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Abstract

Deep Convolutional Neural Networks (CNNs) based methods
have achieved significant breakthroughs in the task of single
image shadow removal. However, the performance of these
methods remains limited for several reasons. First, the exist-
ing shadow illumination model ignores the spatially variant
property of the shadow images, hindering their further per-
formance. Second, most deep CNNs based methods directly
estimate the shadow free results from the input shadow im-
ages like a black box, thus losing the desired interpretability.
To address these issues, we first propose a new shadow illumi-
nation model for the shadow removal task. This new shadow
illumination model ensures the identity mapping among un-
shaded regions, and adaptively performs fine grained spatial
mapping between shadow regions and their references. Then,
based on the shadow illumination model, we reformulate the
shadow removal task as a variational optimization problem.
To effectively solve the variational problem, we design an it-
erative algorithm and unfold it into a deep network, naturally
increasing the interpretability of the deep model. Experiments
show that our method could achieve SOTA performance with
less than half parameters, one-fifth of floating-point of oper-
ations (FLOPs), and over seventeen times faster than SOTA
method (DHAN).

Introduction
Shadows, which are caused by light being blocked by object-
s, widely exist in various natural scenes. Shadows present a
substantial challenge for computer vision applications such
as tracking (Sanin, Sanderson, and Lovell 2010; Guo et al.
2020) and object detection (Cucchiara et al. 2003). Conse-
quently, removing shadows is a crucial preprocessing step
in computer vision, and has attracted extensive research at-
tention. Currently, deep CNNs-based methods (Qu et al.
2017; Wang, Li, and Yang 2018; Cun, Pun, and Shi 2020;
Le and Samaras 2020; Liu et al. 2021c) dominate this field
and achieve state-of-the-art performance. However, these
approaches have some inherent problems:

Simplified assumption in the existing shadow illumi-
nation model. Recently, many researchers try to further ex-
plore the physical properties of the shadow phenomenon. In
(Le and Samaras 2019, 2020), the illumination model of the
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Figure 1: Comparison among different models PSNR perfor-
mance, number of models parameters and FLOPs. Shadow
removal results are achieved on ISTD dataset.

transformation relationship between the shadow-free image
Ins and shadow image Is is explicitly expressed as

Ilit = ω ∗ Is + b, (1)
Ins = α ∗ Is + (1−α) ∗ Ilit, (2)

where Ilit is the relit result of transforming Is with six con-
stants (ω = [ωR, ωG, ωB ], b = [bR, bG, bB ]) for different
image channels. The matte α balances the shadow effects in
penumbra areas. Given the above formula, they design net-
works to predict different parameters in two stages. In the
first stage, this illumination model strongly assumes that all
areas of the umbra are equally affected by shadows, which
largely ignores the spatial-variant property of shadow im-
ages. We argue that directly predicting a uniform mapping
function for all umbra area pixels is not accurate. Neither of
these methods considers a more finer-grained, more adaptive
mapping function for each pixel in umbra regions.

Lacking sufficient interpretability of CNNs. Deep C-
NNs significantly promote the single image shadow removal
performance in conjunction with the large-scale datasets
of shadow/non-shadow pairs. However, many deep CNNs-
based methods (Qu et al. 2017; Wang, Li, and Yang 2018;
Cun, Pun, and Shi 2020) mainly focus on designing the net-
work architectures, and then adopt an end-to-end training
strategy to directly learn the mapping function between Is
and Ins to remove shadows. This learning paradigm makes
the deep network act as a black box and ignores the intrin-
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sic prior knowledge of the shadow image itself, resulting in
weak interpretability and limited performance.

Insufficient use of shadow mask information. Current
high-quality datasets for the shadow removal task, e.g., Im-
age Shadow Triplets Dataset (ISTD) (Wang, Li, and Yang
2018), have provided corresponding shadow masks. In or-
der to utilize the shadow mask location information, many
deep CNNs-based shadow removal methods (Qu et al. 2017;
Wang, Li, and Yang 2018; Le and Samaras 2019, 2020; Li-
u et al. 2021c) directly concatenate the shadow image and
mask as inputs, and then send them into the deep network.
However, they may still mistake the dark albedo material
areas like shadows, thus resulting in undesired artifacts in
the results (as shown in Figure 5). Therefore, we argue that
the mask information used to assist the network in locating
shadow regions has not been fully exploited.

To alleviate the aforementioned issues, we propose an
interpretable and effective deep network by combining the
advantages of both model-driven methods and data-driven
CNNs-based approaches. Specifically, we first propose a
new shadow illumination model for this specific shadow re-
moval task. Our proposed model integrates the shadow mask
to design a constraint item, which could achieve the iden-
tity mapping among non-shadow regions pixels and adap-
tively fine-grained mapping between shadow region pixel-
s and shadow-free counterparts within one stage. Secondly,
based on the new illumination model, we reformulate the de-
shadow task as a variational optimization model, composed
of the favorable data fidelity term and the shadow-related
prior term. The favorable data fidelity ensures that estimated
results are consistent with the proposed shadow illumina-
tion model, while the other terms learn shadow-relevant pri-
ors for removing shadow. To effectively solve the variational
model, we design an optimization algorithm with the gradi-
ent descent strategy (Ruder 2016) and unfold it into deep
CNNs. In this way, the operation process of our network is
highly consistent with the optimization algorithm, thus the
interpretability of the network has been well improved. Ad-
ditionally, we construct a basic Dynamic Mapping Residual
Block (DMRB), which conforms to the new shadow illumi-
nation model, to further improve the performance. The con-
tributions of our paper are as follows:

• We propose a new illumination model at a fine-grained
level for shadow removal. We verify the previous shadow
illumination model neglects the spatially-variant proper-
ty of the shadow images through statistical analysis. Our
model is more comprehensive than the previous model,
making the subsequent solution process more accurate.
• We propose an efficient model-driven network for shad-

ow removal. Our network is built on the designed itera-
tive optimization algorithm of shadow variational model,
which largely increases its interpretability.
• We further design a Dynamic Mapping Residual Block

(DMRB) as the basic module in our network, which is
our proposed shadow illumination model-inspired. Com-
pared with standard form Residual Block, DMRB can
enhance our model performance without increasing ad-
ditional parameters.

• Extensive experiments indicate that our method achieves
leading shadow removal performance in terms of quanti-
tative metrics, inference efficiency, and visual quality.

Related Work
Shadow Removal
Shadow removal is one of the fundamental tasks in the
computer vision field. Traditional shadow removal method-
s (Shor and Lischinski 2008; Finlayson, Hordley, and Drew
2002; Wu, Zhang, and Kumar 2012) rely on the image in-
trinsic priors (e.g., image gradients, illumination) and user
interaction. For example, (Gong and Cosker 2014) designs
the on-the-fly learning method by providing two rough user
inputs for the pixels of the shadow and the lit area. Guo, Dai,
and Hoiem (2012) combine pairwise relationships between
shadow regions and non-shadow regions pixels to obtain il-
lumination conditions.

Recently, there are many works to employ deep CNNs to
remove shadows and achieve great breakthroughs. (Wang,
Li, and Yang 2018; Qu et al. 2017) have proposed the pub-
lic large-scale dataset (e.g., ISTD) to train the network in an
end-to-end manner. Ding et al. introduces the recurrent ad-
versarial network to predict shadow mask and shadow-free
images. (Hu et al. 2019a) novelly leverages direction-aware
spatial context to promote shadow detection and removal
performance. (Le and Samaras 2019) constructs a shadow
illumination model and designs networks to remove shadow
effects. (Cun, Pun, and Shi 2020) synthesizes realistic shad-
ow images through adversarial learning to boost network
performance. (Fu et al. 2021a) transfers shadow removal
task as multi-exposure images fusion problem. Moreover,
(Hu et al. 2019b; Le and Samaras 2020; Liu et al. 2021c)
attempt to train their network with unpaired data.

Deep Unfolding Methods
Deep unfolding methods usually integrate the advantages of
model-driven methods (e.g., clearly interpretable) and the
advantages of CNNs-based methods. (e.g., powerful learn-
ing capability) They typically contain these steps: (1) unfold
the specific iteration optimization algorithms, e.g., iterative
shrinkage-threshold algorithm (Beck and Teboulle 2009; Fu
et al. 2019) and half-quadratic splitting algorithm (Afonso,
Bioucas-Dias, and Figueiredo 2010; Zhang, Gool, and Tim-
ofte 2020); (2) parameterize the unrolled models; (3) update
the learnable parameters via CNNs. Current many methods
(Zhang et al. 2017; Dong et al. 2018; Mu et al. 2018; Li et al.
2019; Liu et al. 2019; Wang et al. 2020; Fu et al. 2021b; Liu
et al. 2021a) in other computer vision tasks build differen-
t iterative optimization algorithms based on their physical
models. Such as, dehazing method (Liu et al. 2019) unfolds
the iterative algorithm, which solves the components of the
well-known haze image physical formulation (Narasimhan
and Nayar 2000; Fattal 2008), into CNNs.

However, such deep unfolding methods have not been ex-
plored on the shadow removal task. To our best knowledge,
this is the first attempt to combine the model-driven opti-
mization strategy with the CNNs-based method to achieve
shadow removal.
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Methodology
In this section, we illustrate our proposed shadow illumina-
tion model, the iterative solution to the minimization varia-
tional model, and the corresponding unfolding networks.

Shadow Illumination Model
Here we first revisit the previous illumination formula of
modeling shadow removal process. Early traditional meth-
ods (Liu and Gleicher 2008; Wu et al. 2007; Arbel and Hel-
Or 2010) have been exploring shadow removal based on the
simplified physical image formulation, in which shadow im-
ages Is are modeled as the element-wise multiplication of a
shadow matte Sm and a shadow-free image Ins:

Is = Sm ∗ Ins. (3)

This Eqn.(3) is evolved from a universal image formation
equation, proposed by (Barrow et al. 1978) as

I = R ∗ L, (4)

where image I is obtained by element-wisely multiplying
the reflectance R and luminance L. In (Qu et al. 2017), they
further transform Eqn.(3) into log space as

log(Is) = log(Sm) + log(Ins). (5)

They directly infer the mapping function between the shad-
ow image Is and its matte Sm via the deep CNNs. However,
such simplified Eqn.(3) and (5) do not specifically consid-
er the shadow image characteristics, such as the difference
between shadow and non-shadow regions.

(Le and Samaras 2019) firstly proposes a shadow illu-
mination model to separately process shadow/non-shadow
regions and fuse them into the second stage as

Ilit = ω ∗ Is + b, (6)
Ins = α ∗ Is + (1−α) ∗ Ilit. (7)

Their modeling function assumes that the shadow effects are
completely consistent in the umbra areas, thus they obtain
the relit results through the linear transformation with only
six constants (ω = [ωR, ωG, ωB ], b = [bR, bG, bB ]). We ar-
gue that applying the consistent transformation for all pixels
of the umbra areas is unreasonable. We also prove our view
through a simple but effective statistics analysis on the IST-
D dataset, as shown in Figure 2. Following (Le and Samaras
2019, 2020), the shadow mask M can be decomposed into
Mumbra and Mpenumbra (shadow boundary areas). We uti-
lize pixel erosion operation to obtain Mumbra in Figure 2.
Secondly, we could obtain the pixel ratio map of umbra re-
gions R through

R =
Ins
Is
∗Mumbra. (8)

Then we utilize the histogram to analyze the ratio map val-
ues that only belong to the umbra area Mumbra. We found
ratio map histograms of most shadow images are not unifor-
m in the umbra regions. Hence we argue applying uniform
transformations in (Le and Samaras 2019, 2020) for all um-
bra regions pixels is accurate enough.

Figure 2: A simplified representation of one pair shadow im-
ages statistical analysis from the ISTD dataset. We find the
ratio map R is not uniform distribution in the umbra areas,
which shows the shadow image’s spatially-variant property
in the umbra region. Thus, applying a uniform transforma-
tion (e.g., Eqn. (6)) for all pixels in the umbra area is inac-
curate. (Best viewed on-screen.)

Inspired by the aforementioned models, we propose a new
shadow illumination model, which considers the spatially-
variant property in umbra areas and exploits existing shadow
mask information. The new model can be written as{

Ins = (1 + A) ∗ Is,
s.t. ‖(1−M) ∗ A)‖2 = 0,

(9)

where M means the shadow mask that shadow regions are
1 and the rest are 0, and A is the corresponding learned il-
lumination transformation map. Note that we impose a con-
straint on A, which enforces value of the non-shadow pixel
equals its value in the input image and guarantees identical
mapping among non-shadow areas. This physically plausi-
ble transformation also conforms to the goal of the shadow
removal task: recovering shadow regions’ information and
maintaining the non-shadow regions’ information.

Variational Model and Optimization Algorithm
Generally, we formulate this problem as a maximum a-
posteriori estimation problem, which is written as

Ins = argmax
Ins

logP (Ins|Is)

= argmax
Ins

logP (Is|Ins) + logP (Ins),
(10)

where logP (Is|Ins) indicates the data likelihood and
logP (Ins) characterizes the intrinsic prior knowledge of
Ins. Based on our proposed shadow illumination Eqn. (9)
and the Eqn. (10), shadow removal problem is transferred to
solve the following minimization variational model:{

argmin
Ins

D(Is, Ins,A) + λϕ(Ins,A),

s.t. g(A) = 0,
(11)

where λ is a weight parameter and D(·) denotes the favorable
data fidelity term, defined as

D(Is, Ins,A) =
1

2

∥∥∥∥Is −
Ins

1 + A

∥∥∥∥
2

, (12)

For the convenience of writing, we employ g(A) to present
the constraint term: ‖(1−M) ∗ A)‖2. We further convert it
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Figure 3: (a) Overview illustration of our proposed efficient model-driven network, which conforms to our designed iterative
algorithm 1. (b) The basic structure of one of the iterative stages. Except for the first initialization stage, each subsequent stage
consists of two sub-steps, respectively corresponding to Eqn. (14) to update the transformation map A and shadow-free Ins.

into a non-constrained optimization problem as

argmin
Ins

D(Is, Ins,A) + βg(A) + λ ϕ (A), (13)

where β is the weight parameter. Since the data fidelity items
D(·) and g(·) are both quadratic constraints, they are differ-
entiable. Assume that ϕ(·) is differentiable, the optimization
objection (13) can be addressed through the gradient descent
scheme (Ruder 2016). At every iteration stage, we need to
alternately update A and Ins as follows:{

An+1 = An − ηA(∇AD
n + β∇Ag(An) + λ∇Aϕ(An)),

In+1
ns = (1 + An+1) ∗ Is,

(14)
where ηA indicates the step size of A; ∇ indicates the gra-
dient operator; n indicates the current iteration number and
the maximum iteration number is K.

There are two unresolved problems for the above iteration
process in Eqn. (14). One is computing the objective func-
tion gradients. The corresponding gradients of the quadratic
items D(·) and g(·) are obviously easy to calculate. Followed
(Liu et al. 2019), the counterpart of ϕ(·) can be performed
with a deep CNNs.∇Aϕ(An) could be directly learned from
our training dataset. The other problem is to obtain the initial
values for the iteration algorithm. As the CNNs can generate
reasonable results, we leverage CNNs technique to estimate
the initial results A0 and I0ns .

Unfolding Network Design
As shown in Figure 3, we build a deep CNNs model follow-
ing the proposed iteration algorithm 1. Specifically, the net-
work contains one initialization stage and K iterative stages,
which is corresponding to the total number of iterations of
our proposed optimization algorithm. Except for the initial
stage, each subsequent stage consists of two sub-steps, re-
spectively corresponding to Eqn. (14) to update the learned
transformation map A and the shadow-free image Ins.

In Figure 3, one place to deploy CNNs is to obtain the

initial results, and the other is to solve the gradient result:

A0, I0ns = Ninit(Is,M),

Nn+1
A = ∇Aϕ(An).

(15)

The network architecture of two CNNs Ninit and NA both
employ classical U-net (Ronneberger, Fischer, and Brox
2015). The network totally involves 4 scales, each of which
features a concatenation operation between down-scaling
and up-scaling parts. Specifically, the number of channels
from the 1th scale to the 4th scale is 32, 64, 128, and 256,
respectively. We adopt the 2× 2 max pooling operation with
stride 2 for the down-scaling operation and 2× 2 transposed
convolution layer for the up-scaling operation. We further
enforce NA to share parameters among different stages to
decrease the number of network parameters.

Different from the original U-net network, we replace the
basic block in each scale. In order to improve our mod-
el computation efficiency and save network parameters, we
construct two convolution blocks based on the Mobilenet-v2
(Sandler et al. 2018), as shown in Figure 4. The block (b) is
derived from ResNet (He et al. 2016), served as the basic
block inNA. While block (c) conforms to our proposed for-
mulation, called the dynamic mapping residual block (DM-
RB). Ninit adopts DMRB as the basic block in each scale.

Network Loss Function
The loss is composed of two parts: the data fidelity term of
estimated results; the regularization term of the learned map
A. We employ the mean square mean (MSE) to build the
network loss function at every iterative stage, defined as:

L =
K∑

n=0

γnd ‖Inns − Ins‖2 +
K∑

n=0

γnreg ‖(1−M) ∗ An)‖2 ,

(16)
where Inns and An respectively indicate the estimated
shadow-free result and the learned transformation map at
the nth iteration stage; γnd and γnreg indicate tradeoff weights
(γnd = 1 (n = 0,1,· · · ,K − 1),γnK = 10 and γnreg = 1e− 6 ).
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Algorithm 1: Iterative algorithm for shadow removal.

1: Initialization:
hyperparameters ηA =0.01,β =0.01, λ =0.01; n ← 0;
maximum iterations K = 4; A0, I0ns = Ninit(Is,M);

2: repeat
3: n← n+ 1
4: An+1 = An − ηA(∇AD

n + β∇Ag(An) + λNn+1
A )

5: In+1
ns = (1 + An+1) ∗ Is

6: Update Ninit with Eqn.(16)
7: until n+ 1 == K

Output: IKns and AK

Figure 4: (a) Images illustration of our proposed shadow il-
lumination model (Eqn. (9)); (b) Basic block inNA, derived
from ResNet and Mobilenet-v2; (c) Basic block in Ninit, a
model-informed module from (a).

Experiments
Implementation Details
We implement our network in the PyTorch framework on
the PC with a single NVIDIA GeForce GTX 1080Ti GPU.
In the training phase, we adopt the Adam optimizer (K-
ingma and Ba 2014) with a batch size of 2 and the patch
size of 256×256. The initial learning rate is 5 × 10−5 and
changes with Cosine Annealing scheme (Loshchilov and
Hutter 2016). The CNNs parameters are randomly initial-
ized and the model converges well after 150 epochs. For the
hyperparameters, the weights (ηA, β, λ) in Equations (14)
are initialized as 0.01 and these parameters can be automat-
ically updated during the training phase in an end-to-end
manner. The maximum iteration number K is empirically
set to 4 as a trade-off between speed and accuracy.

Dataset and Evaluation Metrics
ISTD dataset ISTD is proposed in (Wang, Li, and Yang
2018), which is the first public benchmark that could be used
to train shadow detection and removal. ISTD totally consists
of 1870 image triplets (shadow image, shadow-free image,
shadow mask), including 135 various scenes with differen-
t shadow shapes. This dataset has been divided into 1330
triplets for training and 540 triplets for testing.

SRD dataset SRD is proposed in (Qu et al. 2017), con-
taining 2680 and 408 pairs of images for training and testing
respectively. SRD does not provide masks, we employ the
public SRD shadow masks from (Cun, Pun, and Shi 2020).

For evaluation on ISTD and SRD datasets, we compute
the root mean square error (RMSE) between the estimated

result and ground truth image in the LAB color space. For
fair comparisons, we directly adopt the MATLAB evaluation
codes from (Fu et al. 2021a). Following previous method-
s (Liu et al. 2021c; Fu et al. 2021a; Le and Samaras 2020,
2019), we employ results with a resolution of 256× 256 for
evaluation in this paper. In the Table 1 and 2, we report the
evaluation results about the shadow (S) regions, non-shadow
(NS) regions, and all images (ALL). For the RMSE metric,
the lower value means the better result. In addition, we also
compute the PSNR and SSIM (Wang et al. 2004) for quan-
titative assessment in RGB color space.

Shadow Removal Evaluation on ISTD Dataset
We first compare our ISTD results with current state-of-the-
art shadow removal methods, including 2 traditional meth-
ods (Guo, Dai, and Hoiem 2012; Gong and Cosker 2014)
and 9 CNNs-based methods (Wang, Li, and Yang 2018;
Hu et al. 2019a,b; Le and Samaras 2019, 2020; Cun, Pun,
and Shi 2020; Liu et al. 2021b,c; Fu et al. 2021a). For fair
comparison, all the comparison results or metrics values are
provided by the original authors. Since the pre-trained model
and shadow removal results of MaskShadow-GAN (Hu et al.
2019b) are not publicly available, we directly adopt the met-
rics values from (Fu et al. 2021a). Quantitative comparison-
s are shown in Tabel 1. We surpass the SOTA methods on
the PSNR metric by a large margin, whether in the shadow
region, non-shadow region, or the entire region. Additional-
ly, we compare visual results in the Figure 5, in which our
method achieves better visual performance than other meth-
ods. (Le and Samaras 2020; Fu et al. 2021a) may misprocess
relatively dark non-shadow regions, bringing undesired arti-
facts in their estimated results. It turns out that their models
fail to make full use of the shadow mask information, even
though their network inputs contain shadow masks.

We further compare the different models efficiency and
complexity on ISTD results, as shown in Figure 1 and Ta-
ble 6. Our method achieves leading shadow removal perfor-
mance in terms of quantitative metrics, inference efficien-
cy, and model interpretability. We also evaluate our model
on the AISTD dataset (Le and Samaras 2019). Our PSNR ↑
and RMSE ↓ are 33.36 dB and 3.42, while metric values of
SOTA method (Fu et al. 2021a) are 29.44 dB and 4.23.

Shadow Removal Evaluation on SRD Dataset
We also compare the methods (Qu et al. 2017; Hu et al.
2019a; Cun, Pun, and Shi 2020; Fu et al. 2021a), which
provide the pre-trained model or processed results on the S-
RD dataset. During the evaluation, we adopt the public SRD
shadow masks provided by (Cun, Pun, and Shi 2020). The
comparison results can be found in Table 2. It is obvious that
our method achieves the best performance on all metrics.

Ablation Study
Ablation Study of Iterative Stage Numbers The effec-
tiveness of the iteration numbers is tested by comparing
the performance on the PSNR and RMSE metrics. Table 5
demonstrates the effect of the stage number K on the shad-
ow removal performance of our network. K = 0 represents
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Method Venue
Shadow Region (S) Non-Shadow Region (NS) All image (ALL)

PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓
Original input - 22.40 0.9361 32.10 27.32 0.9755 7.09 20.56 0.8934 10.88
Guo et al. PAMI’12 27.76 0.9643 18.65 26.44 0.9664 7.76 23.08 0.9198 9.26
Gong et al. BMVC’14 30.14 0.9727 13.54 26.98 0.9730 7.20 24.71 0.9260 8.03
ST-CGAN CVPR’ 18 33.74 0.9808 9.99 29.51 0.9576 6.05 27.44 0.9291 6.65
MaskShadow-GAN‡ ICCV’ 19 - - 12.67 - - 6.68 - - 7.41
SP-M-Net ICCV’ 19 32.16 0.9812 10.30 26.40 0.9702 7.47 25.08 0.9429 7.79
DSC T-PAMI’ 19 34.64 0.9835 8.72 31.26 0.9690 5.04 29.00 0.9438 5.59
Param+M+D-Net ECCV’ 20 31.43 0.9811 11.84 26.21 0.9687 7.51 24.69 0.9413 7.94
DHAN AAAI’ 20 35.53 0.9882 7.73 31.05 0.9705 5.29 29.11 0.9543 5.66
LG-ShadowNet T-IP’ 21 30.88 0.9794 11.32 25.42 0.9639 8.01 23.89 0.9340 8.37
G2R CVPR’ 21 31.63 0.9746 10.72 26.19 0.9671 7.55 24.72 0.9324 7.85
Auto-Exposure CVPR’ 21 34.71 0.9752 7.91 28.61 0.8799 5.51 27.19 0.8456 5.88
Ours - 36.95 0.9867 8.29 31.54 0.9779 4.55 29.85 0.9598 5.09

Table 1: Quantitative comparisons of the SOTA methods on the ISTD datasets. The best and the second results are boldfaced
and underlined, respectively. ‡ means results copied from Auto-Exposure (Fu et al. 2021a).

Method Venue
Shadow Region (S) Non-Shadow Region (NS) All image (ALL)

PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓
Original input - 18.96 0.8710 36.69 31.47 0.9750 4.83 18.19 0.8295 14.05
Guo et al.‡ PAMI’ 12 - - 29.89 - - 6.47 - - 12.60
DeshadowNet‡ CVPR’ 17 - - 11.78 - - 4.84 - - 6.64
DSC T-PAMI’ 19 30.65 0.9602 8.62 31.94 0.9650 4.41 27.76 0.9033 5.72
DHAN AAAI’ 20 33.67 0.9777 7.16 34.79 0.9789 3.91 30.51 0.9492 4.87
Auto-Exposure CVPR’ 21 32.26 0.9663 8.55 30.59 0.9445 5.74 27.74 0.8933 6.50
Ours - 34.94 0.9797 7.44 35.85 0.9819 3.74 31.72 0.9523 4.79

Table 2: Quantitative comparisons of the SOTA methods on the SRD datasets. The best and the second results are boldfaced
and underlined, respectively. ‡ means results copied from Auto-Exposure (Fu et al. 2021a).

Figure 5: Visual comparisons with SOTA methods on ISTD datset. (a) to (d) are the estimated results from SOTA methods :
DSC (Hu et al. 2019a), Param+M+D-Net (Le and Samaras 2020), DHAN (Cun, Pun, and Shi 2020), and G2R (Liu et al. 2021c).
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Figure 6: The visual comparison of results whether the loss
function contains regularization term.

Figure 7: The visual comparisons with imperfect mask.

Models Initial Network w Iterations All image (ALL)

RB DMRB PSNR↑ RMSE↓

Model-1 ! 28.37 5.74
Model-2 ! 28.52 5.50

Model-3 ! ! 29.44 5.17
Ours ! ! 29.85 5.09

Table 3: Ablation study of our proposed DMRB module.

Models S NS ALL

PSNR↑ RMSE↓ PSNR↑ RMSE↓ PSNR↑ RMSE↓
w/o reg. 35.86 9.23 31.19 4.81 29.41 5.46

Ours 36.95 8.29 31.54 4.55 29.85 5.09

Table 4: Ablation study of the regularization term in loss.

the results estimated by Ninit, which does not include any
subsequent iteration stages. Taking K = 0 as the baseline,
it can be seen that the shadow removal performance of our
method gradually increased to a peak atK = 4. Meanwhile,
it also reaches the lowest value at K = 4 for the RMSE.
Therefore, we empirically set K = 4 as the default setting.

Ablation Study of DMRB Module In this ablation study,
we compare the model performance of using Resblock (R-
B) or Dynamic Mapping Residual Block (DMRB) as ba-
sic blocks in the initial network Ninit. Ninit provides ini-
tial values (A0, I0ns) for the subsequent iterative algorithm.
Moreover, the relationship between A0 and I0ns conforms to
our proposed shadow illumination model. Intuitively, we en-
force the network intermediate features extraction following
the proposed shadow model. According to Table 3, the mod-
el using DMRB obviously performs better than using RB un-
der the same setting. This is because DMRB integrates shad-

Models Iterative Stage Numbers
0 1 2 3 4 5

PSNR ↑ 28.52 28.85 28.98 29.32 29.85 29.70
RMSE ↓ 5.50 5.55 5.36 5.19 5.09 5.18

Table 5: Ablation study of iterative stage numbers.

Method DHAN SP-M-Net G2R Ours

Inference Time 0.3450s 0.0376s 0.0176s 0.0197s

Table 6: Average inference time on the 1080Ti GPU device
with the resolution of 480 × 640.

ow model-self knowledge that benefits shadow removal. Ex-
tensive experiments indicate DMRB boosts shadow removal
performance, without introducing additional parameters.

Ablation Study of Regularization Term We firstly verify
the effect of the regularization term of the learned transfor-
mation map A in the loss function. Based on our proposed
shadow illumination model, the ideal transformation is to
process only the shadow regions while maintaining the iden-
tity mapping of the non-shaded area. From Figure 6, adding
the regularization term could reduce the unwanted artifact-
s on transformation map A. In Table 4, the performance of
shadow removal is obviously decreased without the regular-
ization term.

We find that our network is not sensitive to the value of
γnreg , as long as the range of γnreg is between 1e − 5 and
1e − 7. Therefore, we empirically set γnreg = 1e − 6 (n =
0,1,· · · ,K) as the default setting throughout all experiments.

Ablation Study of the Imperfect Mask In Figure 7, we
provide a visualization comparison with the imperfect shad-
ow mask as input. Our method still could remove the shad-
ows and recover the underlying contents.

Ablation Study of Inference Time In Table 6, we com-
pare part SOTA methods’ average inference time on IST-
D testing dataset. Our method’s inference speed is over 17
times faster than DHAN (Cun, Pun, and Shi 2020).

Conclusion
In our paper, we verify the previous shadow illumination
models exists drawbacks, e.g., ignoring the spatially-variant
property of shadow images. We further propose a new shad-
ow illumination model, which considers spatially-variant
property and shadow mask information. Utilizing the new
shadow illumination model, we reformulate the shadow re-
moval task as a variational optimization problem. To this
end, we build an iterative optimization algorithm to address
it. This iteration optimization algorithm is unrolled into deep
CNNs, so that our method enjoys the advantages of both
model-driven methods (e.g., well interpretability) and data-
driven CNNs-based methods (e.g., powerful learning capa-
bility). Extensive experiments demonstrate that our method
achieves leading shadow removal performance with fewer
network parameters and faster inference speed.
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