2020b), self-supervised train-
ing (Jing and Tian 2020). In many tasks, fine-tuning from a
pre-trained model is faster than training from scratch. Pre-
training can also help when high-quality labeled data is
scarce.

Image Aesthetics
Image aesthetics assessment attempts to quantify an im-
age’s beauty. Image quality is influenced by numerous fac-
tors such as color (Nishiyama et al. 2011), lighting (Free-
man 2007), texture (Ke, Tang, and Jing 2006), and image
composition (Deng, Loy, and Tang 2017). While subjective
judgment by human eyes is the most reliable way to eval-
uate image quality, the beauty of an image can also be as-
sessed by well-established photographic theories (Zhai and
Min 2020). Recent research has shown that data-driven ap-
proaches can be more efficient, especially those that employ
feature extraction by multi-column convolutional neural net-
works (CNNs) (Lu et al. 2015; Doshi, Shikkenawis, and Mi-
tra 2019). Popular databases for image quality assessment
(IQA) are mainly collected as photos (natural images), such
as the Photo.Net database (Joshi et al. 2011) and the CUHK-
PhotoQuality database (Luo, Wang, and Tang 2011). Some
emerging databases consist of images from virtual contents
such as screen content image quality database (SCIQ) (Ni
et al. 2017) and compressed Virtual reality image quality
database (CVIQ) (Sun et al. 2019b).

Few-shot Learning
The main goal of few-shot learning is to learn new tasks
with a few support examples while maintaining the ability
to generalize. Recently, there has been a growing interest in
achieving the goal by learning prior knowledge from pre-
vious tasks, especially training feature extractors that can
efficiently segregate novel classes (Hu, Gripon, and Pateux
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2020).
We apply our Tangram dataset to train the feature-

extracting parts of optimization-based meta-learning algo-
rithms such as MAML (Finn, Abbeel, and Levine 2017) and
ANIL (Raghu et al. 2019). Besides, since the Tangram only
contains shapes and contours, we perform experiments on
the few-shot learning tasks that are color-free and texture-
free, for example, the Omniglot challenge (Lake, Salakhut-
dinov, and Tenenbaum 2019).

Pre-training from the Tangram
Data Collection
To collect the process of solving puzzles from human ex-
perience, an interactive labeling tool is developed using
the Unity game engine (Haas 2014). The labeling tool can
record every step of moving, rotating, or flipping of one tan
as a snapshot. Seven lab technicians spent weeks on com-
pleting a total number of 776 solutions to 388 unique puz-
zles, capturing more than 10, 000 snapshots.

Figure 3: Collected examples of different categories in the
Tangram dataset.

Figure 3 illustrates an overview of the puzzles types and
their counts. The Tangram dataset consists of diverse tan-
gram patterns including animals, plants, letters, numbers,
buildings, human poses, and some everyday objects. It re-
quires necessary perceptive recognition and elementary ge-
ometry skills to solve them. We will release the dataset to
the public to encourage further study into abstract image un-
derstanding.

Learning from Puzzles
Denote the order set (I1, I2, ..., Inp) as the process to solve a
tangram puzzle P , where each Ii, i ∈ {1, ..., np} is an image
representing one step toward the solution, and np is the total
number of steps. Since a tangram pattern only has shapes
and contours, Ii is a binary image with size H ×W .

What can we learn from the puzzles, and how can we use
the solving steps? We argue that the Tangram reveals two
pieces of information:

• The step-by-step solving process leads to more complete
and tidy shape combinations, containing the perception
of beauty.

• There is a connection between the pattern and the name
of the object due to correspondence between the final
completed pattern and a real-world object.

Figure 4: (a) The expected solution of a tangram puzzle. (b)
The process of solving the puzzle with its two variants. (c)
The final completed puzzle image and the meaning of the
item.

Therefore, we formulate two learning goals and assign two
loss functions.

Let fθ : {0, 1}H×W 7→ [0, 1] be the function indicating
the degree of completeness of step Ii. We define the com-
pleteness contrast loss (CCL) for the process (Ii)

np

i=1 as

CCL(I1, ..., Ip) = (0− fθ(I1))2

+

np−1∑
t=1

(
fθ(It)− fθ(It+1)

)2
+ (fθ(Inp

)− 1)2. (1)

By the Cauchy–Schwarz inequality, CCL reaches minimum
value 1

np+1 when fθ(Ii) = i/(np+1), i = 1, 2, ..., np. Min-
imizing CCL results in a right order for (Ii)

np

i=1.
Let gφ : {0, 1}H×W 7→ RNword map the binary image

to the word embedding WP of a pattern P , where Nword is
the dimension of the embedding space. The puzzle meaning
loss (PML) for the final step Inp is defined as

PML(Inp) = |gφ(Inp)−WP |2. (2)

Figure 4 depicts an implementation of the two loss func-
tions described above. Panel (b) demonstrates two variants
of the puzzle-solving processes. The first variant traces all
tans, recording progression from disorganization to neat-
ness; the second variant traces only the final state of moved
tans and represents a progression from fragmentation to
completeness.

To train the functions fθ and gφ, we use a simple convo-
lutional neural network with only four 3 × 3 convolutional
layers. Each image is resized into 28 × 28. We apply the
50-dimension GloVe embedding (Pennington, Socher, and
Manning 2014) for pattern names, and we assign 80% of
the weight on CCL and 20% on PML. The feature extrac-
tion part of the network is transferred to achieve other chal-
lenges.
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Experiments
We define mini visual tasks as the vision tasks that only
require learning from low-resolution binary images. We di-
vide mini visual tasks into two categories: aesthetic tasks
and recognition tasks. We choose folding clothes and gener-
ating room layouts (organizing furniture) as representatives
for the first category, identifying human hand-writings and
recognizing icons for the second.

Folding Clothes
Folding clothes is a classic task in robotics that has received
heated discussion among various works. Prevalent methods
include grounding human demonstration from videos (Yang
et al. 2015), employing random decision forests and prob-
abilistic planning (Doumanoglou et al. 2014), using deep
reinforcement learning (Jangir, Alenyà, and Torras 2020),
and designing a modifiable stochastic grammar (Xiong et al.
2016).

We abstract the clothes-folding challenge as a purely vi-
sual task: the contour of the dress/suit/shirt/pants is repre-
sented by a binary image, and folding clothes is charac-
terised by manipulating images. Figure 5 shows an image-
like abstraction of folding a dress.

Figure 5: (a) A dress with folding axes. (b) Folding steps.

The current state of the clothes s is represented by a bi-
nary image I from image space S = {0, 1}H×W , and an
action a leads to fold the image along a certain axis (see
figure 5). We also regard this task as a few-shot learning
problem: as we are only given a few expert trajectories
πE = {τE1

, τE2
, ..., τEne

}, where each trajectory τEi
is rep-

resented by the order sequence of states (sEi1
, sEi2

, ...) to-
wards the solution, the problem is how we can fold other
arbitrary clothes we have not seen before.

Figure 6: (a) Expert sample clothes. (b) A T-shirt unseen
before.

We try several different ways to solve this task, includ-
ing directly minimizing the CCL for expert trajectories and

drawing on the popular algorithms from inverse reinforce-
ment learning (IRL). The algorithms listed below can be
applied not only to perform clothes-folding and furniture-
organizing, but to solve a wide range of challenges related
to robotics.

• Score learning (SL): we can direclty give a score to a
state Vδ : S 7→ [0, 1], by learning from expert trajectories
with the CCL (see equation 1):

Vδ(s) := fθ(s). (3)

• Max-entropy inverse reinforcement learning (ME-
IRL) (Ziebart et al. 2008): suppose a trajectory τi =
(s1, s2, ...) is sampled from the current cloth-folding pol-
icy πi, and Fψ : S 7→ [0, 1], is the evaluation function for
state s, we can calculate the gradient of ψ by

∂Lψ
∂ψ

= Es∼τE
[
∂Fψ(s)

∂ψ

]
− Es∼τi

[
∂Fψ(s)

∂ψ

]
, (4)

where Lψ = P (τ |πi, τ ∈ πE) is the likelihood function
of taking expert trajectories under the current policy.

• Generative adversarial imitation learning (GAIL) (Ho
and Ermon 2016): after initializing the discriminator
function Dω : S 7→ [0, 1] to distinguish states between
expert and sampling trajectories, we can update ω with
gradient

∂Lω
∂ω

= Es∼τE
[
∂ logDω(s)

∂ω

]
+ Es∼τi

[
∂ log(1−Dω(s))

∂ω

]
(5)

where Lω is the adversarial loss (Ho and Ermon 2016)
and τi shares the same meaning as above. Notice that
we make a modification to GAIL by only distinguishing
the state s instead of the state-action pair (s, a) since we
are not given enough state-action pairs under few-shot
settings.

Figure 7: Aesthetic scores induced by Dw (pre-trained).

For simplicity, we regard the greedy policy deduced by
the value of Vδ, Fφ and Dω as the propagated policy πi for
SL, ME-IRL and GAIL. We assume that the clothes are put
straight initially and they can only be folded along vertical
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and horizontal axes. The size of the image I representing the
state s is 28×28 and there are ten vertical and ten horizontal
folding axes evenly distributed in the image.

We apply the network of the same structure in Section
Pre-training from the Tangram for feature extraction to cal-
culate Vδ, Fψ and Dω . Three different ways along with pre-
training or non-pre-training cases provide us with six dif-
ferent models. The models are trained on the expert trajec-
tories from a total number of 18 clothes, including dresses,
long shirts, T-shirts, trousers, short pants, and skirts (three
for each type). Then, models are tested on six new clothes
from the aforementioned types and three clothes from other
types.

We refer to Vδ , Fφ and Dω derived from equations 3, 4,
and 5 as the aesthetic scores of cloth-folding. Figure 7 il-
lustrates that Dω increases as the clothes-folding process
goes along. We compare the performance between differ-
ent models by calculating the ranking of the ordered states
(sEi1 , sEi2 , ...) of expert trajectories based on Vδ , Fφ and
Dω . Since on average the length of expert trajectories is
around four, we only consider the precision at K (P@K)
with K ≤ 3. Recall at K as gives similar results.

Table 1 compares the overall difference in P@K between
the pre-trained model and the non-pre-trained model (train-
ing from scratch) for the training expert samples (see the
detailed comparison for each model in the Appendix). In
general, we can see that pre-training improves the training
precision and reduces the variance. We select the best mod-
els of the six methods and test them once on the nice clothes
that are unseen before. Table 2 shows the mean and stan-
dard deviation of testing P@K. Except that ME-IRL with-
out pre-training outperforms the pre-trained one w.r.t. P@1,
pre-training improves the overall test accuracy, and the high
precision on each value (K = 1, 2, 3) implicates overall bet-
ter aesthetic scores.

ME-IRL and GAIL are common data-driven algorithms
in the IRL domain. As with SL, their performance is heav-
ily dependent on the amount of expert data given for train-
ing. Therefore, tuning from a pre-trained model can alleviate
data reliance.

P@1 P@2 P@3
From scratch 0.54± 0.5 0.66± 0.3 0.76± 0.2
Pre-training 0.77± 0.4 0.84± 0.3 0.86± 0.2

Table 1: The mean and standard deviation of training P@K:
a comparison between models with or without pre-training.

P@1 P@2 P@3
SL 0.22±0.46 0.44± 0.46 0.55± 0.47

+ Pre 0.89± 0.33 0.78± 0.26 0.81± 0.18
ME-IRL 0.89± 0.33 0.78± 0.26 0.74± 0.22

+ Pre 0.67± 0.50 0.94± 0.17 0.96± 0.11
GAIL 0.33± 0.25 0.61± 0.33 0.74± 0.22
+ Pre 0.89± 0.33 0.94± 0.17 1.00± 0.00

Table 2: The mean and standard deviation of testing P@K.

Evaluating Room Layouts
Generating room layouts is different from folding clothes in
that the latter focuses on the shape change of a single object,
while the former requires arranging multiple objects. These
two pre-training exercises may correspond to the two vari-
ants of a replicating process of a tangram puzzle(see figure
4).

The study of the layout generation has been active in vari-
ous domains such as architectural design (Nauata et al. 2020;
Bao et al. 2013) and game level design (Ma et al. 2014; Hen-
drikx et al. 2013). We focus on the task of generating content
for indoor scenes, especially furniture arrangement (Yu et al.
2011; Ritchie, Wang, and Lin 2019; Qi et al. 2018), and ab-
stract it as a purely visual task as shown in Figure 8.

Figure 8: (a) Original indoor scene sample from (Qi et al.
2018). (b) Abstract room layout. (c) Binary image represen-
tation. (d) Room messed up.

We apply the state-of-the-art indoor scene synthesis using
stochastic grammar (Qi et al. 2018) to generate the ground
truth. Step by step, we perturb the room layout by the action
a that changes the position (10 pixels each step) and angle
(15◦ each step) of the furniture, and the reversed steps gen-
erate an expert trajectory τEi to tidy up the room.

P@1 P@2 P@3
From scratch 0.18± 0.2 0.23± 0.3 0.32± 0.3
Pre-training 0.23± 0.4 0.28± 0.4 0.39± 0.4

Table 3: Training P @ K comparison between models with
or without pre-training.

Original Perturbed
GAIL (from scratch) 0.25± 0.45 0.23± 0.38
GAIL (pre-trained) 0.31± 0.41 0.29± 0.35

Table 4: Testing accuracy (P@1) of ranking the best room
layout.
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As in the previous experiment, we use a binary image I
to represent the current state s, and apply the three func-
tions Vδ , Fψ and Dω to generate the aesthetic landscapes of
the room. We only train our methods from 30 generated ex-
pected trajectories and test them on 10 groups of new room
organizing trajectories.

Table 3 shows the overall training improvement by pre-
training. As in the previous experiment, pre-training im-
proves the training accuracy. We select the best model GAIL
from training, and we test it on identifying the best room
layout from the testing trajectories. We also perturb each
room in the trajectory a little to test the robustness of the
model. Table 4 compares GAIL with/without pre-training on
the testing challenges. The results indicate that pre-training
on the Tangram improves performance in choosing the best
room layout.

Few-shot Learning
The goal of few-shot learning is to utilize new data having
seen only a few samples. In this section, we focus on the N -
way-K-shot classification: a typical problem to discriminate
between N classes with only K samples from each to train
from.

The method we propose follows the paradigm of meta-
learning (Sun et al. 2019a): we first train a feature ex-
tractor as a base-learner, which is later fine-tuned for an-
other task through a meta-learner. As in previous experi-
ments, a base learner is trained from the Tangram dataset,
and then we perform a meta-test on the challenge of Om-
niglot (Lake, Salakhutdinov, and Tenenbaum 2019) and
Multi-digit MNIST (Chen et al. 2018), where a binary image
brings enough information to do classification.

We select three methods: MAML (Finn, Abbeel, and
Levine 2017), ANIL (Raghu et al. 2019) and Prototypi-
cal Networks (Snell, Swersky, and Zemel 2017) to train
the meta-learner from our base-learner. MAML is a popu-
lar meta-learning algorithm for few-shot learning, achiev-
ing competitive performance on several benchmark few-
shot learning problems. ANIL simplifies MAML by allevi-
ating the inner training loop but keeping the training proce-
dure for the task-specific part. Prototypical networks learn
to map the prototypes to a metric space, and then distances
between prototypes and encoded query inputs are used to
make the classification. To test the base-learner (feature ex-
tractor) trained on our Tangram data, we compare it with
base-learners trained from EMNIST (Cohen et al. 2017)
and Fashion-MNIST (Xiao, Rasul, and Vollgraf 2017)1. All
base-learners share the same network structure.

Before moving on to fine-tuning, we compare the feature
extractors obtained by training on the above datasets. We
train only the last layer of the network as logistic regression.
As can be seen from Table 5 and Table 6, feature extractors
pre-trained on the Tangram, EMNIST, and Fashion-MNIST
perform a lot better than the randomly initialized feature
extractor. Except that the base-learner trained on EMNIST
performs best in the 5-way-5-shot task on Omniglot, base-

1we did not train the base-learner on MNIST(Deng 2012) be-
cause it is highly related to Multi-digit MNIST.

Omniglot Double-MNIST
Random 33.7%± 2.0% 7.3%± 1.5%
EMNIST 55.0%± 5.4% 26.8%± 2.2%
Fashion-MNIST 43.9%± 4.1% 30.1%± 1.2%
Tangram 56.0%± 4.7% 36.0%± 2.7%

Table 5: Five-way-five-shot learning: the mean and the stan-
dard deviation of testing accuracy (logistic regression only).

Omniglot Double-MNIST
Random 8.0%± 0.7% 6.1%± 0.1%
EMNIST 22.1%± 1.2% 7.5%± 0.1%
Fashion-MNIST 15.6%± 1.4% 9.2%± 0.5%
Tangram 22.0%± 1.0% 10.5%± 1.0%

Table 6: Twenty-way-five-shot learning: the mean and the
standard deviation of testing accuracy (logistic regression
only).

learners trained on the Tangram are powerful on other tasks,
demonstrating their better adaptability.

Figure 9 compares the tuning process of different base-
learners. Tuning the baser-learners pre-trained from the Tan-
gram dataset guarantees the final performance compared
with learning from scratch, while in some tasks it even
speeds up convergence. However, for the other two feature
extractors trained from EMNIST and FashionMNIST, al-
though they may have a good start in some tasks, overall
they tend to undermine the convergence speed and the final
results, which reflects the difficulty of tuning a baser-learner
for an irrelevant task. This result also demonstrates the im-
portance of selecting a proper fundamental learning dataset
in transfer learning.

Table 8 and Table 9 compare the final training results be-
tween training from scratch and pre-training from Tangram,
where we apply ANIL as the tuning algorithm. The results
shown are trained after 500 epochs. From the tables, we can
see that pre-training from the Tangram provides slightly bet-
ter results than training from scratch.

Icon Recognition
In this section, we study the recognition of abstract icons.
While recognition tasks in natural pictures have been boom-
ing in the literature, visual abstraction receives comparably
less attention.

At first glance, icon recognition is a relatively straight-
forward task compared to the recognition task in natural im-
ages, since most icons are simple shapes that are not affected
by light or blocking. However, it is worth considering how
these abstract icons are formed, and how these seemingly
simple icons can convey a variety of meanings. In this part,
we wonder whether pre-training on the Tangram dataset as-
sists in recognition of icons. Icons-50 (Hendrycks and Di-
etterich 2018) is a collection with 50 types of icons and
thousands of training samples. We run the experiments with
Icons-50 and test our methods on Flowers-17 and Flowers-
102 (Nilsback and Zisserman 2008).
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Figure 9: Testing accuracy of base-learners for different algorithms on different tasks.

Flowers-17 Flowers-102 Icons-50
ResNet-18 EfficientNet-b0 ResNet-18 EfficientNet-b0 ResNet-18 EfficientNet-b0

From Scratch 73.5%± 3.4% 76.1%± 1.4% 50.5%± 1.3% 51.7%± 1.5% 86.5%± 0.4% 84.5%± 0.7%
Tangram 76.3%± 3.8% 76.0%± 1.2% 51.1%± 0.8% 50.6%± 1.1% 87.1%± 1.1% 85.0%± 1.0%

Table 7: Classification results between training from scratch and pre-training from the Tangram. The inputs are binary images
representing the contours only.

Omiglot Double MNIST
From scratch 97.1%± 1.4% 98.4%± 1.3%
Tangram 98.1%± 1.0% 98.5%± 1.0%

Table 8: Five-way-five-shot testing accuracy after training
by ANIL.

Omiglot Double MNIST
From scratch 92.4%± 1.0% 98.2%± 0.3%
Tangram 93.5%± 0.9% 98.2%± 0.2%

Table 9: Twenty-way-five-shot testing accuracy after train-
ing by ANIL.

For Icons-50, we select icons with a white background
coverage greater than 40% and draw their contours, which
results in a total number of 2, 450 samples. Flowers-17 and
Flower-102 are well labeled with flower contours. Flowers-
17 contains 17 flower types and 849 samples, and Flowers-
102 has 102 flower types and 8, 189 samples. For each
dataset, 80% of the samples are used for training and the re-
maining 20% for testing. We use ResNet-18 (He et al. 2016)
and EfficientNet-b0 (Tan and Le 2019) as the network archi-
tectures for icon classification. The inputs of the network are
binary images of the size 224 × 224. Table 7 compares the

Figure 10: Data processing for (a) icons and (b) flowers.

model trained from scratch and the model pre-trained from
Tangram. Although training Efficient-n0 from scratch brings
good performance, the pre-trained model with ResNet-18
shows overall better testing accuracy.

Conclusion
In this paper, we introduce the Tangram dataset that records
step-by-step solutions to a tangram puzzle from human ex-
perience. The pre-training on the Tangram is applied to var-
ious tasks, including folding clothes, evaluation room lay-
outs, few-shot learning challenges, and icon classification by
contours. We hope that our pioneer work in abstract visual
content could inspire the community to study visual anes-
thetics and image abstraction.
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