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Abstract

RGB–thermal scene parsing has recently attracted increas-
ing research interest in the field of computer vision. How-
ever, most existing methods fail to perform good boundary
extraction for prediction maps and cannot fully use high-level
features. In addition, these methods simply fuse the features
from RGB and thermal modalities but are unable to obtain
comprehensive fused features. To address these problems, we
propose an edge-aware guidance fusion network (EGFNet)
for RGB–thermal scene parsing. First, we introduce a prior
edge map generated using the RGB and thermal images to
capture detailed information in the prediction map and then
embed the prior edge information in the feature maps. To ef-
fectively fuse the RGB and thermal information, we propose
a multimodal fusion module that guarantees adequate cross-
modal fusion. Considering the importance of high-level se-
mantic information, we propose a global information mod-
ule and a semantic information module to extract rich se-
mantic information from the high-level features. For decod-
ing, we use simple elementwise addition for cascaded fea-
ture fusion. Finally, to improve the parsing accuracy, we ap-
ply multitask deep supervision to the semantic and bound-
ary maps. Extensive experiments were performed on bench-
mark datasets to demonstrate the effectiveness of the pro-
posed EGFNet and its superior performance compared with
state-of-the-art methods. The code and results can be found
at https://github.com/ShaohuaDong2021/EGFNet.

Introduction
Scene parsing is a fundamental technique in computer vi-
sion that aims to assign category labels to each of the pix-
els in a natural image. Hence, scene parsing has enhanced
many applications in computer vision, such as autonomous
driving (Wang, Ma, and You 2020; Zhou et al. 2021c) and
robot sensing (Zhang et al. 2018; Zhou et al. 2018, 2019). In
recent years, deep learning has become a promising solution
to scene parsing. Existing methods based on fully convolu-
tional networks have achieved noteworthy results (Lee, Tai,
and Kim 2016; Chen et al. 2017b; Luo et al. 2017; Zhang
et al. 2017; Hou et al. 2017; Zhou et al. 2021a). However,
accurate scene parsing remains a challenge under poor light
conditions. Some recent studies have noted this problem
and proposed more robust methods via RGB–thermal scene
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parsing (Ha et al. 2017; Sun, Zuo, and Liu 2019; Shivaku-
mar et al. 2020; Sun et al. 2020; Zhang et al. 2021; Zhou
et al. 2021b). These methods use the complementary rich
information and semantic information provided by the ther-
mal images to RGB images under poor lighting conditions,
thereby achieving high parsing performance.

Despite the abovementioned developments, some prob-
lems of RGB–thermal scene parsing remain to be solved.
Owing to the lack of specific guidance on extracting bound-
aries, boundary preservation needs to be further improved.
Existing methods based on fully convolutional networks re-
duce feature resolution, leading to loss of spatial details and
distortion of object boundaries. In addition, existing meth-
ods use simple fusion strategies, such as elementwise addi-
tion or multiplication, thus failing to fully integrate multi-
modal information and undermining scene parsing perfor-
mance. Moreover, most methods do not fully use high-level
features with their rich semantic information. Therefore, a
method to suitably extract and use high-level semantic in-
formation is desired.

To address these scene parsing problems, we propose an
edge-aware guidance fusion network (EGFNet) for scene
parsing based on an encoder–decoder architecture. The
proposed EGFNet achieves remarkable performance for
RGB–thermal scene parsing. We first introduce a method of
embedding prior edge maps into the boundary features to
enhance boundary information. To extract more information
from the RGB and thermal features, we propose a multi-
modal fusion module (MFM) that integrates the multimodal
features using efficient strategies. Unlike simple methods,
such as fusion based on addition or concatenation, the MFM
uses a complex fusion strategy to fully combine the infor-
mation from the RGB and thermal modalities. In addition, a
global information module (GIM) and a semantic informa-
tion module (SIM) are proposed to extract high-level seman-
tic information efficiently. Finally, we adopt multitask deep
supervision to improve the segmentation performance. In
general, the proposed EGFNet shows superior performance
compared with state-of-the-art (SOTA) RGB–thermal scene
parsing methods.

The main contributions of the proposed EGFNet can thus
be summarized as follows:

• The EGFNet is one of the pilot methods to use prior
edge information for enhancing boundary extraction for
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Figure 1: Architecture of proposed EGFNet for scene parsing.
.

RGB–thermal scene parsing and generating high-quality
edge-aware prediction maps.

• We introduce the MFM to explore the effectiveness and
complementarity between the RGB and thermal features.
The MFM establishes a simple yet effective method to
capture the complementarity of cross-modal features.

• To extract high-level semantic information, we propose
the GIM and SIM, which fully and efficiently use high-
level features.

• We adopt multitask deep supervision to obtain detailed
object boundaries and improve parsing performances.

Related Work
In recent years, an increasing number of deep-learning-
based scene parsing methods have been proposed and have
achieved good performances. One of the essential aspects
of these methods is the extraction of representative features.
To this end, (Yu et al. 2018b) proposed a context path with
fast downsampling to enlarge the receptive field. (Pohlen
et al. 2017) combined multiscale context with pixel-level
accuracies using two processing streams within a neural net-
work. (Sun et al. 2019) proposed a network to maintain high-
resolution representations throughout the parsing stages by
connecting high-to-low-resolution convolutions in parallel.
(Yu et al. 2018a) proposed a smooth network with a channel
attention block to select the discriminative features. (Romera
et al. 2017) proposed a deep architecture using residual con-

nections and factorized convolutions for efficient parsing
with remarkable accuracy. (Huang et al. 2019) proposed a
criss-cross attention module to obtain rich contextual infor-
mation. (He et al. 2019) proposed a network that adaptively
constructs multiscale contextual representations with multi-
ple well-designed adaptive context modules.

Recently, single-modal methods, such as those mentioned
above, have been improved by employing information from
complementary modalities (e.g., depth maps and thermal
images). (Hazirbas et al. 2016) proposed a network to in-
tegrate multilevel depth features with an RGB encoder
through a bottom-up approach to improve scene parsing.
(Wang and Neumann 2018) proposed depth-aware convo-
lution and average pooling operations for RGB–depth scene
parsing. (Zhou et al. 2020) proposed a gate-fusion module
to regularize feature fusion for detecting salient objects in
RGB–depth images. (Zhang, Shi, and Zhang 2020) proposed
a complementary interaction network to select useful repre-
sentations from RGB images and their corresponding depth
maps to integrate cross-modal features. (Chen et al. 2020)
proposed a disentangled cross-modal fusion module to ex-
tract structural and content representations from RGB im-
ages and depth maps. (Wang, Wang, and Cao 2021) pro-
posed a channelwise fusion module for multinetwork and
multilevel selective fusion of RGB–depth parsing.

Boundary details can improve scene parsing substantially.
To correct blurred boundaries, some methods extract specific
boundary features. (Zhang et al. 2020) proposed a boundary-
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Figure 2: Architecture of proposed MFM.
.

guided deep neural network for scene parsing to suppress
irrelevant boundary information while suitably localizing
and exploring the structures of objects. (Yang, Soltanian-
Zadeh, and Farsiu 2022) devised edge feature enhancement
to use edge-specific features efficiently. (Wang, Wang, and
Cao 2021) proposed a contour self-compensated module to
generate accurate saliency maps with complete contours;
the salient contours were then used as third labels for the
ground truth. (Kong et al. 2021) proposed an adversarial
edge-aware image colorization approach combining multi-
task outputs with scene parsing. Unlike these methods, the
proposed EGFNet uses a novel prior edge map to enhance
the boundaries and improve scene parsing performance.

Proposed EGFNet

Architecture

The architecture of the proposed EGFNet is shown in Fig. 1.
We use ResNet-152 (He et al. 2016) as the backbone of the
encoders for both the RGB and thermal branches for extract-
ing features. Owing to the high computational overhead, we
use a 1 × 1 convolution to reduce the number of channels to
64. From low to high levels, the extracted RGB and thermal
features are denoted as Ri and Ti (i ∈{1, 2, ..., 5}), respec-
tively.

In the encoder, we use the novel MFM to fuse comple-
mentary information from the RGB and thermal modalities.
The MFM provides fusion features fi (i ∈{1, 2, ..., 5}),
boundary features bj (j ∈{1, 2, 3}), and semantic features
st (t ∈{4, 5}). We propose an edge-aware method to embed
prior edge information in the feature maps and obtain clearer
boundaries, thereby improving the parsing performance of
EGFNet. In addition, the proposed GIM and SIM extract
high-level semantic information.

In the decoder, we adopt a simple fusion module (SFM) to
fuse cascaded features. By fusing the high-level semantic in-
formation and skip-connection features, we extract discrimi-
native and comprehensive semantic information. Finally, we
introduce multitask deep supervision for the semantic and
boundary maps.

Edge-Aware Guidance
Edge-aware guidance for scene parsing aims to determine
object boundaries in semantic maps accurately. Most ex-
isting methods use complex deep convolutional neural net-
works to capture the boundary features. To improve effi-
ciency, we adopt a traditional edge-detection algorithm that
allows obtaining details from the RGB and thermal images
directly.

We first use the Sobel operator (Sobel and Feldman 1968)
to extract the edge information from the RGB and thermal
images. Then, we add the extracted edge information from
the two modalities to fuse their distinct features and obtain
a prior edge map. Finally, we embed the prior edge informa-
tion in the boundary feature maps using elementwise mul-
tiplication to increase boundary accuracy in the prediction
map. In addition, we improve the parsing performance by
fusing the prior edge map and side-out semantic prediction
map with the final semantic features, as shown in Fig. 1.

Multimodal Fusion Module
Exploring accurate multimodal fusion features is es sential
for achieving high-performance multimodal scene parsing.
Thus, instead of using a simple fusion strategy, we propose
the MFM to extract fusion features, thus outperforming sim-
ple feature concatenation or summation. The MFM architec-
ture is shown in Fig. 2.

We first adopt elementwise summation of the features
from the RGB and thermal modalities. Then, we apply vari-
ous operations, including elementwise multiplication, chan-
nelwise concatenation, and convolution, to obtain comple-
mentary information as follows:

fm =Conv1×1(Cat((Ri + Ti)⊗
Ri, (Ri + Ti)⊗Ri)),

i ∈ {1, 2, ..., 5}
(1)

where Cat denotes concatenation,⊗ denotes elementwise
multiplication, Conv1×1denotes 1 × 1 convolution, and Ri

and Ti represent the side-out features of the RGB and ther-
mal branches, respectively (Fig. 1).

We use residual learning to obtain deeper semantic fea-
tures as follows:

f̂m = relu(fm +BN(Conv3×3(CBR(fm)))), i ∈ {1, 2, ..., 5}

(2)

First, the features pass through the convolution block
CBR, and the 3 × 3 convolutions in CBR are followed by the
batch normalization and rectified linear unit (ReLU) layers,
BN and relu, respectively.

To enlarge the receptive field and extract a representative
global context, we use atrous spatial pyramid pooling (Chen
et al. 2017a). Specifically, we construct four parallel dilated
convolutions with rates r = {1, 2, 3, 4} and combine the four
sets of features with the input features using concatenation.
Then, we use a 3 × 3 convolution to extract the fusion fea-
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tures fi: 
f̂m1 = Conv3×3,rates=1(f̂m)

f̂m2 = Conv3×3,rates=2(f̂m)

f̂m3 = Conv3×3,rates=3(f̂m)

f̂m4 = Conv3×3,rates=4(f̂m)

(3)

fi = Conv3×3(Cat(f̂m, f̂m1, f̂m2, f̂m3, f̂m4)), i ∈ {1, 2, ..., 5}
(4)

Finally, except for the explicit usage of the semantic cues
in EGFNet, the convolution block CBR is applied to obtain
detailed information and semantic information as follows:

bi = CBR(fi), i ∈ {1, 2, 3} (5)

si = CBR(fi), i ∈ {4, 5} (6)

GIM and SIM
Low-level features contain detailed information, and high-
level features contain comprehensive semantic information
(Zeiler and Fergus 2014). Accordingly, we first introduce the
GIM (Fig. 3) and SIM (Fig. 4) to capture high-level seman-
tic information and then fuse the cascaded multilevel cross-
modal features using the SFM (Fig. 5).

The GIM is similar to atrous spatial pyramid pooling and
aims to obtain discriminative semantic information as fol-
lows:

f̂a0 = Conv1×1(f5) (7)
f̂a1 = Conv3×3,rates=1(f5)

f̂a2 = Conv3×3,rates=2(f5)

f̂a3 = Conv3×3,rates=3(f5)

f̂a4 = Conv3×3,rates=4(f5)

(8)

fa = Conv1×1(Cat(f̂a0, f̂a1, f̂a2, f̂a3, f̂a4)) (9)

fhigh = up×2(CBR(f5 + fa)) (10)

where up×2 denotes upsampling by a factor of two.
Before applying the 1 × 1 convolutional layer to achieve

comprehensive feature fusion, we combine fhigh and f4 to
learn complementary information. Moreover, we ap v ply
elementwise multiplication to eliminate redundant informa-
tion. Finally, a residual connection is used to preserve the
original information and generate the final features as fol-
lows:

fs1 = Conv1×1(Cat(fhigh, f4)) (11)

fs2 = fs1 ⊗ fhigh + fs1 ⊗ f4 (12)

f c
i =up×2(Conv1×1(fhigh +BN(Conv3×3

(CBR(fs2))))), i = 3
(13)

We aggregate the multilevel features and high-level deep
semantic information in a coarse-to-fine approach using the

Figure 3: Architecture of proposed GIM.
.

Figure 4: Architecture of proposed SIM..

SFM to obtain the comprehensive features. We apply up-
sampling by a factor of N (up×N ) to fhigh such that it has
the same size as fi:

f̂high = up×N (fhigh) (14)

Finally, we fuse the features through elementwise sum-
mation:

f c
i−1 = up×2(f̂high + f c

i + fi), i ∈ {1, 2, 3} (15)

Multitask Deep Supervision
To obtain more accurate boundaries and distinct semantic
features, we use multitask deep supervision to supervise the
boundary and semantic maps.

We first resize bi to the same size as the edge map. Then,
the prior edge map is embedded in the boundary feature
map, as mentioned above. Hence, the boundary prediction
map can be highlighted with a complete structure and sharp
boundaries. This process can be formulated as follows (Fig.
1):

Bi = up×N
(bi)⊗ edge, i ∈ {1, 2, 3} (16)

Moreover, we apply the prior edge map to the intermedi-
ate and final semantic prediction maps. To improve learning
from side-out semantic information, we propose a semantic
guidance module (SGM) that fuses the corresponding fea-
tures efficiently.

The SGM architecture is detailed in Fig. 6. We first up-
sample semantic maps ŝ1 and ŝ2 such that they have the
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Methods Car Person Bike Curve Car Stop Guardrail Color Cone Bump mAcc mIoUAcc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU
FRRN 80.0 71.2 53.0 46.1 65.1 53.0 34.0 27.1 21.6 19.1 0.0 0.0 34.7 32.5 36.2 30.5 47.1 41.8

BISeNet 90.0 84.5 65.0 54.3 75.0 61.4 32.1 25.7 32.3 26.2 3.2 0.9 49.6 43.3 48.1 40.5 54.9 48.2
DFN 90.7 81.4 67.7 52.8 71.5 57.5 49.2 34.9 35.1 23.8 4.1 0.9 44.2 31.0 54.6 47.5 57.3 47.5

SegHRNet 92.2 86.6 73.1 59.8 74.9 61.3 47.0 33.2 38.3 28.7 7.3 1.4 54.6 47.2 61.5 46.2 60.9 51.3
CCNet 86.7 79.5 59.4 52.7 66.0 56.2 39.2 32.2 34.8 29.0 1.3 1.2 45.7 41.0 0.2 0.2 48.1 43.3

APCNet 89.8 83.0 61.3 51.6 73.4 58.7 37.1 27.0 35.6 30.3 36.1 11.8 41.4 35.6 50.7 45.6 58.3 49.0
MFNet 77.2 65.9 67.0 58.9 53.9 42.9 36.2 29.9 12.5 9.9 0.1 0.0 30.3 25.2 30.0 27.7 45.1 39.7
FuseNet 81.0 75.6 75.2 66.3 64.5 51.9 51.0 37.8 17.4 15.0 0.0 0.0 31.1 21.4 51.9 45.0 52.4 45.6

DepthAwareCNN 85.2 77.0 61.7 53.4 76.0 56.5 40.2 30.9 41.3 29.3 22.8 8.5 32.9 30.1 36.5 32.3 55.1 46.1
RTFNet 93.0 87.4 79.3 70.3 76.8 62.7 60.7 45.3 38.5 29.8 0.0 0.0 45.5 29.1 74.7 55.7 63.1 53.2

FusSeg-161 93.1 87.9 81.4 71.7 78.5 64.6 68.4 44.8 29.1 22.7 63.7 6.4 55.8 46.9 66.4 47.9 70.6 54.5
ABMDRNet 94.3 84.8 90.0 69.6 75.7 60.3 64.0 45.1 44.1 33.1 31.0 5.1 61.7 47.4 66.2 50.0 69.5 54.8

Ours 95.8 87.6 89.0 69.8 80.6 58.8 71.5 42.8 48.7 33.8 33.6 7.0 65.3 48.3 71.1 47.1 72.7 54.8

Table 1: Results on the MFNet dataset. Each value in boldface indicates the best result for the corresponding column

Figure 5: Architecture of proposed SFM.
.

Figure 6: Architecture of proposed SGM.
.

same size as the ground-truth map. Then, we fuse the fea-
tures through concatenation followed by a 1 × 1 convolution:

f̂sem1 = Conv1×1(Cat(up×16(ŝ1), up×32(ŝ2))) (17)

where up×16 and up×32 denote upsampling by factors of 16
and 32 using bilinear interpolation, respectively. Then, the
side-out semantic prediction is generated as follows:

f̂sem2 = f̂sem1 + up×16(ŝ1) + up×32(ŝ2) (18)

f̂sem = Conv1×1(CBR(f̂sem2)⊗ up×32(ŝ2)) (19)

We then embed the prior edge information in the side-out
semantic prediction as follows:

S1 = edge⊗ f̂sem + f̂sem (20)

Similarly, we enhance the final semantic prediction of
EGFNet as follows:

S2 = edge⊗ f c
0 + f c

0 (21)

Boundary maps B1, B2, and B3 and semantic maps S1 and
S2 are supervised by the ground truth using the weighted
cross-entropy loss with weights set as in the study by
(Paszke et al. 2016):

L =− 1

W ×H

W∑
x=1

H∑
y=1

Weight(Tx,ylog(Px,y)+

(1− Tx,y)log(1− Px,y)

(22)

where W and H are the width and height of the image, re-
spectively, and T and P denote the ground-truth and pre-
diction maps, respectively. The variable Weight denotes the
boundary weight while calculating the boundary loss and de-
scribes the semantic weight when calculating the semantic
loss.

The total loss for multitask deep supervision is defined as:

Ltotal =
3∑

i=1

Li +
5∑

j=4

Lj (23)

where Li is the boundary loss and Lj is the semantic loss
(Fig. 1).

Experimental Results
We evaluated the proposed EGFNet and compared it with
SOTA scene parsing methods through extensive experiments
on two public datasets. We also conducted ablation studies
to demonstrate the effectiveness of the various components
of EGFNet.

Datasets
We trained the EGFNet on the MFNet (Ha et al. 2017)
and PST900 (Shivakumar et al. 2020) datasets. The MFNet
dataset contains 1569 pairs of RGB and thermal images,
with 820 pairs corresponding to daytime scenes and 749
pairs corresponding to nighttime scenes. The dataset com-
prises nine classes, including the background. The resolution
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Figure 7: Segmentation results of fusion modules in typical nighttime and daytime RGB-T images shown in the right four and
left four columns, respectively. The proposed EGFNet provides better segmentation under varying lighting conditions than the
comparison networks.

.

of the image pairs is 480 × 640 pixels. We followed the train-
ing, testing, verification, and dataset splitting approaches
used by (Ha et al. 2017). The PST900 dataset contains 894
aligned pairs of RGB and thermal images with pixel-level
human annotations comprising five semantic classes, includ-
ing the background. We used the splitting approach pro-
posed by (Shivakumar et al. 2020) and resized each input
image to 640 × 1280 pixels.

Training Details

We used the PyTorch 1.7.0, CUDA 10.0, and cuDNN 7.6
libraries to implement the proposed EGFNet. A computer
equipped with an Intel 3.6 GHz i7 CPU and a single
NVIDIA TITAN Xp graphics card was used for training and
testing. As the graphics card memory was limited to 12 GB,
we adjusted the batch sizes for different evaluated networks
accordingly.

For training, we used data augmentation operations such
as random flipping and cropping.The parameters of the
backbone were initialized based on the ResNet-152 model
(He et al. 2016). We trained EGFNet for 400 epochs and
used the Ranger optimizer with an initial learning rate and
weight decay of 5e-5 and 5e-4, respectively. We also used
the weighted cross-entropy for both the semantic and bound-
ary loss functions as well as weighting detailed by (Paszke
et al. 2016).

Methods Daytime Nighttime
mAcc mIoU mAcc mIoU

FRRN 45.1 40.0 41.6 37.3
BiSeNet 52.1 44.5 50.3 45.0

DFN 53.7 42.2 52.4 44.6
SegHRNet 59.7 47.2 55.7 49.1

CCNet 55.3 43.5 42.4 38.1
APCNet 55.4 42.4 54.7 46.4
MFNet 42.6 36.1 41.4 36.8
MFNet 42.6 36.1 41.4 36.8
FuseNet 49.5 41.0 48.9 43.9

DepthAwareCNN 50.6 42.4 50.7 43.2
RTFNet 60.0 45.8 60.7 54.8

FuseSeg-161 62.1 47.8 67.3 54.6
Ours 74.4 47.3 68.0 55.0

Table 2: Results from nighttime and daytime images.

Evaluation Metrics
For the quantitative evaluations, we adopted some widely
used evaluation metrics, including mean intersection over
union (mIoU) and mean accuracy (mAcc), to evaluate the
performances of different scene parsing methods.

Comparative Results

For the MFNet dataset (Ha et al. 2017), we compared the
proposed EGFNet with FRRN (Pohlen et al. 2017), BiSeNet
(Yu et al. 2018a), DFN (Yu et al. 2018b), SegHRNet (Sun
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Methods Background Hand-Drill Backpack Fire-Extinguisher Survivor mAcc mIoUAcc IoU Acc IoU Acc IoU Acc IoU Acc IoU
Efficient FCN 99.81 98.63 32.08 30.12 60.06 58.15 78.87 39.96 32.76 28.00 60.72 50.98

CCNet 99.86 99.05 51.77 32.27 68.30 66.42 67.79 51.84 60.84 57.50 69.71 61.42
ACNet 99.83 99.25 53.59 51.46 85.56 83.19 84.88 59.95 69.10 65.19 78.67 71.81
RTFNet 99.78 99.02 7.79 7.07 79.96 74.17 62.39 51.93 78.51 70.11 65.69 60.46
PSTNet - 98.85 - 53.60 - 69.20 - 70.12 - 50.03 - 68.36

Ours 99.48 99.26 97.99 64.67 94.17 83.05 95.17 71.29 83.30 74.30 94.02 78.51

Table 3: Results on the PST900 dataset

mAcc mIoU
Model (w/o edge) 68.9 54.1
Model (w/o MFM) 68.1 53.1
Model (w/o GIM) 71.8 53.5
Model (w/o SIM) 69.1 53.2

Model (w/o GIM & SIM) 71.4 54.0
Model (w/o SUP) 71.7 53.3

Model (Ours) 72.7 54.8

Table 4: Results of ablation experiments.

et al. 2019), MFNet (Ha et al. 2017), FuseNet (Hazirbas
et al. 2016), DepthAwareCNN (Wang and Neumann 2018),
RTFNet (Sun, Zuo, and Liu 2019), FuseSeg-161 (Sun et al.
2020), APCNet (He et al. 2019), CCNet (Huang et al. 2019),
and ABMDRNet (Zhang et al. 2021). The quantitative re-
sults are summarized in Table 1 and demonstrate that our
method outperforms other SOTA methods on the MFNet
dataset. To further evaluate the proposed network, we tested
it with the daytime and nighttime RGB-T images; Table 2
summarizes the comparative results.

The visual comparison results are collated in Fig. 7, and
we observe that our network provides superior results under
various challenging lighting conditions compared with other
SOTA methods for the MFNet dataset.

We designed additional experiments to prove the effec-
tiveness of the proposed network on the PST900 dataset
(Shivakumar et al. 2020). We compared the results from
our network with those of CCNet (Huang et al. 2019), AC-
Net (Huang et al. 2019), EFFicient FCN (Zhou et al. 2020),
RTFNet (Sun, Zuo, and Liu 2019), and PSTNet (Shivaku-
mar et al. 2020). The results summarized in Table 3 indicate
the excellent applicability of the proposed approach.

Ablation Study

To demonstrate the effectiveness of the key components of
the proposed EGFNet, we applied the same network param-
eters for retraining each ablation experiment on the MFNet
dataset, and these results are listed in Table 4.

Effectiveness of Prior Edge Information: To demon-
strate the effectiveness of edge information, we designed a
variant without implicitly using edge cues in EGFNet, de-
noting it as w/o edge. The corresponding results are listed in
Table 4. The variant w/o edge exhibits worse performance
compared to the EGFNet with edge information, demon-

strating the importance of edge information for scene pars-
ing and validating its use.

Effectiveness of MFM: To demonstrate the effectiveness
of the MFM, we replaced it with simple addition and de-
noted this variant as w/o MFM. As summarized in Table 4,
the proposed EGFNet performs better than the variant w/o
MFM, demonstrating the reliability of the module.

Effectiveness of GIM and SIM: To demonstrate the ef-
fectiveness of GIM and SIM, we designed three ablation ex-
periments by removing GIM (denoted as w/o GIM), remov-
ing SIM (denoted as w/o SIM), and removing both GIM and
SIM (denoted as w/o GIM & SIM). We applied simple addi-
tion when removing each module. The three evaluated vari-
ants provided declined performances than when using the
SIM and GIM in EGFNet. These results indicate the impor-
tance of the GIM and SIM for obtaining high-level semantic
information.

Effectiveness of Multitask Deep Supervision: To
demonstrate the efficiency of multitask deep supervision,
we removed all the supervision except for the final su-
pervision stage while maintaining all the other network
parameters (denoted as w/o SUP). Table 4 indicates that the
EGFNet performance considerably decreases when only
one supervision stage is used.

Conclusion
We propose the EGFNet for RGB–thermal scene parsing.
We demonstrate that prior edge information contributes to-
ward generating high-quality and comprehensive scene pars-
ing maps. Moreover, the MFM enables exploitation of the
complementarity between the RGB and thermal modali-
ties, while the GIM and SIM allow extraction of high-
level semantic information. Furthermore, the proposed mul-
titask deep supervision promotes effective and robust scene
parsing. Experiments were performed with two bench-
mark datasets to demonstrate the high performance of the
EGFNet, and the results from ablation experiments verify
the contributions of the most important network compo-
nents.
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