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Abstract
Multiple modalities can provide rich semantic information;
and exploiting such information will normally lead to better
performance compared with the single-modality counterpart.
However, it is not easy to devise an effective cross-modal
fusion structure due to the variations of feature dimensions
and semantics, especially when the inputs even come from
different sensors, as in the field of audio-visual learning. In
this work, we propose SepFusion, a novel framework that
can smoothly produce optimal fusion structures for visual-
sound separation. The framework is composed of two com-
ponents, namely the model generator and the evaluator. To
construct the generator, we devise a lightweight architecture
space that can adapt to different input modalities. In this way,
we can easily obtain audio-visual fusion structures according
to our demands. For the evaluator, we adopt the idea of neu-
ral architecture search to select superior networks effectively.
This automatic process can significantly save human efforts
while achieving competitive performances. Moreover, since
our SepFusion provides a series of strong models, we can uti-
lize the model family for broader applications, such as fur-
ther promoting performance via model assembly, or provid-
ing suitable architectures for the separation of certain instru-
ment classes. These potential applications further enhance the
competitiveness of our approach.

Introduction
Recent years have witnessed the great development of audio-
visual learning, where deep neural networks perform an im-
portant role as feature encoders and decoders. Such intelli-
gent systems could perceive the world synthetically by pro-
cessing various input information from multiple modalities
simultaneously, which have benefited broad applications in
many fields such as sound recognition, music source separa-
tion, stereo sound generation, and so on.

Visual cues play an important role in the audio analy-
sis system, especially for the visual sound separation task.
For example, it can provide knowledge about object ap-
pearances and textures to guide the sound separation pro-
cess (Zhao et al. 2018; Gao and Grauman 2019b; Zhao et al.
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Figure 1: We propose SepFusion to smoothly construct op-
timal fusion structures for visual-guided audio processing
tasks. We devise an attention-based architecture space for
fusion structure generation and adopt Neural Architecture
Search (NAS) algorithms to select the good architectures
among all candidates. Our approach enjoys the advantage
of flexibility, which can be deployed on different modalities
and various separation scenarios.

2019; Ephrat et al. 2018). One of the most important is-
sues in visual sound separation is how to effectively fuse
vision information into the audio backbone. However, the
cross-modality fusion is never easy due to the complex fea-
ture structure and diverse semantic context, e.g. it is hard to
combine a visual feature whose pixels have spatial relations
with an audio feature containing frequency-related informa-
tion. While previous methods have proposed different fusion
techniques with diverse visual modalities (Gao and Grau-
man 2019b; Zhao et al. 2019; Gan et al. 2020), their design
procedures of fusion modules are laborious and require ex-
tensive prior knowledge from human experts.

Naturally, a question arises from such a situation: Is there
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any approach to easily find ideal fusion structures for the
visual sound separation system?

The answer is Yes. In this work, we propose SepFusion,
a novel framework that can smoothly produce audio-visual
fusion architectures for visual sound separation. The SepFu-
sion framework consists of two modules, namely the model
generator and the evaluator. For the model generator, we
design an architecture space, from which we can conve-
niently obtain various fusion modules based on a sampling
rule. The evaluator is constructed on the Neural Architecture
Search (NAS) algorithm. It can effectively pick superior ar-
chitectures among the generated candidates. Compared with
hand-crafted structures, this automatic process significantly
saves human efforts on model design whilst achieving supe-
rior performances.

Our SepFusion framework enjoys the advantage of flex-
ibility, which is reflected in the following aspects. (1) The
framework does not have special requirements on the in-
put modes, which means we can smoothly choose the in-
puts from commonly-used modalities such as image, spec-
trogram, skeleton, etc., according to our needs. (2) Com-
pared with previous works (Pérez-Rúa et al. 2019; Yu et al.
2020), which aim to search for the entire network architec-
tures, our fusion structures are relatively independent mod-
ules. Thus, our SepFusion also possesses good compatibil-
ity and can be easily plugged into existing pipelines. (3)
What’s more, in our architecture space, the majority of the
fusion operations are primitive matrix computations, which
are parameter-free. This property makes our fusion structure
very lightweight, and hence relieves the computational bur-
dens when introducing additional modules.

In addition to the advantages of flexibility and low-cost,
our SepFusion also exhibits strong robustness, manifested
in its versatility to various scenarios. Experimental results
demonstrate that our method improves baseline methods by
a large margin on the visual sound separation task. Besides,
our method can be directly applied to the visually guided
binaural audio generation task (Gao and Grauman 2019a;
Morgado et al. 2018) as well. Furthermore, since SepFusion
can simultaneously provide a series of good architectures, it
can be easily benefited from the model ensemble. The ex-
perimental results show that the model ensemble not only
brings extra improvements but may also be used to meet
more customized requirements, such as the special demand
for separating a certain instrument.

Our contributions can be summarized as followed: (1) We
put forward SepFusion, a novel framework that can automat-
ically construct lightweight audio-visual fusion modules. (2)
The flexibility and robustness of our SepFusion framework
are verified on visual sound separation with modalities. Ex-
tensive experiments demonstrate the effectiveness of our fu-
sion modules. (3) We raise an effective model ensemble
mechanism to fully utilize the advantages of the architecture
family, which can satisfy more specific requirements whilst
further boost the performances.

Related Works
Audio-Visual Learning. In recent years, audio-visual learn-
ing has attracted widespread attention with the success of

deep learning. By leveraging the richer semantic informa-
tion provided by two modalities, deep models tend to ex-
hibit better performances compared with the single-modality
scene. Many areas have also achieved rapid developments,
such as audio-visual corresponding learning (Korbar, Tran,
and Torresani 2018; Owens and Efros 2018; Arandjelovic
and Zisserman 2017; Arandjelović and Zisserman 2018),
cross-modality generation (Zhou et al. 2018; Oh et al. 2019;
Ginosar et al. 2019; Gao and Grauman 2019a; Morgado
et al. 2018; Zhou et al. 2019a,b, 2021), sound separation
and localization (Zhao et al. 2018, 2019; Ephrat et al. 2018;
Afouras, Chung, and Zisserman 2018; Rouditchenko et al.
2019; Gan et al. 2020; Gao, Feris, and Grauman 2018; Xu,
Dai, and Lin 2019; Tian, Hu, and Xu 2021; Gao and Grau-
man 2021, 2019b; Hu, Nie, and Li 2019; Hu et al. 2020;
Rahman, Yang, and Sigal 2021; Majumder, Al-Halah, and
Grauman 2021) and so on. Our work focuses on two im-
portant tasks of the visual-guided sound processing field,
namely, visual music separation and stereo sound gener-
ation (Gao and Grauman 2019a; Zhou et al. 2020b; Xu
et al. 2021). Despite the success in the previous works, the
effective fusion mechanisms of vision and audio features
are still less explored. Zhao et al. (2019) and Gan et al.
(2020) have designed specific fusion modules to enhance
the audio-visual interaction. But these architectures are still
rigid, making them hard to fit different tasks or modalities.
Our SepFusion enjoys flexibility and can easily dig the fu-
sion mode between different modalities.
Multi-Modality Fusion. Learning effective fusion mecha-
nisms is one of the core challenges in multi-modality learn-
ing. By capturing the interactions between different modal-
ities more reasonably, the deep models can accomplish the
semantic compensations and hence acquire more compre-
hensive information. Many powerful architectures have been
proposed in the video understanding field, which majorly
aims at combining appearance and motion features (Si-
monyan and Zisserman 2014; Wang et al. 2015; Feichten-
hofer, Pinz, and Zisserman 2016; Ryoo et al. 2019; Feicht-
enhofer et al. 2019). Both the appearance and motion modal-
ities belong to the vision domain, while basically larger gaps
may appear between cross-censor modalities. Some works
try to solve the cross-sensor modality fusion problem by
finding ideal feature connections in VQA (Gao et al. 2019;
Yu et al. 2020) and audio-visual classification tasks (Pérez-
Rúa et al. 2019). These previous works mainly focus on
the high-level scenes, but our work can deal with the fine-
grained dense prediction tasks on the pixel level.
Neural Architecture Search. Neural Architecture
Search (NAS) aims at searching for optimal neural
networks automatically in an elaborately designed search
space, and its effectiveness has been verified in many
computer vision fields, such as image classification (Zoph
and Le 2016; Zoph et al. 2018; Xie et al. 2019; Zhou et al.
2020a), object detection (Ghiasi, Lin, and Le 2019; Xu et al.
2019) and so on. These previous works primarily target
homogeneous features of similar semantics, but our work
can handle more diverse features even of various sensor
domains. Some works (Pérez-Rúa et al. 2019; Yu et al.
2020) also explore the application of NAS algorithms to
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find structures for features from different modalities. The
searching objective of these works is the entire processing
system, while our SepFusion focuses on an independent
fusion module, which is more compatible with existing
frameworks.

Our Approach
The objective of visual-sound separation is to separate in-
dividual audio components from a mixed audio signal with
the guidance of visual cues. Since the separation results are
guided by visual signals, it is essential to find a reasonable
information fusion mode between visual and audio modal-
ities for the processing system. Instead of proposing a spe-
cific fusion structure as (Zhao et al. 2018, 2019; Gan et al.
2020), our work develops a more general mechanism, where
the design scope is extended from a single architecture to
the architecture space. Our audio-visual fusion architecture
space is mainly based on primitive attention operations and
can easily produce various fusion architectures with given
sampling rules. After the establishment of the architecture
space, we adopt a Neural Architecture Search (NAS) algo-
rithm to select the optimal structures from the generated
candidates. Compared with the hand-crafted networks, our
automatic searching mechanism can handle different visual
modality types (e.g., images, skeletons) and achieve stronger
performances.

In this section, we will introduce how to generate new
structures based on our designed architecture space. Details
on the search algorithm will be presented in the next section.

Framework Overview
Following previous studies (Zhao et al. 2018; Gao and Grau-
man 2019b; Zhao et al. 2019), we also utilize the ‘Mix-and-
Separate’ paradigm to construct our visual sound separa-
tion pipeline in a self-supervised manner. Given two video
clips {VA, VB} with corresponding audio signals {SA, SB},
we mix the audio components to generate a synthetic mix-
ture audio signal Sm = (SA + SB)/2. For each video clip
i (i ∈ {A,B}), the visual encoder extracts the visual fea-
ture f i

v from the input frames. Meanwhile, the mixed audio
signal is fed into the audio encoder to generate the audio fea-
ture fa. Afterward, the audio feature will be fused with the
visual features {fA

v , fB
v }, respectively, and produce audio-

visual features {fA
av, f

B
av} responsible for separating the cor-

responding audio signal. Finally, the fused audio-visual fea-
tures will pass through the audio decoder to produce the sep-
aration mask for each component. The pipeline is depicted
in Figure 2.

Steps for Intermediate Feature Generation
The features involved in the fusion structure are termed
as nodes which include both the input features and inter-
mediate features. The intermediate nodes are created one by
one in sequence until their amount reaches the pre-defined
value. Each new node will take two previous nodes as in-
puts, and combine the inputs to compute its own output via
a certain fusion operation. In Figure 2 (a), we provide an
example of possible connections between the nodes. In the

beginning, the node set only contains the monomodal audio
and visual input nodes. The generation steps of each inter-
mediate node are as follows, and the selecting action in each
step is random selection.

• Step 1. Select two inputs from the existing node set.
• Step 2. Select an operation from the operation pool.
• Step 3. Apply the operation on the two input nodes to

compute the non-activated feature.
• Step 4. Select one activation function from sigmoid, soft-

max, ReLU, and identity (no activation). Activate the fea-
ture from Step 3 to produce the new node.

• Step 5. Add the new node to the node set.

If not specified, we assume that the modality of visual
data are frames, so that the input visual node has the shape
fv ∈ RC×H×W (the video index is omitted for simplic-
ity), where C,H,W refer to Channel, Height, and Width,
respectively. As for the audio data, we transfer the raw
signals to spectrograms via Short Time Fourier Transform
(STFT). Thus, the input audio node possesses the format
of fa ∈ RC×F×T , where C,F, T stand for Channel, Fre-
quency, and Time, respectively.

Fusion Operations
Before the demonstration of fusion operations, we will first
introduce the format adjustment operation (denoted as FA),
which serves as a necessary step in many fusion operations,
and discuss the specific operations subsequently.

Format Adjustment The FA operation may adjust the
shapes of the input nodes so that they can be used to gener-
ate the output of target formats. To obtain the output format,
two principles are proposed: (1) For most cases, where both
inputs contain the C dimension, the format of the generated
node should be the same as one of the inputs; (2) If one of the
inputs does not possess the C dimension, i.e. of the shape
RH×W×F×T , then shared dimensions of the two inputs will
be eliminated and the output format is composed of the re-
maining dimensions. The output formats corresponding to
all possible input combinations are presented in Figure 3.

The FA operation can be regarded as a ‘maximize-and-
replicate’ procedure, that is, a feature first conducts the
global max-pooling on the dimensions to be eliminated, and
then obtains the target shape by replicating this maximum
value. Suppose the current feature fi is of shape [C,M,N ]
while the target shape is [C, J,K]. The initial step is to re-
shape fi to [C, (M × N)] and acquire the maximum value
for each M × N array along the C dimension. Then we
duplicate these maximum values for J × K times and re-
shape the feature to the new shape [C, J,K]. In this way, we
can realize the format transformation on features, which can
be formulated in Eq 1. Please note that we do not require
that [M,N ] and [J,K] must be different. In other words, the
FA operation is also applicable to the cases where the target
shape is the same as the original shape.

f
′

i = FA
[C,M,N ]7→[C,J,K]

(fi) (1)
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Figure 2: Sketch of one fusion module structure (a) and the illustration of the whole pipeline for the visual sound separation
task (b). In the sketch, we provide an example of the connection mode for the nodes inside the fusion module. The separation
process can be guided by different types of visual cues and we adopt the image modality as an example here. The audio and
visual features are extracted by the corresponding encoders and then get fused in the SepFusion module. Finally, the fused
audio-visual feature will pass through the audio decoder to predict the results.

Specific Operations The specific fusion operations will
be discussed as follows. As shown in Figure 3, the con-
stitution of the operation pool during the generation will
change with different input combinations. The operations
are element-wise Addition (EmADD), element-wise Mul-
tiplication (EmMUL), Multiplication (MUL), Concatena-
tion (Concat), and Skip-connection (SkC). We can see that
most operations are based on matrix operations, which
makes the fusion module very lightweight and saves the
computational budgets.
EmADD: The element-wise addition requires that the two
inputs should share the same formats. Therefore, we need to
make sure the shapes of the two inputs are consistent before
conducting the operation. Suppose the two input nodes are
fX ∈ RC×M×N and fY ∈ RC×J×K while the output node
is fZ . For the situation where M 6= J and N 6= K, which
corresponds to the combination of {[C,H,W ]&[C,F, T ]}
in Figure 3, we need to check the required format of the
output fZ . If the format of fZ is the same as that of fX , we
need to adjust the shape of fY via the FA operation, and
vice versa. We depict this operation in Eq 2.

fZ = EmADD(fX , fY )

= fX + FA
[C,J,K]7→[C,M,N ]

(fY ), fZ ∈ RC×M×N (2)

When the two inputs already share the same format,
that is, the combination of {[C,H,W ]&[C,H,W ]} or
{[C,F, T ]&[C,F, T ]}, we still choose to apply the FA op-
eration on one of the inputs while keeping another one un-
changed. In this way, the FA operation does not serve as
the shape transformation method but can be regarded as an
attention mechanism. This situation is formulated in Eq 3.

fZ = EmADD(fX , fY )

= fX + FA
[C,M,N ]7→[C,M,N ]

(fY ), fZ ∈ RC×M×N

(3)
EmMUL: The element-wise multiplication operation is
very similar to the EmADD operation, except that the op-

erator changes from addition to multiplication. We adopt
the same rules to adjust the input nodes before applying the
computation.
MUL: Different from the EmMUL operation, which re-
quires the two inputs have the same formats, the MUL oper-
ation will eliminate all the common dimensions of the two
input nodes, and only retain the distinct dimensions. There-
fore, this operation is forbidden when the formats of two in-
puts are exactly the same, which is also reflected in Figure 3.
In practice, the Einstein Summation Convention is utilized
to accomplish dimension compression. Suppose the two in-
puts are fX ∈ RC×M×N and fY ∈ RM×N×J×K , where
the common dimensions are M and N . By compressing the
common dimensions and combine the distinct ones, we can
obtain the output format fZ ∈ RC×J×K . Each element of
feature fZ can be computed as follows:

f c,j,k
Z =

∑
m

∑
n

f c,m,n
X × fm,n,j,k

Y (4)

Concat: This operation concatenates the inputs along the
Channel dimension. Thus, the existence of C dimension is
necessary for both input nodes. Naturally, the input formats
should first be adjusted to match each other. When the input
formats are different, we adopt a similar format adjustment
method as in EmADD and EmMUL to realize the matching.
However, when the input formats are already the same, such
as the combination of {[C,H,W ]&[C,H,W ]}, the adjust-
ment will be skipped and the two input nodes will be di-
rectly concatenated. Finally, the concatenated feature passes
through a 1 × 1 convolution layer to recover the channel
number from 2C to C and generate the output node.
SkC: The skip-connection operation adapts to a relatively
special case, when the two selected input nodes happen to
be the same node and the Channel dimension exists. We feed
the input node to a 1× 1 convolution layer then add the con-
volved feature and the original input to produce the output.

Output of Fusion Module
After the generation of all the intermediate nodes, we can
build the final output feature for the entire fusion module.
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Figure 3: Illustration of all permitted input node combina-
tions (green rectangles), as well as the operation pools (or-
ange rectangles) and the corresponding formats of the out-
put node (grey rectangles). The modality of visual data
are frames while the audio data are spectrograms. We can
see that the operation pools will change with different
input combinations. Please note that the combination of
{[C,F, T ], [C,F, T ]} is omitted in the figure since it is the
same as the {[C,H,W ], [C,H,W ]} group.(only need to re-
place all [C,H,W ] to [C,F, T ] in (b)). Best view in color.

The nodes that never serve as inputs to other nodes should
appear in the output set to make sure that no generated nodes
are useless, unless they do not contain the Channel dimen-
sion. Please note that the shape of nodes inside the output
set may be different, so that we need to convert the features
into the specific output format. In our task, the subsequent
processing is operated on the audio domain. Thus, the nodes
with visual shapes (e.g. RC×H×W ) are transformed to be
consistent with the audio format via the FA operation. Fi-
nally, we concatenate these nodes of pure audio semantics
and convolve them to obtain the final output of the fusion
module. Figure 4 shows an example of the complete fusion
module structure.

Search Algorithm
In the previous section, we illustrate the steps to randomly
generate the audio-visual fusion structures. To obtain the
ideal fusion modules, we adopt an evolution-based search al-
gorithm that evaluates and selects the optimal architectures
among all the possible candidate networks.

In the searching process, the initial fusion architectures
are randomly generated. After that, the new architectures
will be constructed from the mutation of existing structures
in the population set, which are denoted as parent models.
All the searched structures and their performances are stored
in the history set.

For every evolution cycle, we select the network with the
highest performance from the current population set as the
parent model. After the mutation manipulation, the parent
model generates a new child architecture. We train and eval-
uate the new child to obtain the performance, and then add
it to both the history and population set. Meanwhile, the
oldest model (not necessarily the worst) is removed from the
population set. Thus, the population is dynamically up-

dated with the evolutionary process, instead of keeping con-
stant. In this way, the candidate networks may enjoy a higher
diversity, rather than dominated by a certain constant parent.
The details of the algorithm are shown in the supplementary.

Following previous evolutionary-based NAS meth-
ods (Real et al. 2019; Liu et al. 2017; Real et al. 2017),
we utilize two mutation methods that we call input mutation
and operation mutation. Both mutation methods will only
change a single node in the entire fusion module. The in-
put mutation will replace one of the inputs with another one,
which can be selected from the nodes previous to the cur-
rent mutation node, while the operation mutation keeps the
inputs unchanged and modify the fusion operation. The il-
lustration of the two mutation methods is shown in Figure 5.

Model Configuration
In this section, we provide details about the configuration of
the models in the visual sound separation task.

Vision Network
We use dilated ResNet-18 (He et al. 2016) network to ex-
tract the frame features. The final global pooling and fully-
connected layers are removed from the network so that the
features from the 4th ResNet block are regarded as the final
output. The output shape is Cv×(H0/32)×(W0/32), where
H0 and W0 denote the height and width of input frames and
Cv stands for channel dimension.

Audio Network
Following previous works (Zhao et al. 2018, 2019; Gao and
Grauman 2019b,a), we adopt a U-Net (Ronneberger, Fis-
cher, and Brox 2015) style architecture as the audio network.
The U-Net consists of the same number of downsample lay-
ers and upsample layers with skip connections between fea-
ture maps of the same scale. The input to the audio network
is a 2D Time-Frequency magnitude spectrogram of mixed
audio signal computed by STFT. The audio features after
the downsample layers together with the visual features are
fed into the fusion module to complete the cross-modality
interaction. Afterward, the fused features will pass through
the upsample layers to predict the separation masks for the
audio components.

The entire framework is optimized with the pixel-level
sigmoid binary cross-entropy loss, where the ground truth
mask for each component is obtained by checking whether
the corresponding audio signal is dominant in the mixed au-
dio at each T -F unit.

Experiments
In this section, we first introduce the datasets and evaluation
metrics. The searching and training details will be provided
in the supplementary. Then we compare the performance of
SepFusion with the baseline methods and show the ablation
studies. Finally, we propose some interesting applications of
the searched models, which will further promote the perfor-
mances or provide suitable networks for specific instrument
classes.
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Figure 4: An example of the randomly generated fusion module, which consists of 6 intermediate nodes. The visual input is
from image modality with format [C,H,W ] while the audio input is from Time-Frequency spectrogram with format [C,F, T ].
We mark the operation, activation as well as the output format on the intermediate nodes (the violet rectangles).
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Figure 5: Illustration of the two mutation methods to modify
a node. The green circles represent the inputs to a node while
the outputs are shown in gray circles. The numbers serve as
the node index.

Datasets and Evaluation Metrics
We validate the effects of our fusion module on the MU-
SIC dataset (Zhao et al. 2019), which contains 21 classes
of instruments. The dataset consists of untrimmed videos
crawled from the YouTube website and hence can be re-
garded as separation in the wild. We adopt the open-source
mir eval library (Raffel et al. 2014) to compute the fol-
lowing metrics: Signal-to-Distortion Ratio (SDR), Signal-
to-Interference Ratio (SIR), and Signal-to-Artifact Ratio
(SAR). The units are dB.

Performance Comparison
We compare with existing baseline methods for visual sound
separation and summarize the results in Table 1. Sound-of-
Pixels (Zhao et al. 2018) executes the audio-visual fusion
at the end of U-Net. Simple-concat is a self-implemented
baseline which moves the audio-visual fusion operation to
the middle of the U-Net while the remaining parts are kept
the same as Sound-of-Pixels. The fusion operation is con-
catenation, as the name suggests. Co-separation (Gao and
Grauman 2019b) incorporates an object-level co-separation
loss for the separation framework.

We illustrate the comparison between SepFusion and the
baseline methods in Table 1, where we can observe that
our approach consistently exceeds all baselines on different
metrics. Specifically, our fusion module surpasses the most
competitive baseline by 1.0 dB on the SDR score. We also
argue that our SepFusion is mainly based on matrix opera-

tions so basically it only brings limited extra parameters. In
other words, we achieve impressive performance improve-
ments at a low cost of parameter burdens.

Method SDR↑ SIR↑ SAR↑
Simple-Concat 7.30 13.22 10.65
Sound-of-Pixels (2018) 7.57 14.20 11.48
Co-Separation (2019b) 7.76 12.93 10.89
SepFusion (Ours) 8.76 16.65 11.81

Table 1: Separation results on the MUSIC test set. Higher is
better for all metrics.

Ablation Study
Verification on other visual modality. In addition to the
image modality, we also examine the compatibility of our
SepFusion with skeletons as the visual information, as illus-
trated in Table 2. Skeleton-based music separation was first
proposed by Gan et al. in (Gan et al. 2020) together with
a devised Visual-Audio Fusion Module (denoted as VAFM).
We make a comparison with both the simple baseline of con-
catenation (denoted as Simple-Concat) and the hand-crafted
VAFM. The implementation details are provided in the sup-
plementary material. The results exhibit that our fusion mod-
ule is more effective than baselines. Besides, our SepFu-
sion also possesses a unique advantage of flexibility, as it
can provide a series of good fusion structures at the same
time while VAFM only represents single architecture. The
flexibility shows potential capabilities for a broader range of
applications, which will be discussed in the following part.

Method SDR↑ SIR↑ SAR↑
Simple-Concat 9.02 16.70 11.97
VAFM (Gan et al. 2020) 9.28 17.41 11.44
SepFusion (Ours) 9.71 18.05 12.20

Table 2: Separation results on the MUSIC test set with skele-
ton modality as visual cues.

Verification on other separation scenario. In addition to
the normal separation task, we also examine the SepFusion
performance on another separation scenario, i.e., the stereo
generation task (Gao and Grauman 2019a). The stereo gen-
eration task shares similar network architectures with the
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separation task but the outputs are binaural masks. We con-
duct experiments on the Fair-Play dataset and the results
are listed in Table 3. Other implementation details can be
found in the supplementary material. We observe that the
models with our fusion modules can shorten both the spec-
trogram and envelope distances, which exhibit the effective-
ness of our SepFusion framework. With the fusion module,
the models can better exploit the spatial layout and appear-
ance information provided by the visual cues, which may
lead to the generation of higher quality binaural sounds.

Method STFTD ↓ ENVD ↓
Mono2Binural (2019a) 0.959 0.141
SepFusion (Ours) 0.927 0.137

Table 3: Stereo generation results on the test split of Fair-
Play dataset. Lower is better for all metrics.

Ensemble of Searched Structures
As discussed, our SepFusion enjoys the advantage of flexi-
bility as it can produce a basket of relatively good structures
simultaneously. In this part, we will present two choices on
how to exploit the strengthens of the model library. First, dif-
ferent architectures can serve as complements to each other
and promote overall performance by compensating for the
shortcoming of every single model. Second, the diversified
structures may respond to more delicate and customized de-
mands, such as the prominent enhancement of certain in-
struments. These bonus benefits further boost the competi-
tiveness of our approach.

By combining the advantages of different fusion struc-
tures, we can surpass the upper limit of a single model and
obtain more impressive outcomes. This capacity is validated
on both sound separation and stereo generation tasks, as de-
picted in Table 4. For the sound separation task, we assemble
the masks predicted by every single model and take the max-
imum value at each pixel to generate the integrated mask.
Then the integrated mask will be binarized using the same
threshold as the single model to generate the final output.
For the stereo side, we conduct mean operation on binaural
sounds generated by each model to reduce the fluctuations
in individually predicted waveforms. The results in Table 4
demonstrate that the improvements are robust and consis-
tent on different tasks, which also lead to a new solution for
performance promotion.

Naturally, different architectures should have distinctive
characteristics, which allows the architecture pool to deal
with more specific requests, such as target separation at
one certain instrument. We observe that the overall best-
performing model does not necessarily exhibit superior abil-
ity on every single instrument. Accordingly, a relatively sub-
optimal model may still possess an advantage in a certain
category. We visualize our observation in Figure 6, which
serves as a good example to illustrate the preferences of dif-
ferent structures on distinct instruments. We can observe that
the overall best model does not necessarily perform best in
every category, while the less optimal model may still show

Separation SDR↑ SIR↑ SAR↑
Single Best 8.76 16.65 11.81
Ensemble 9.20 17.14 12.04
Stereo STFTD ↓ ENVD ↓
Single Best 0.927 0.137
Ensemble 0.895 0.136

Table 4: Comparisons between results predicted by the sin-
gle best model and the model ensemble on both sound sepa-
ration and stereo generation tasks.
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Figure 6: Performance visualization of different architec-
tures on distinct instruments. The model index represents the
overall performance rank. The Rank-axis denotes the SDR
ranking for separating a certain instrument and a higher bar
indicates better performance. ∆sdr refers to the SDR differ-
ences between the best and worst models.

superior ability on some instrument. The relevant spectro-
gram visualizations are provided in the supplementary.

Conclusion
We propose SepFusion, a framework that can easily produce
optimal audio-visual fusion structures. Experimental results
demonstrate that our SepFusion surpasses baseline meth-
ods on various scenarios and also exhibits advantages when
adopting visual cues of different modalities, which proves
the robustness of our approach. Besides, our SepFusion en-
joys an important advantage that can provide a series of rel-
atively good architectures instead of a single structure. This
property may bring interesting applications, such as model
ensemble and customized architecture, which to our knowl-
edge have never been realized by previous works. We wish
this work could enlighten more discussions and explorations
about the cross-modality feature fusion mechanism.

3550



Acknowledgements
This work was supported in part by the Research Funds
of Renmin University of China (NO. 21XNLG17 and
2021030200) and the 2021 Tencent AI Lab Rhino-Bird Fo-
cused Research Program (NO. JR202141). This work was
also supported in part by NTU NAP, MOE AcRF Tier 1
(2021-T1-001-088), and under the RIE2020 Industry Align-
ment Fund – Industry Collaboration Projects (IAF-ICP)
Funding Initiative, as well as cash and in-kind contribution
from the industry partner(s). Wanli Ouyang was supported
by the Australian Research Council Grant DP200103223,
FT210100228, and Australian Medical Research Future
Fund MRFAI000085, CRC-P “ARIA - Bionic Visual-Spatial
Prosthesis for the Blind” and “Smart Material Recovery Fa-
cility (SMRF) - Curby Soft Plastics”, and SenseTime.

References
Afouras, T.; Chung, J. S.; and Zisserman, A. 2018. The Con-
versation: Deep Audio-Visual Speech Enhancement. Pro-
ceedings of the Interspeech.
Arandjelovic, R.; and Zisserman, A. 2017. Look, listen and
learn. In Proceedings of the IEEE International Conference
on Computer Vision, 609–617.
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