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Abstract

This work studies the influence of slice permutations on ten-
sor recovery, which is derived from a reasonable assumption
about algorithm, i.e. changing data order should not affect
the effectiveness of the algorithm. However, as we will dis-
cussed in this paper, this assumption is not satisfied by tensor
recovery under some cases. We call this interesting problem
as Slice Permutations Variability (SPV) in tensor recovery. In
this paper, we discuss SPV of several key tensor recovery prob-
lems theoretically and experimentally. The obtained results
show that there is a huge gap between results by tensor recov-
ery using tensor with different slices sequences. To overcome
SPV in tensor recovery, we develop a novel tensor recovery
algorithm by Minimum Hamiltonian Circle for SPV (TRSPV)
which exploits a low dimensional subspace structures within
data tensor more exactly. To the best of our knowledge, this is
the first work to discuss and effectively solve the SPV problem
in tensor recovery. The experimental results demonstrate the
effectiveness of the proposed algorithm in eliminating SPV in
tensor recovery.

Introduction
With the explosion of high-dimensional data such as images
and videos, the problem of exploiting low-dimensional struc-
tures in such high-dimensional data has become increasingly
important in computer vision and pattern recognition (Candes
and Plan 2010; Candès and Recht 2009; Candès et al. 2011;
Chandrasekaran et al. 2009; Xu, Caramanis, and Sanghavi
2012; Wright et al. 2009; Eckart and Young 1936; Wold,
Esbensen, and Geladi 1987; Zhou et al. 2010). Since most
visual data including color images and videos are in the form
of tensor, dealing with such tensor data has attracted more
and more attention recently. Lots of low rank tensor recovery
methods have been proposed (Gandy, Recht, and Yamada
2011; Lu et al. 2019; Zhang et al. 2014a, 2019; Zheng et al.
2019; Zhang et al. 2021; Yang et al. 2020; Cai et al. 2021; Lu,
Peng, and Wei 2019) to recover low rank tensors form the
high-dimensional data tensor with various of perturbation,
with the basic assumption that the tensor data lie approxi-
mately on a low-dimensional linear subspace. These methods
have been widely used in various fields such as color images
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and video processing (Tan et al. 2014; Dian, Li, and Fang
2019; Wei et al. 2018), data dimension reduction (Luo et al.
2015), etc.

A key problem of tensor recovery is how to define the
tensor rank. Unlike matrix rank, there are several ways to
define a tensor rank. For example, Kolda and Bader (Kolda
and Bader 2009) have adopted the minimum number of ten-
sor rank-one decomposition (CP decomposition) of a given
tensor as the rank of tensor (CP rank), which corresponds
to one equivalent definition of matrix rank i.e. matrix rank
of a matrix is equal to the minimum number of rank-one
decomposition of the given matrix. Unfortunately, because
the computing of CP rank is a NP-hard problem, the appli-
cation of the CP rank in tensor recovery has been greatly
restricted. In addition, due to the breakthroughs in low rank
matrix recovery, the method based on Tucker decomposition
(the unfolding matrices of the tensor) has become more pop-
ular than the one based on CP rank. For example, in (Gandy,
Recht, and Yamada 2011), the rank of the tensor (Tucker
rank) was defined as the sum of the ranks of the different
unfolding matrices. Besides, since the corresponding tensor
rank minimization problem is a NP-hard problem, Gandy et
al. utilized the sum of nuclear norms of the different unfold-
ing matrices (SNN) instead of the sum of ranks for tensor
recovery. However, as stated in (Lu et al. 2019), SNN is not
the convex envelope of the sum of the ranks. Therefore, a
weighted sum of the ranks of the unfolding matrices was
considered in (Liu et al. 2012).

Recently, tensor recovery method based on tensor-tensor
product (t-product) has received more and more attention
because of its effectiveness in data processing and comput-
er vision(Hu et al. 2016; Zhang et al. 2014b). Based on t-
product, tensor tubal rank was proposed, which utilized tensor
Singular Value Decomposition (t-SVD) based on t-product.
Assuming A = U ∗ S ∗ VT (∗ stands for t-product) is the
t-SVD of A, tensor tubal rank of A is defined as the number
of non-zero singular tubes of S. Since tensor tubal rank is
non-convex and discrete which leads to NP-hard problem.
A convex norm, tensor nuclear norm (TNN) (Zhang et al.
2014b), was applied to solve the tensor completion problem
which aimed to recover a low rank tensor from tensor data
with missing entries. Later, (Lu et al. 2019) proposed tensor
average rank of tensor (corresponding to the rank of block
circulant matrix of the tensor), and proved the tensor nuclear
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norm is the convex envelope of the tensor average rank with-
in the unit ball of the tensor spectral norm. Based on that,
Tensor Robust Principal Component Analysis (TRPCA) prob-
lem with recovery guarantee was studied, which extended
the Robust PCA (Wright et al. 2009) to the tensor case, and
aimed to exactly recover the low rank tensor from tensor data
with gross corruptions. However, for tensor data with large
scale size, tensor nuclear norm based method often costs
much computation because of computing t-SVD. To alleviate
this issue, low rank tensor factorization strategy based on
t-product was proposed (Zhou et al. 2017), which factorizes
tensor data into the product of two tensors with much smaller
size and avoiding the computing of t-SVD of data tensor.

Although tensor recovery based on t-product is effective
and wildly used, there are still some limitations: as shown
in Fig.1, rearranging frontal slices sequence order of tensor
will have significant influence on the effectiveness of ten-
sor recovery, in which X̂ ∗ is obtained by arranging the low
rank approximation of Ŷ (Ŷ is obtained by rearranging Y in
randomly frontal slices sequence order) in original frontal
slices sequence order. Note that the gap of two mean PSNR
(Peak Signal to Noise Ratio) results even achieve 3dB. We
call this phenomenon as Slice Permutations Variability (SPV)
in tensor recovery.

This paper focuses on this new problem which has not
been explored so far to the best of our knowledge. Our con-
tributions are three-fold:
• We study SPV and Slice Permutations Invariance (SPI)

of tensor recovery theoretically and experimentally for
the first time. A tensor recovery algorithm has SPI, i.e.
whatever how to change the slice order of data tensor, the
solution of the algorithm will not be changed. We prove
that the tensor recovery algorithm has SPI property under
certain conditions.
• When the conditions are not met, we propose a tensor

recovery algorithm for SPV (TRSPV) to solve a basic
problem (Tensor Principal Component Analysis) in tensor
recovery and to make it more stable for slice permuta-
tions on data tensor. In the proposed algorithm, we find
better sequence of tensor slice by solving a Minimum
Hamiltonian Circle problem. Based on the new sequence
obtained by the proposed algorithm, we can extract the
intrinsic low-dimensional structure of high-dimensional
tensor data more exactly.
• We conduct experiments to examine SPV of TRPCA, the

goal of which is to recovery a low rank tensor from a
high-dimensional data tensor with chaos slices sequence
despite both small entry-wise noise and gross sparse er-
rors. An extension of TRSPV, Robust Principal Compo-
nent Analysis for SPV (TRPCA-SPV), is proposed to deal
with this problem. The experimental results show a much
better performance of TRPCA-SPV compared with the
existing state-of-the-art tensor recovery algorithms.

Notations and Preliminaries
Notations
Here, we summarize some definitions and symbols used in
this paper relating to matrices, tensor and sets in Table 1.

Notations Descriptions
R, C Real field, Complex field

A , |A | Sets, Number of elements of A
a ,A Scalars, Matrices
Ai,j (i, j)-th element of matrix A
AT Conjugate transpose of A

A −→ B B can be obtained by elementary row or
column transformations of A
A, Ai,j,k Tensors, (i, j, k)-th element in A
Ai,j,:, Ai,:,: (i, j)-th tube, i-th horizontal slice
A:,i,:, A:,:,i i-th lateral slice, i-th frontal slice

‖ A ‖1, ‖ A ‖F
∑

i,j,k |Ai,j,k|,
√∑

i,j,kA2
i,j,k

‖ A ‖∗, Ā Nuclear norm of A, fft(A, [], 3)
(S − τ)+ Each element is max(Si,j − τ, 0)

Table 1: Notations.

In addition, we follow the definitions of unfold(·), fold(·),
bcirc(·) and bdiag(·) from (Lu et al. 2019):

unfold(A) =


A:,:,1

A:,:,2

...
A:,:,n3

 , fold(unfold(A)) = A,

bcirc(A) =


A:,:,1 A:,:,n3

· · · A:,:,2

A:,:,2 A:,:,1 · · · A:,:,3

...
...

. . .
...

A:,:,n3
A:,:,n3−1 · · · A:,:,1

 ,

bdiag(A) =


A:,:,1

A:,:,2

. . .
A:,:,n3

 .

Preliminary Definitions and Results
Definition 1. (t-product) (Kilmer and Martin 2011) LetA ∈
Rn1×n2×n3 and B ∈ Rn2×l×n3 . Then the t-product A∗B is
defined to be a tensor of size n1 × l × n3,

A ∗ B = fold(bcirc(A) · unfold(B)). (1)

Definition 2. (f-diagonal tensor) (Kilmer and Martin 2011)
Tensor A is called f-diagonal if each of its frontal slices is a
diagonal matrix.
Definition 3. (Identity tensor) (Kilmer and Martin 2011) The
tensor I ∈ Rn×n×n3 is the tensor with the first frontal slice
being the identity matrix , and other frontal slices being all
zeros.
Definition 4. (Conjugate transpose) (Lu et al. 2019) The
conjugate transpose of a tensorA ∈ Cn1×n2×n3 is the tensor
AT ∈ Cn2×n1×n3 obtained by conjugate transposing each
of the frontal slice and then reversing the order of transposed
frontal slice through positions 2 to n3.
Definition 5. (Orthogonal tensor) (Kilmer and Martin 2011)
A tensorQ ∈ Cn×n×n3 is orthogonal if it satisfiesQT ∗Q =
Q ∗ QT = I.
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Figure 1: Color video (‘bus’) (modeled as a tensor Y ∈ R144×176×90) can be approximated by low tubal rank tensor . Here,
only first frame of visual results in (a)-(b) are presented. (a) The first frame of original video (b) approximation by tensor
X ∗ ∈ R144×176×90 with tubal rank r = 30. (MPSNR=32.45dB) (c) approximation by tensor X̂ ∗ ∈ R144×176×90 with tubal rank
r = 30. (MPSNR=29.27dB) (d) MSE results of X ∗ and X̂ ∗ comparison for different r.

Theorem 1. (t-SVD) (Lu et al. 2019) Let A ∈ Rn1×n2×n3 .
Then it can be factorized as A = U ∗ S ∗ VT , where
U ∈ Rn1×n1×n3 , V ∈ Rn2×n2×n3 are orthogonal, and
S ∈ Rn1×n2×n3 is a f-diagonal tensor.
Definition 6. (Tensor tubal rank) (Lu et al. 2019) For A ∈
Rn1×n2×n3 , the tensor tubal rank ofA, denoted by rankt(A),
is defined as the number of non-zero singular tubes of S,
where S is from the t-SVD of A = U ∗ S ∗ VT . We can write
rankt(A) = |{i|S(i, i, :) 6= 0}| = |{i|S(i, i, 1) 6= 0}|. De-
note σ(S) = (S(1, 1, 1),S(2, 2, 1), ...,S(r, r, 1))T ,in which
r = rankt(A).
Definition 7. (Tensor nuclear norm) (Lu et al. 2019) LetA =
U ∗S ∗ VT be the t-SVD ofA ∈ Rn1×n2×n3 . Tensor nuclear
norm of A is defined as ‖A‖∗ = 〈S, I〉 =

∑r
i=1 S(i, i, 1),

where r = rankt(A).
Definition 8. (Tensor average nuclear norm) (Lu et al. 2019)
For A ∈ Rn1×n2×n3 , the tensor average nuclear norm is
defined as ‖A‖∗,a = 1

n3
‖bcirc(A)‖∗.

Definition 9. (Zhang 2017) P ∈ Rn×n is a permutation
matrix if each row and each column of P has unique non-
zero entries 1.
Definition 10. (Bondy, Murty et al. 1976) Let A ∈
Rn1×n2×n3 , C = {i1, i2, ..., in3

, i1} is a circle on A which
composed of 1, 2, 3,..., n3. And we regard {i1, i2, ..., in3 , i1},
{i2, i3, ..., in3 , i1, i2}, ..., {in3 , i1, ..., in3−2, in3−1, in3} as
the same circle.
Definition 11. Let Ck = {i1, i2, ..., ink

, i1} is a circle on
A ∈ Rn1×n2×n3 which composed of 1, 2, 3,..., nk. And we
call Ork = {i1, i2, ..., ink

} is obtained an ordered array by
Ck. Define Or(i) is the i-th number of the ordered array,
(A ◦ P(k)

Ork)(k = 1, 2, 3) are horizontal slice permutations,
lateral slice permutations and frontal slice permutations of
A according to Ork, i.e. (A ◦ P(1)

Or1)i,:,: = AOr1(i),:,:, (A ◦
P(2)

Or2):,i,: = A:,Or2(i),: and (A ◦ P(3)
Or3):,:,i = A:,:,Or3(i) for

i = 1, 2, 3, ..., nk. (If there is no danger of ambiguity, these
are abbreviated to (A ◦ P(k))(k = 1, 2, 3).)
Definition 12. LetA ∈ Rn1×n2×n3 , C = {i1, i2, ..., in3

, i1}
is a circle on A which composed of 1, 2, 3,..., n3. We
call C(is, it) = {is, is+1, ..., it} as a walk from is to

it on C, and C−1(is, it) = {it, it−1, ..., is} as inverse
of walk C(is, it). Assume C(i1, il) = {i1, i2, ..., il} and
C(il, il+k) = {il, il+1, ..., il+k} are two walks on circle C,
mark C(i1, il)

⋃
C(il, il+k) = {i1, i2, ..., il, il+1, ..., il+k}.

Definition 13. Let C = {i1, i2, ..., in3
, i1} is a circle onA ∈

Rn1×n2×n3 which composed of 1, 2, 3,..., n3., and W (A) is
a weight matrix in which Wi,j(A) = ‖A:,:,i − A:,:,j‖F is
weight of A:,:,i and A:,:,j for i 6= j, and Wi,j(A) = ∞ for
i = j. Mark w(A,C) =

∑n3−1
k=1 Wik,ik+1

(A) +Win3
,i1(A),

C∗(A) = arg minC w(A,C) and c∗(A) = minC w(A,C).

SPI of Tensor Recovery
SPI of the Sum of Nuclear Norms
For matrix recovery, as we all knew, singular values of the
matrix will not be affected by any row or column transforma-
tions on matrix, which means it does not make any influence
on the effectiveness of matrix recovery to rearrange the data
sequence. And we call it as row or column transformations
invariance in matrix recovery (Property 1 and Theorem 2).
Therefore, for tensor recovery based on the unfolding matri-
ces of the tensor, SPV is satisfied naturally (Property 2 and
Theorem 3). Please refer to the supplementary material of
this paper for the detailed proof of these conclusions.
Property 1. For A ∈ Rn1×n2 , then nuclear norm satisfies
row (or column) permutations invariance, i.e. ‖PA‖∗ =
‖A‖∗ for any permutation matrix P ∈ Rn1×n1 (or ‖AP‖∗ =
‖A‖∗ for any permutation matrix P ∈ Rn2×n2 ).
Theorem 2. For Y ∈ Rn1×n2 , Dτ (Y ) = P−1Dτ (PY )
for any permutation matrix P ∈ Rn1×n1 (and Dτ (Y ) =
Dτ (Y P )P−1 for any permutation matrix P ∈ Rn2×n2),
whereDτ (Y ) = arg minX

1
2‖Y −X‖

2
F + τ‖X‖∗, and P−1

is inverse operator of P .

Property 2. For A ∈ Rn1×n2×n3 , then
∑3
i=1 αi‖(A ◦

P(k))(i)‖∗ =
∑3
i=1 αi‖A(i)‖∗ for any slice permutations

P(k))(i) i.e. (k = 1, 2, 3), where A(i) represents the mode-
i unfolding matrix of A, A ◦ P(k)(k = 1, 2, 3) stands for
the result by perform horizontal slice permutations, later-
al slice permutations and frontal slice permutations on A,
respectively.
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Theorem 3. Sτ (Y) = Sτ (Y◦P(k))◦(P(k))−1(k = 1, 2, 3),
where Sτ (Y) = arg minX

1
2‖Y −X‖

2
F + τ

∑3
i=1

1
3‖X(i)‖∗,

and (P(k))−1 is an inverse operator of P(k).

SPI of Tensor Nuclear Norm
In this part, we study the SPI of tensor nuclear norm and we
draw the following conclusions. Please refer to the supple-
mentary material of this paper for the detailed proof of these
conclusions.
Property 3. (Horizontal SPI of tensor nuclear norm) Tensor
nuclear norm satisfies HSPI (Horizontal SPI), i.e. ‖A‖∗ =
‖A ◦ P(1)‖∗, for any horizontal slice permutations P(1).
Property 4. (Lateral SPI of tensor nuclear norm) tensor
nuclear norm satisfies LSPI (Lateral SPI), i.e. ‖A‖∗ = ‖A ◦
P(2)‖∗, for any lateral slices permutations P(2).

Property 5. For same circle C1 = {i1, i2, ..., in3 , i1} and
C2 = {ik, ik+1, ..., in3

, ..., ik−1, ik},

‖A ◦ P(3)

Or1‖∗ = ‖A ◦ P(3)

Or2‖∗,

where Or1 = {i1, i2, ..., in3} is obtained by C1, and Or2 =
{ik, ik+1, ..., in3

, ..., ik−1} is obtained by C2.
The symbols and definitions used in Property 5 are ex-

plained in Definitions 10-11.

Theorem 4. For same circle C1 = {i1, i2, ..., in3
, i1} and

C2 = {ik, ik+1, ..., in3
, ..., ik−1, ik},

Dτ (Y ◦ P(3)

Or1) ◦ P(3)−1

Or1 = Dτ (Y ◦ P(3)

Or2) ◦ P(3)−1

Or2 (2)

where Dτ (A) = arg minX
1
2‖A − X‖

2
F + τ‖X‖∗,

Or1 = {i1, i2, ..., in3} is obtained by C1, and Or2 =
{ik, ik+1, ..., in3

, ..., ik−1} is obtained by C2.
Property 6. For A ∈ Rn1×n2×n3 , if n3 ≤ 3, then tensor
nuclear norm satisfies frontal slice permutations invariance
(FSPI), i.e. ‖A‖∗ = ‖A ◦P(3)

Or ‖∗ for any frontal slice permu-
tations P(3)

Or .

Theorem 5. For Y ∈ Rn1×n2×n3 , if n3 ≤ 3, then

Dτ (Y) = Dτ (Y ◦ P(k)) ◦ P(k)−1

(3)

for k = 1, 2, 3.

Although, for n3 > 3, we have taken an example which
contradicts SPI of tensor recovery utilizing tensor-tensor
product (see Fig. 1). By Theorem 5, it can be seen that tensor
nuclear norm based tensor recovery satisfies slice permuta-
tions invariance for n3 ≤ 3.

Tensor Recovery for SPV
In the following, we consider the case of n3 > 3.

Tensor Principal Component Analysis for SPV
Consider the following key problem:

min
X ,P(3)

Or

1

2
‖Y ◦ P(3)

Or −X‖
2
F + τ‖X‖∗. (4)

Figure 2

Since ‖X‖∗ = ‖X‖∗,a (Lu et al. 2019), therefore (4) can
be converted to

min
X ,P(3)

Or

1

2
‖Y ◦ P(3)

Or −X‖
2
F + τ‖X‖∗,a (5)

= min
X ,P(3)

Or

1

2n3
‖bcirc(Y ◦ P(3)

Or )− bcirc(X )‖2F (6)

+
τ

n3
‖bcirc(X )‖∗. (7)

From

bcirc(Y ◦ P(3)
Or )

=


Y:,:,Or(1) Y:,:,Or(n3) · · · Y:,:,Or(2)
Y:,:,Or(2) Y:,:,Or(1) · · · Y:,:,Or(3)

...
...

. . .
...

Y:,:,Or(n3) Y:,:,Or(n3−1) · · · Y:,:,Or(1)



−→


Y:,:,Or(1) Y:,:,Or(2) · · · Y:,:,Or(n3)

Y:,:,Or(2) Y:,:,Or(3) · · · Y:,:,Or(1)
...

...
. . .

...
Y:,:,Or(n3) Y:,:,Or(1) · · · Y:,:,Or(n3−1)

 ,

it can be seen that bcirc(Y ◦ P(3)
Or ) will be approximated to a

more lower rank matrix and get a better low rank eastimation
of Y when adjacent Y:,:,Or(i) and Y:,:,Or(i+1) are more similar
(mark Y:,:,Or(n3+1) = Y:,:,Or(1) for convenience). Therefore,
we convert (4) to the following problem:

arg min
X

1

2
‖Y ◦ P(3)

Or∗ −X‖
2
F + τ‖X‖∗, (8)

where Or∗ is obtained by C∗(Y). Therefore we solve (4) via
Algorithm 2 approximately by Theorem 61. The symbols and
definitions used in Algorithm 2 are explained in Definitions
12-13.

Theorem 6. (Lu et al. 2019) Tensor nuclear minimize prob-
lem:

Dτ (Y) = arg min
X

1

2
‖Y − X‖2F + τ‖X‖∗, (9)

where Dτ (Y) can be obtained by Algorithm 1.

1It is worth noting that we convert (4) to a Minimum Hamiltoni-
an circle problem.
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Algorithm 1: Tensor Singular Value Thresholding (t-
SVT)

Input: Y ∈ Rn1×n2×n3 , τ > 0 as defined in (9).
Output: Dτ (Y).
Compute Ȳ = fft(Y , [], 3);
Perform matrix SVT on each frontal slice of Ȳ by
for i = 1, ..., bn3+1

2 c do
[U, S, V ] = SVD(Ȳ (i));
W̄ (i) = U(S − τ)+V

∗;
end
for i = bn3+1

2 c+ 1, · · · , n3 do
W̄ (i) = conj(W̄ (n3−i+2));

end
Dτ (Y) = ifft(W̄, [], 3).;

A key point to Tτ (Y) is to find C∗(Y). And a simplest idea
for getting C∗(Y) is that, when we get C(k−1), we can make
appropriate modifications for the circle C(k) to get another
circle C(k) with a smaller w(Y ,C(k)) as Fig. 2 (Bondy, Murty
et al. 1976). Repeat the above process until C(k) convergence
to C∗(Y).

TRPCA for SPV

Consider the following problem:

(L∗,S∗,P(3)
Or∗) = min

L,S,P(3)
Or

‖L‖∗ + λ‖S‖1

s.t.(P − S) ◦ P(3)
Or = L, (10)

where P(3)
Or is a frontal slice permutation, L is low-rank, and

S is sparse. And Algorithm 3 based on alternating direction
method (ADM) (Bertsekas 1997) is proposed for solving
(10). It is worth noting that, for fixed P(3)

Or , (10) degenerate to
TRPCA (which means (10) can exactly recover the low-rank
and sparse components from their sum for the fixed P(3)

Or .).

Experimental Results
This section includes three parts: in the first two parts, we
compared the proposed algorithm (TRPCA-SPV) with sever-
al existing state-of-the-art tensor recovery methods (including
RPCA2(Candès et al. 2011), SNN3(Gandy, Recht, and Ya-
mada 2011), Liu’s work 3(called Liu for short)(Candes and
Plan 2010) and TRPCA3 (Lu et al. 2019)) on image sequence
recovery task and image classification task to evaluate the
effectiveness of the algorithms regarding alleviating SPV
problem on tensor recovery. And the third part was conduct-
ed in order to evaluate the performance of TRPCA-SPV with
different values of the parameter κ.

2https://github.com/dlaptev/RobustPCA
3https://github.com/canyilu/LibADMM-toolbox

Algorithm 2: Tensor recovery for SPV (TRSPV)
Input: Y ∈ Rn1×n2×n3 , and Iternum.
Output: C∗(Y) and Tτ (Y)
Compute weight matrix W ;
Initialize circle C(0) = {i(0)1 , i

(0)
2 , ..., i

(0)
n3 , i

(0)
1 }, and

k = 0;
while k ≤ Iternum do

k = k + 1;
if there are different
i
(k−1)
s ,i(k−1)t ,i(k−1)s + 1,i(k−1)t + 1 in C(k−1) which

make W
i
(k−1)
s ,i

(k−1)
t

(Y) +W
i
(k−1)
s +1,i

(k−1)
t +1

(Y) <

W
i
(k−1)
s ,i

(k−1)
s +1

(Y) +W
i
(k−1)
t ,i

(k−1)
t +1

(Y) then

C(k) = {i(k−1)t , i
(k−1)
s }

⋃
C(k−1)−1

(i
(k−1)
t+1 , i

(k−1)
s )

⋃
{i(k−1)t+1 , i

(k−1)
s+1 }⋃

C(k−1)(i
(k−1)
s+1 , i

(k−1)
t );

else
C(k) = C(k−1);
break;

end
end
Obtain C∗(Y) = C(k), and compute
Tτ (Y) = Dτ (YOr∗), where Or∗ obtained by C∗(Y);

Image Sequence Recovery
In this part, all five methods were tested on two hyperspectral
image databases including Pavia University 4 and Botswana4.

Each image with dimension of n1 × n2 is contaminat-
ed by the mixture of zero mean Gaussian noise and ran-
dom valued impulse noise, in which standard deviations of
zero mean Gaussian δ was set as δ = 5 : 10 : 25 and
random-valued impulse noise with density level c was set
as c = 0.05 : 0.1 : 0.25, respectively. For Pavia University,
we empirically set λ = 1/

√
max(n1, n2) for RPCA (which

deal with each band separately), λ = [ 2403 , 2403 , 2403 ] for SNN,
and λ = 330 × [0.2, 0.1, 0.7] for Liu. For Botswana, we
empirically set λ = 0.9/

√
max(n1, n2) for RPCA (which

deal with each band separately), λ = [ 3403 , 3403 , 3403 ] for
SNN, and λ = 370 × [0.3, 0.1, 0.6] for Liu. For TRPCA,
the parameter λ was tuned to λ = 0.9/

√
max(n1, n2)n3

and λ = 0.8/
√

max(n1, n2)n3 for Pavia University and
Botswana respectively, in which n3 is the number of spec-
tral bands. For TRPCA-SPV, the parameter λ was tuned to
λ = 0.9/

√
max(n1, n2)n3 for the two databases.

The Mean Peak Signal-To-Noise Ratio (MPSNR) value
1
n3

∑n3

i=1 PSNRi is used to evaluate the methods, where
PSNRi was the Peak Signal-To-Noise Ratio (PSNR) result
of i-th restored band. From Table 2, there are some observa-
tions as following: TRPCA-SPV outperforms the compared
methods by a wide margin in most of cases. Specifically, for
Pavia University, TRPCA-SPV outperforms other methods

4http://www.ehu.eus/ccwintco/index.php/
Hyperspectral_Remote_Sensin_Scenes
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Algorithm 3: TRPCA for SPV (TRPCA-SPV)

Initialize: L(0) = S(0) = Q(0) = Y(0) = 0, ρ > 1,
µ0 = 1e− 3, ε = 1e− 8, κ > 0.
while not converged do

1. Update Or∗ by
If κ = 1 or k mod κ = 1, update Or∗ by
C∗(M(k)), whereM(k) = P − S(k) − Q

(k)

µk
;

2.Update L(k+1) by
L(k+1) = arg minL ‖L‖∗ + µk

2 ‖L− (M(k))Or∗‖2F ;
3. Update S(k+1) by
S(k+1) = arg minS λ‖SOr∗‖1 + µk

2 ‖L
(k+1) +

SOr∗ − POr∗ + (Q
(k)

µk
)Or∗‖2F ;

4.(Q(k+1))Or∗=(Q(k))Or∗ + µ(L(k+1) +
(S(k+1))Or∗ − POr∗);
5.Update µk+1 by µk+1 = min(ρµk, µmax);
6. Check the convergence conditions
‖L(k+1) − L(k)‖∞ ≤ ε,
‖(S(k+1))Or∗ − (S(k))Or∗‖∞ ≤ ε,
‖L(k+1) + (S(k+1))Or∗ − POr∗‖∞ ≤ ε;

end

by more than 3 dB on the case of small noise level. This
demonstrates the superiority of our TRPCA-SPV in tensor re-
covery. For case of TRPCA-SPV v.s. TRPCA, TRPCA-SPV
can attain much better results compared to TRPCA. The gap
between MPSNR results by TRPCA-SPV and TRPCA even
achieve 5dB in the case of δ = 5 and c = 0.05 : 0.1 : 0.25.
This illustrate the huge affecting of SPV on TRPCA, and
TRPCA-SPV can eliminate it well.

Image Classification
In this part, image classification was conducted on two
datasets including ORL database5 and CMU PIE database 6.

Each image with size of n1 × n2 was contaminated by
the mixed noise, in which δ was set as δ = 0 : 5 : 30
and c was set as c = 0 : 0.05 : 0.3. For each noise lev-
el, all five algorithms were used to recover the low rank
tensor structure from the noised images. The performance
of the algorithms was evaluated by classification accuracy
via k nearest neighbor (kNN), where k = 1 in the exper-
iments. For each dataset, 90% of samples were randomly
selected as training set, and the rest were taken as testing
set. For RPCA and TRPCA, the parameter λ was set to
λ = 1/

√
max(n1n2, n3) and λ = 1/

√
max(n1, n2)n3 re-

spectively as suggested in (Lu et al. 2019), in which n3 was
the number of samples. For TRPCA-SPV, the parameter λ
was set to λ = 1/

√
max(n1, n2)n3 as well. For Liu, we

found that it did not perform well when λi’s were set to the
values suggested in theory (Huang et al. 2015). We empirical-
ly set it as 70× [0.2, 0.3, 0.5]. For SNN, we empirically set
λ = [ 703 ,

70
3 ,

70
3 ]. All results are presented in Fig. 3-4, with

5https://cam-orl.co.uk/facedatabase.html
6https://www.ri.cmu.edu/project/pie-database/

mean accuracy of each method derived from 10 times exper-
iments. The cell with more dark red corresponds to higher
classification accuracy.

From Fig. 3-4, there are some observations as following:
In general, TRPCA-SPV achieves more stable and better
performance compared to other methods (RPCA, SNN, Liu
and TRPCA). In addition, TRPCA-SPV can attain better
results compared to TRPCA, because TRPCA-SPV exploits
the low rank structure within the tensor data more exactly.

Sensitivity Analysis of Parameters
In this part, we also evaluated our algorithm on two datasets
(including ORL database and Pavia University), in which
each image in datasets contaminated by the mixed noise with
δ = 15 and c = 0.15, to investigate the influence of the
parameter κ.

The experiments for each parameter κ were repeated 10
times, the results obtained by the different methods are shown
in Fig. 5 (a) and (b), from which we have the following obser-
vations: (1) In general, the results by TRPCA-SPV are robust
against to the parameter κ. (2) For all cases of TRPCA-SPV,
the results by TRPCA-SPV are much better than TRPCA.

In addition, from Fig. 5 (c) and (d), the curve by TRPCA-
SPV is shock depend on the parameter κ at the beginning, and
tend to be stable after with more iterations of the algorithm,
in which

Error = max(‖L(k+1) − L(k)‖∞, ‖S(k+1) − S(k)‖∞,
‖L(k+1) + (S(k+1))Or∗ − POr∗‖∞). (11)

Conclusion and Future Work
This paper focuses on solving a new problem (SPV in tensor
recovery) which has not been explored so far. We aimed to
accurately recover a low rank tensor from a high-dimensional
tensor data with chaos tensor slices sequence. The exam-
ple given in Figure 1 shows a huge gap between results by
tensor recovery using tensor with different slices sequence.
To deal with this issue, TRSPV was proposed. Furthermore,
we discussed SPV of several key tensor recovery problem-
s in theoretically. To this end, we first studied the row (or
column) permutations invariance of a key low rank matrix
recovery problem (Principal Component Analysis). Then,
SPI of several key tensor recovery problems were discussed
in theoretically, and we obtained the following results: (1)
Tensor recovery based on the weighted sum of the nuclear
norm of the unfolding matrices has SPI. (2) For n3 ≤ 3,
tensor recovery based on tensor nuclear norm has SPI. For
the case of n3 > 3, experimental results showed the effec-
tiveness of the proposed algorithm, and eliminated SPV in
tensor recovery well.

Although tensor recovery based on t-product usually
achieves a significant performance compared to other ten-
sor recovery methods, but it can not be applied in higher
order tensor recovery in straightway. Consider the real data
such as color videos are in higher order tensor form. It is in-
teresting to develop an effective higher order tensor algorithm
using the idea of tensor-tensor product in the future.
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Botswana Pavia University
δ c RPCA SNN Liu TRPCA TRPCA-SPV RPCA SNN Liu TRPCA TRPCA-SPV

5
5% 29.90 34.52 36.82 32.06 38.44 27.56 29.82 32.03 30.65 36.60
15% 29.04 33.02 35.34 30.06 37.11 26.90 29.21 31.60 28.07 35.39
25% 27.73 30.81 32.92 28.78 34.98 25.55 27.96 30.53 26.03 33.48

15
5% 28.11 30.91 32.42 31.11 34.21 25.58 27.19 28.07 30.22 31.51
15% 27.32 29.47 30.92 28.99 32.34 24.77 26.43 28.35 27.17 30.38
25% 25.78 27.23 28.48 27.18 29.67 23.20 24.96 26.99 24.67 27.76

25
5% 26.84 29.17 30.37 29.34 31.65 23.63 25.12 26.94 28.50 29.02
15% 26.05 27.55 28.67 26.83 29.77 22.74 24.30 26.30 25.21 27.49
25% 24.29 25.14 26.06 24.18 26.79 21.11 22.76 24.77 22.49 24.81

Table 2: MPSNR results by different methods on Botswana and Pavia University.
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Figure 3: Classification accuracies of the 5 algorithms on ORL database: (a) RPCA (b) SNN (c) Liu (d) TRPCA (e) TRPCA-SPV
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Figure 4: Classification accuracy result on CMU PIE database: (a) RPCA (b) SNN (c) Liu (d) TRPCA (e) TRPCA-SPV

1 10 20 30 40 50 60 70 80 90 100
0.6

0.7

0.8

0.9

1

Ac
cu
ra
cy

TRPCA-SPV
RPCA
SNN
Liu
TRPCA

(a)

1 10 20 30 40 50 60 70 80 90 100
15

20

25

30

PS
N
R

TRPCA-SPV
RPCA
SNN
Liu
TRPCA

(b)

0 50 100 150 200 250 300
Iterations

10-10

10-7

10-4

10-1

102

Er
ro
r

(c)

0 50 100 150 200 250 300
Iterations

10-10

10-7

10-4

10-1

102

Er
ro
r

(d)

Figure 5: Sensitivity analysis of parameter κ for TRPCA-SPV on (a) ORL database and (b) Pavia University; Convergence
analysis for TRPCA-SPV with different κ on (c) ORL database and (d) Pavia University.
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