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Abstract

In remote sensing imaging systems, pan-sharpening is an
important technique to obtain high-resolution multispectral
images from a high-resolution panchromatic image and its
corresponding low-resolution multispectral image. Owing to
the powerful learning capability of convolution neural net-
work (CNN), CNN-based methods have dominated this field.
However, due to the limitation of the convolution operator,
long-range spatial features are often not accurately obtained,
thus limiting the overall performance. To this end, we pro-
pose a novel and effective method by exploiting a customized
transformer architecture and information-lossless invertible
neural module for long-range dependencies modeling and
effective feature fusion in this paper. Specifically, the cus-
tomized transformer formulates the PAN and MS features as
queries and keys to encourage joint feature learning across
two modalities while the designed invertible neural mod-
ule enables effective feature fusion to generate the expected
pan-sharpened results. To the best of our knowledge, this is
the first attempt to introduce transformer and invertible neu-
ral network into pan-sharpening field. Extensive experiments
over different kinds of satellite datasets demonstrate that our
method outperforms state-of-the-art algorithms both visually
and quantitatively with fewer parameters and flops. Further,
the ablation experiments also prove the effectiveness of the
proposed customized long-range transformer and effective in-
vertible neural feature fusion module for pan-sharpening.

Introduction
With the rapid development of satellite sensors, satellite im-
ages have been used in a wide range of applications like mil-
itary systems, environmental monitoring, and mapping ser-
vices. However, due to the technological and physical limita-
tion of imaging devices, satellites are usually equipped with
both multispectral (MS) and panchromatic (PAN) sensors to
simultaneously measure the complementary images, MS im-
ages with low spatial resolution and high spectral resolution,
and PAN images with low spectral resolution and high spa-
tial resolution. To obtain the images with both high spectral
and high spatial resolutions, the pan-sharpening technique
that fuses the low-resolution MS images and high spatial
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Figure 1: Trade-off between PSNR, number of parameters
and FLOPs over WorldView-II dataset.

PAN images to break the technological limits, has drawn
much attention from either image processing and remote
sensing communities.

In the past few decades, a deal of pan-sharpening al-
gorithms has been proposed and obtained promising re-
sults. The traditional algorithms include component substi-
tutes (Aiazzi and Selva 2007; Choi and Kim 2011; Kang
and Benediktsson 2014), multiresolution analysis (Aiazzi
et al. 2003; Kaplan and Erer 2012; Yokoya et al. 2012;
Shah, Younan, and King 2008) and model-based meth-
ods (Ghahremani et al. 2016; Garzelli, Nencini, and Capo-
bianco 2008). However, all of them are generally based
on handcrafted features, with limited capacity to recon-
struct the missing information in the MS images. Very re-
cently, to overcome the aforementioned shortcomings, re-
searchers focus on exploiting the powerful feature represen-
tation capability of convolution neural networks (CNNs) to
construct numerous CNNs-based pan-sharpening methods
(Wang et al. 2021a,b; Xu et al. 2021a; Peng et al. 2021; Ben-
zenati, Kallel, and Kessentini 2021; Hu et al. 2021; Liu et al.
2020; Xu et al. 2021b; Cai and Huang 2021), which outper-
forms previous state-of-the-art methods by a large margin.
However, existing CNN-based methods remain some limi-
tations: 1) lacking the modeling of long-range dependency
owing to the local neighbor reception characterize of convo-
lution operator, 2) ineffective feature extraction and fusion.
Both result in the loss of some essential feature that might
be useful for an exemplary pan-sharpened image.

Long-Range Dependency Modeling. Transformer archi-
tecture is firstly proposed and has achieved a remarkable per-
formance in the natural language processing field (Vaswani
et al. 2017). Different from the local reception characterize
of convolution operator, transformer architecture is naturally
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good at capturing the long-range dependencies by employ-
ing the multi-head global attention mechanism among dif-
ferent ordered input feature parts. Afterward, motivated by
their success, many researchers have begun to introduce the
transformer structure into computer vision (Yuan et al. 2021;
Li et al. 2021). The pioneering work is the visual trans-
former (ViT) (Vaswani et al. 2017) for the image recognition
task, which obtains excellent results compared with state-of-
the-art CNN-based methods. Since then, transformer-based
methods have emerged to successfully work in other com-
puter vision problems like object detection (Dosovitskiy
et al. 2020; Carion et al. 2020; Zhu et al. 2020), image seg-
mentation (H. Wang and Chen 2021) and image restoration
(Wang et al. 2021c,d) as well. However, it has not been ex-
plored in the pan-sharpening task. In addition, existing trans-
former architectures are designed to find the self-similarity
in a single image. The goal of pan-sharpening is to seek
the interactive information between two kinds of modality
images, MS image and PAN image. To achieve this, in-
spired by (Yang et al. 2020), we redevelop a customized pan-
sharpening transformer architecture. Specifically, the pro-
posed transformer formulates the PAN and MS features as
queries and keys to encourage joint feature learning across
two modalities for searching the long-range features, shown
in Figure 4.

Effective Feature Extraction and Fusion. The goal of
the pan-sharpening task is to fuse the complementary infor-
mation from MS image and PAN image to generate high spa-
tial resolution MS image. As recognized, how to effectively
extract and fuse complementary information is crucial for
pan-sharpening performance. Specifically, most of the ex-
isting pan-sharpening methods directly concatenate the MS
and PAN image in the image space and then feed them into a
single-stream shared convolution encoder for feature extrac-
tion and fusion. The remaining methods adapt two-stream
independent convolution encoders to provide the modality-
specific feature maps from MS and PAN images, and then
concatenate the obtained feature maps for fusion in the fea-
ture space. However, the above methods have not fully in-
vestigated the feature extraction and fusion potentials. To
this end, we design two schemes: 1) local and long-range
feature extraction module; 2) densely-connected invertible
neural network fusion module. Specifically, the former con-
sists of two branches, local convolution branch and long-
range transformer branch. Both of them receive the MS im-
age and PAN image as input for local and long-range feature
extraction. Due to the natural information lossless capability
of invertible neural architecture (Dinh, Krueger, and Bengio
2015; Laurent Dinh and Bengio. 2017), different from ex-
isting methods adapting pure convolution layers to achieve
fusion, we design a new densely-connected invertible neu-
ral network for effective feature fusion. The implementation
details can refer to Figure 3.

In a word, we propose a novel effective pan-sharpening
method by combining the advantages of long-range de-
pendencies modeling of transformer architecture and
information-lossless invertible neural network in this paper.
To the best of our knowledge, this is the first attempt to in-
troduce transformer and invertible neural network into pan-

sharpening field. As shown in Figure 2, our method consists
of three procedures: 1) local and long-range feature extrac-
tion by convolution and transformer, 2) effective local and
long-range feature fusion by densely-connected invertible
neural module, and 3) high-resolution MS image reconstruc-
tion. Extensive experiments over different kinds of satellite
datasets demonstrate that our method outperforms state-of-
the-art algorithms both visually and quantitatively. Further,
the ablation experiments also prove the effectiveness of the
proposed customized long-range modeling of transformer
and effective invertible neural feature fusion module.

Our contributions can be summarized as follows:

• We propose a novel pan-sharpening method by combin-
ing advantages of long-range dependencies modeling of
transformer architecture and effective feature fusion ca-
pability of invertible neural network in this paper. To the
best of our knowledge, this is the first attempt to intro-
duce transformer and invertible neural network into the
pan-sharpening field.

• We design a customized Transformer architecture for
pan-sharpening and a new densely-connected invertible
neural module. The ablation experiments also prove the
effectiveness of the proposed transformer and invertible
neural feature fusion module.

• Extensive experiments over different kinds of satellite
datasets demonstrate that our method outperforms state-
of-the-art algorithms both visually and quantitatively
with fewer parameters and running flops.

Methodology
In this section, we first illustrate the overall architecture of
our pan-sharpening network. It has two core designs to make
it suitable for pan-sharpening, local and long-range feature
extraction module, and effective densely-connected invert-
ible feature fusion neural module. The details will be illus-
trated below.

Overall Network Architecture
The overall structure is shown in Figure 2. It takes the MS
image and PAN image as input and integrates the texture
details of the high-resolution (HR) PAN images with the
spectral information from low-resolution (LR) MS images
to generate HR-MS images. To be specific, given the PAN
image P ∈ R1×H×W and MS image M ∈ RC×H

4 ×W
4 , our

method firstly applies two independent 3 × 3 convolution
layers to project the up-sampling MS with four times and
PAN image into feature space with modality-specific fea-
tures, P0 and M0. Next, the feature maps P0, and M0 are
passed through two-stream local and long-range feature ex-
traction module. The local branch consists of several con-
volution layers and provides the local-range feature maps,
while the transformer branch takes advantage of multi-head
attention to generates the long-range features between the
flatten feature patches from P0 and M0. The obtained lo-
cal and long-range features are remarked as L0 and G0.
Followed by, these two features are further propagated to
densely-connected invertible feature fusion neural module
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Figure 2: The overall structure of our proposed method. The MS and PAN image pair is firstly projected into modality-
aware features by pre-convolution layer. Then, above features are fed into a customized Transformer-based long-range feature
modeling and CNN-based local feature extraction module. Next, the obtained long and local-term features are passed through
a newly-designed INN-based module for effective feature fusion. Finally, the fused feature combined with skip-connection MS
image is exploited for reconstruction.

Figure 3: Architecture of the proposed densely-connected invertible feature fusion module. The sub-figure (a) and (c) detail
the invertible unit and Post-conv of Figure 2 respectively, while the sub-figure (b) deepens into the HINM of sub-figure (a).

to achieve effective fusion. Specifically, these two kinds
of features interact with each other to enhance their repre-
sentation. Then the enhanced representation is transformed
to the same size and channel of the upsampling MS im-
ages. Finally, we construct the HR-MS images by adding

the upsampling MS images to the transformed representa-
tion with skip-connection. The pan-sharpening process can
be described as:

H = (M) ↑s +f([P, (M) ↑s]). (1)
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Figure 4: The structure of pan-sharpening transformer.

Note that the direct output of our network f(.) is the residual
high-frequency details, which is a common technique used
in existing methods to ease learning.

Local and Long-Range Feature Extraction
As shown in Figure 2, our designed feature extraction mod-
ule consists of two branches, the local-range feature branch
by convolution layer and the long-range feature branch by
transformer architecture. To preserve the initial features of
the MS image and PAN image, the up-sampling MS images
M̂ ∈ RC×H×W and PAN image P ∈ R1×H×W are firstly
fed into two independent 3 × 3 convolution layers to ob-
tain shallow features, M0 ∈ R8×H×W and P0 ∈ R8×H×W

respectively. Then, concatenating M0 and P0 by channel di-
mension is passed into the above two branches.

Specifically, the local feature branch is implemented by a
3× 3 convolution layer, and receives the full-resolution fea-
ture maps M0 and P0 to extract the local-range feature L0.
In the long-range feature branch, a newly-designed trans-
former is used for generating the long-range dependency. As
recognized, the standard transformer is designed to capture
the long-range self-similarity dependency among all the to-
kens of single image. Owing to the nature of pan-sharpening
that needs to integrate the complementary information be-
tween two kinds of images, the MS image and PAN im-
age, directly applying standard Transformer architecture for
pan-sharpening task is not suitable. The structure of our
transformer is shown in Figure 4. The transformer takes
the divided MS and PAN feature patches M1, . . . ,Mn and
P 1, . . . , Pn with 16 × 16 pixel size as input from shallow
full-resolution features M0 and P0.

Firstly, we use several convolution layers to project the
MS and PAN feature patches M1, . . . ,Mn and P 1, . . . , Pn

with 16× 16 pixel size to the texture features, Q (query), K
(key), and V (value) of three basic elements inside a trans-
former. Different from standard transformer, we expand the
V (value) with two component, V1 and V2 as

Q = Conv([M1, . . . ,Mn]), (2)

K = Conv([P 1, . . . , Pn]), (3)

V 1 = Conv([M1, . . . ,Mn]), (4)

V 2 = Conv([P 1, . . . , Pn]) (5)

where Conv and [.] represent the convolution operation and
concatenation by channel dimension, respectively. Then, K
and Q will be used in our relevance metric module to esti-
mating the similarity. We unfold both K and Q into patches,
denoted as qi (i ∈ [1, H × W ]) and kj (j ∈ [1, H × W ]).
Then for each patch qi in Q and kj in K, we calculate the rel-
evance ri,j between these two patches by normalized inner
product as ri,j = ( qi

||qi|| ,
kj

||kj || ). The whole relevance matrix
is remarked,

R = QTK. (6)

Then, we further use the relevance matrix R to generate
the hard-attention and soft-attention map. Different from
traditional attention mechanism takeing a weighted sum of
V for each query qi, we propose hard-attention and soft-
attention module to transfer the image texture features V
to the HR-MS image. More specifically, we first calculate
a hard-attention map H in which the i − th element hi

(i ∈ [1, H × W ]) is calculated from the relevance ri,j :
hj = argmax

j
(ri,j). Then we apply an index selection oper-

ation to the unfolded patches of V 1 and V 2 using the hard-
attention map as the index:

t1i = v1hi
, (7)

t2i = v2hi
(8)

where t1i and t2i denote the value selected from the hi-th po-
sition of V 1 and V 2. As a result, we obtain a HR feature
representation T1 and T2 for the PAN feature and MS fea-
ture by position index attention. Furthermore, we calculate
the soft-attention map as,

S = softmax(R), (9)

where softmax is the softmax function in mathematical. Fi-
nally, we obtain the enhanced long-range features G0 by in-
tegrating the soft-attention and hard-attention map with the
PAN features

G1
0 = P0 + Conv([P0, T1])⊙ S, (10)

G2
0 = M0 + Conv([M0, T2])⊙ S, (11)

G0 = Conv([G1
0, G

2
0]) (12)

where P0, M0, [.] and Conv represent the PAN features and
MS feature from pre-convolution, concatenation operation
by channel dimension and convolution layer respectively.
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Invertible Neural Module for Feature Fusion
Different from pure convolution layer, invertible networks
are information-lossless during the transformation (Liu et al.
2021; Zhang et al. 2021; Xing, Qian, and Chen 2021; Lu
et al. 2021; Paschalidou et al. 2021). For the invertible
model, the input needs to be divided into two parts. In our
work, the input of our invertible module naturally consists of
two parts, local and long-range features L0 and G0, which
exactly match the splitting of input. To take advantage of in-
vertible networks for preserving the extracted features, we
design a densely-connected invertible feature fusion neural
module with the composition of a stack of invertible basic
units. As shown in Figure 3 (a), each basic unit we follow in
this work is the affine coupling layer.

To increase the representational capacity of the network,
two kinds of schemes are proposed, 1) immediate sequential
features of each invertible unit are propagated to the final
unit by skip-connection and then concatenated to enhance
its representation, 2) effective transformation operation be-
tween two parts is designed. To be specific, we use an addi-
tive transformation for the long-range branch, and employ an
enhanced affine transformation for the local-range branch.
Take the first affine coupling layer for example, given local
and long-range features L0 and G0, the output will be cal-
culated as

L1 = L0 + ϕ(G0), (13)
G1 = G0 ⊙ exp(ρ(L1)) + η(L1) (14)

where exp(.) is Exponential function in mathematical, and
ρ(.) and η(.) represent the scale and translation functions
from the channels of local feature L0 to the channels of
long-range feature G0, respectively. ϕ(.) performs the in-
verse function as ρ(.) and η(.). ⊙ is the Hadamard product.
Note that the scale and translation functions are not neces-
sarily invertible, and thus we realize them by neural net-
works. By doing so, the other k − 1 invertible blocks re-
ceive the output of the previous and generate the results. All
the outputs L0/G0, . . . , Lk/Gk of each invertible unit are
concatenated to generate the high-frequency details by us-
ing the residual channel attention block and then added with
the input low-spatial MS image to obtain HR-MS image by
skip-connection

H = (M) ↑s +RCAB([L0, G0, . . . , Lk, Gk]). (15)

where RCAB (Zhang et al. 2018) and [.] represent the resid-
ual channel attention and concatenation by the channel di-
mension. The k is the number of our stacked invertible neu-
ral units and set as 3 to reduce the computational cost.

In addition, to enhance the interaction with two-part fea-
tures, we implement the transformation operation ρ(.), η(.)
and ϕ(.) with two cascaded Half Instance Normalization
blocks (HIN) (Chen et al. 2021). As shown in Figure 3 (b),
HIN block firstly employs 3 × 3 convolution to project in-
put features Fin ∈ RCin×H×W to intermediate features
Fmid ∈ R16×H×W . Then, the features Fmid are divided into
two parts (Fmid1

/Fmid2
∈ R8×H×W ). The first part Fmid1

is normalized by Instance Normalization (IN) and then con-
catenates with Fmid2

in channel dimension. HIN blocks use

Instance Normalization (IN) on the half of the channels and
keep context information by the other half of the channels.
After the concatenation operation, the obtained features Fres

are passed through one 3×3 convolution layer and two leaky
ReLU layers. Finally, HIN blocks output the enhanced fea-
ture Fout by adding Fres with shortcut features (obtained
after 1× 1 convolution) as

Fmid = Conv3∗3(Fin), (16)
Fmid1

, Fmid2
= split(Fmid), (17)

Fres = concat(IN(Fmid1
), Fmid2

), (18)
Fout = Fres + Fin. (19)

where Conv3∗3 represents the 3× 3-kernel convolution op-
erator. The split(.) and concate is the splitting and concate-
nation function in channel dimension. IN is the Instance
Normalization.

Network Loss Function
We adopt the the mean absolute error (L1 loss) to optimize
our proposed method

L =
K∑
i=1

∥Hi − Hgt,i∥1 , (20)

where K is the number of training data, Hi and Hgt,i de-
note the output high-resolution MS image and ground truth,
respectively.

Experiments
Baseline Methods
To verify the effectiveness of the proposed method, a se-
ries of experiments are carried out between our proposed
method and ten state-of-the-art pan-sharpening algorithms.
To be specific, five representative deep learning based meth-
ods are selected for comparison, namely, PNN (Masi et al.
2016), PANNET (Yang et al. 2017), MSDCNN (Yuan et al.
2018), SRPPNN (Cai and Huang 2021), and GPPNN (Xu
et al. 2021b). Our method is also compared with five classic
methods, including, SFIM (Liu. 2000), Brovey (Gillespie,
Kahle, and Walker 1987), GS (Laben and Brower 2000),
IHS (Haydn et al. 1982) and GFPCA (Liao et al. 2017).

Implementation Details
We implement all our networks in PyTorch framework on
the PC with a single NVIDIA GeForce GTX 2080Ti GPU.
In the training phase, they are optimized by Adam optimizer
over 1000 epochs with a learning rate of 8×10−4 and a batch
size of 4. When reaching 200 epochs, the learning rate is de-
cayed by multiplying 0.5. The paired training samples are
unavailable in practice. When we construct the training set,
the Wald protocol is employed to generate the paired sam-
ples. For example, given the MS image H ∈ RM×N×C and
the PAN image P ∈ RrM×rN×b, both of them are down-
sampled with ratio r, and the downsampled versions are de-
noted by L ∈ RM/r×N/r×C and p ∈ RM×N×b. In the train-
ing set, L and p are regarded as the inputs, while H is the
ground truth.
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Method Num of Params
WorldView II GaoFen2 WorldView III

PSNR↑ SSIM↑ SAM↓ ERGAS↓ PSNR↑ SSIM↑ SAM↓ EGAS↓ PSNR↑ SSIM↑ SAM↓ EGAS↓

SFIM - 34.1297 0.8975 0.0439 2.3449 36.906 0.8882 0.0318 1.7398 21.8212 0.5457 0.1208 8.973

Brovey - 35.8646 0.9216 0.0403 1.8238 37.7974 0.9026 0.0218 1.372 22.506 0.5466 0.1159 8.2331

GS - 35.6376 0.9176 0.0423 1.8774 37.226 0.9034 0.0309 1.6736 22.5608 0.547 0.1217 8.2433

IHS - 35.2962 0.9027 0.04610 2.0278 38.1754 0.9100 0.0243 1.5336 22.5579 0.5354 0.1266 8.3616

GFPCA - 34.5581 0.9038 0.0488 2.1411 37.9443 0.9204 0.0314 1.5604 22.3344 0.4826 0.1294 8.3964

PNN 0.689 40.7550 0.9624 0.0259 1.0646 43.1208 0.9704 0.0172 0.8528 29.9418 0.9121 0.0824 3.3206

PANNET 0.688 40.8176 0.9626 0.0257 1.0557 43.0659 0.9685 0.0178 0.8577 29.684 0.9072 0.0851 3.4263

MSDCNN 2.390 41.3355 0.9664 0.0242 0.994 45.6874 0.9827 0.0135 0.6389 30.3038 0.9184 0.0782 3.1884

SRPPNN 17.114 41.4538 0.9679 0.0233 0.9899 47.1998 0.9877 0.0106 0.5586 30.4346 0.9202 0.077 3.1553

GPPNN 1.198 41.1622 0.9684 0.0244 1.0315 44.2145 0.9815 0.0137 0.7361 30.1785 0.9175 0.0776 3.2593

Ours 0.706 41.6903 0.9704 0.0227 0.9514 47.3528 0.9893 0.0102 0.5479 30.5365 0.9225 0.0747 3.0997

Table 1: The four metrics on test datasets. The best and the second best values are highlighted by the red bold and underline,
respectively. The up or down arrow indicates higher or lower metric corresponds to better images.

PNN PANNET MSDCNN SRPPNN GPPNN Ours
params 0.689 0.688 2.390 17.114 1.198 0.706
flops 1.1289 1.1275 3.9158 21.1059 1.3967 1.3907

Table 2: Comparisons on flops and parameter numbers.

Dataset and Evaluation Metrics
Remote sensing images acquired by three satellites are used
in our experiments, including WorldView II, WorldView III
, and GaoFen2, the basic information of which are listed in
supplementary materials. For each satellite, we have hun-
dreds of image pairs, and they are divided into two parts
for training and test. In the training set, the MS images are
cropped into patches with the size of 128 × 128 , and the
corresponding PAN patches are with the size of 32×32. For
numerical stability, each patch is normalized by dividing the
maximum value to make the pixels range from 0 to 1.

Several widely used image quality assessment (IQA) met-
rics are employed to evaluate the performance, including
the relative dimensionless global error in synthesis (ER-
GAS) (Alparone et al. 2007), the peak signal-to-noise ratio
(PSNR), the spectral angle mapper (SAM) (J. R. H. Yuhas
and Boardman 1992).

Comparison with SOTA Methods
The evaluation metrics on three datasets are reported in Ta-
ble 1, where the values highlighted by red color represent
the best results. It is clearly found that our method surpasses
other comparative algorithms in all evaluation metrics on
three satellites. In addition, We also show the comparison of
the visual results to testify the effectiveness of our method
in Figure 5. Images in the last row are the MSE residues
between the pan-sharpened results and the ground truth. To
be specific, other comparison methods suffer from severe
spatial and spectral distortion. However, our method has
the most minor spatial and spectral distortions. Specifically,

from the amplified local regions, we observe that our pro-
posed method has finer-grained textures and coarser-grained
structures compared with other methods. As for the MSE
residues, we can figure out that our proposed method is the
closest to the ground truth than other comparison methods.

Flops and Parameter Numbers
In this section, we investigate the complexity of the proposed
method, including the flops and the number of parameters
(in 10 M). Comparisons on parameter numbers and model
performance (representation by PSNR) are shown in Table 2
and in Figure 1. It can be seen that our network can achieve
a good trade-off between calculation and performance com-
pared to other deep learning-based methods. We use the ten-
sor with 1× 4× 32× 32 and 1× 1× 128× 128 to represent
the MS and PAN roles for evaluation.

Ablation Experiments
Since the transformer module and densely-connected in-
vertible neural network fusion module are the core of our
method, to investigate their necessity and effectiveness, a se-
ries of ablation experiments are carried out. There are 3 dif-
ferent configurations for the corresponding network variants
of our proposed method and the results of ablation experi-
ments are shown in Table 3.
Transformer Module. The Transformer module is respon-
sible for capturing long-range dependency, which is critical
for pan-sharpening performance. In the first experiment, we
delete the Transformer module to verify its necessity while
expanding the feature channels of local-range branch for fair
comparison. Table 3 shows that deleting Transformer mod-
ule will degrade all metrics dramatically. Therefore, Trans-
former module plays a significant role in our network.
Invertible Neural Network Fusion Module. In the second
experiment, to verify the effectiveness of densely-connected
invertible neural network fusion module, we replace it with
its transformation units . In other words, the extracted long
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Figure 5: Qualitative comparison of our method with nine counterparts on a typical satellite image pair from the GaoFen-2
dataset. Images in the last row visualize the MSE residues between the pan-sharpened results and the ground truth.

Configurations Transformer Invertible Fusion
WorldView II GaoFen2 WorldView III

PSNR↑ SSIM↑ SAM↓ ERGAS↓ PSNR↑ SSIM↑ SAM↓ EGAS↓ PSNR↑ SSIM↑ SAM↓ EGAS↓

(I) # ! 41.1932 0.9684 0.0238 1.0059 46.7804 0.9879 0.011 0.5835 30.2943 0.9193 0.0784 3.1882

(II) ! # 41.2232 0.9683 0.0238 1.0049 46.9368 0.988 0.0106 0.5728 30.2588 0.9181 0.0785 3.2053

Ours ! ! 41.6903 0.9704 0.0227 0.9514 47.3528 0.9893 0.0102 0.5479 30.5365 0.9225 0.0747 3.0997

Table 3: The results of ablation experiments over three datasets. The best values are highlighted by the red bold. The up or
down arrow indicates higher or lower metric corresponds to better images.

and local-range features are concatenated and then fed into
pure densely-connected architecture. For fair comparison,
we keep the above two comparisons with the same num-
ber of parameters. The results in Table 3 demonstrate that
removing the invertible fusion module will weaken our net-
work’s performance. Therefore, invertible neural network
fusion module is critical in our method.

Our Complete Network. In the last row of Table 3, we can
clearly find that compared with above two variants, taking
WorldView-II dataset for example, adding the Transformer
module achieves an improvement of 0.5 dB and 0.01 on av-
erage PSNR and SSIM, respectively. Similarly, the invertible
fusion module improves the baseline by 0.47 dB and 0.01.
Other datasets also keep consistent as above in model per-
formance. This is because the two modules are beneficial to
capture the long-range dependency spatially and effectively
fuse the features for the pan-sharpening task. The best re-
sults can be obtained by combining the two modules.

Conclusion
In this paper, we propose a novel and effective pan-
sharpening method by integrating long-range dependen-
cies modeling of Transformer architecture and Information-
lossless invertible neural network in this paper. To the best
of our knowledge, this is the first attempt to introduce trans-
former and invertible neural network into pan-sharpening
field. Extensive experiments over different kinds of satellite
datasets demonstrate that our method outperforms state-of-
the-art algorithms both visually and quantitatively.

In the future, we will explore the potential of our proposed
customized transformer and invertible module into existing
pan-sharpening methods.
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