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Abstract

A common approach to Temporal Action Localization (TAL)
is to generate action proposals and then perform action clas-
sification and localization on them. For each proposal, ex-
isting methods universally use a shared proposal-level repre-
sentation for both tasks. However, our analysis indicates that
this shared representation focuses on the most discriminative
frames for classification, e.g., “take-offs” rather than “run-
ups” in distinguishing “high jump” and “long jump”, while
frames most relevant to localization, such as the start and end
frames of an action, are largely ignored. In other words, such
a shared representation can not simultaneously handle both
classification and localization tasks well, and it makes precise
TAL difficult. To address this challenge, this paper disentan-
gles the shared representation into classification and local-
ization representations. The disentangled classification rep-
resentation focuses on the most discriminative frames, and
the disentangled localization representation focuses on the
action phase as well as the action start and end. Our model
can be divided into two sub-networks, i.e., the disentangle-
ment network and the context-based aggregation network.
The disentanglement network is an autoencoder to learn or-
thogonal hidden variables of classification and localization.
The context-based aggregation network aggregates the clas-
sification and localization representations by modeling local
and global contexts. We evaluate our proposed method on two
popular benchmarks for TAL, which outperforms all state-of-
the-art methods.

Introduction
Temporal Action Localization (TAL) aims to seek out ac-
tions of interest in a video and locate the temporal start and
end of each action instance. It is inherently a heterogeneous
multi-task learning problem, with action classification and
action localization as different tasks. Recently, TAL has re-
ceived more attention as a fundamental tool for several ap-
plications such as video summarization (Xiao et al. 2020),
action recognition (Meng et al. 2020), and video caption-
ing (Wang et al. 2018).

Inspired by the great success of the proposal-based object
detection framework, i.e., object proposal generation fol-
lowed by proposal classification and boundary regression,
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(a) Attention of the original shared proposal features to different
snippets.
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(b) Attentions of our disentangled classification and localization
features to different snippets.

Figure 1: We visualize the cosine similarity between pro-
posal features and features of snippets within the corre-
sponding proposal. We assume that if the proposal features
are more similar to the feature of a snippet, it indicates the
proposal features pay more attention to that temporal seg-
ment corresponding to the snippet. (a) The original shared
proposal features (the orange line) focus on the most dis-
criminative frames for classification. Therefore, it is not the
best for judging completeness and locating the action. (b)
Our localization features (the red line) focus on the start and
end moments of the action and all snippets within the action,
which are useful for completeness scoring and localization.
Besides, our classification features (the blue line) also focus
on the most discriminate frames.

many current TAL methods (Huang et al. 2018; Bai et al.
2020; Wang et al. 2021; Liu et al. 2021; Li and Yao 2021; Li
et al. 2020) have followed this pipeline. They first generate
category-agnostic action proposals (Lin et al. 2019, 2018;
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Gao, Chen, and Nevatia 2018; Liu et al. 2019; Lin et al.
2020; Zhao et al. 2020; Qing et al. 2021). Subsequently,
action classification and temporal boundary refinement are
performed for each proposal, taking the shared proposal-
level features as input for both tasks (Zeng et al. 2019; Wang
et al. 2017; Xu, Das, and Saenko 2017; Chao et al. 2018; Dai
et al. 2017).

However, a shared proposal-level representation cannot
account for both classification and localization well. As
shown in Figure 1(a), it focuses on “take-offs” for the ac-
tion “high jump” rather than “run-ups”. As a result, this
shared representation is more beneficial for classification,
since some other actions such as “long jump” also include
“run-ups”, making “run-ups” a distraction for classification.
But this representation is not suitable for judging the com-
pleteness and locating the action. Judging completeness re-
quires the consideration of both “run-ups” and “take-offs”
and locating the action requires the consideration of its start
and end moments.

Therefore, it is critical to generate apposite proposal-level
representations for classification and localization tasks, re-
spectively. This paper addresses this challenge by disentan-
gling the original shared representation of a proposal into
two representations respectively for classification and lo-
calization. Our disentangled representations are shown in
Figure 1(b). In addition to considering both “run-ups” and
“take-offs” more evenly, our localization representation fo-
cuses on the snippets capturing the start and end frames of
“high jump”, indicating that they are more appropriate for
the localization task. Besides, our classification representa-
tion still focuses on the most discriminative frames (“take-
offs”) of “high jump”.

Our method consists of two sub-networks, i.e., the disen-
tanglement network and the context-based aggregation net-
work (Zhu et al. 2021). The disentanglement network is
an autoencoder to divide original snippet-level features into
three parts: the unique classification part, the unique local-
ization part, and the common part. Specially, the unique
classification and localization parts are orthogonal. After-
wards, the disentangled classification features and localiza-
tion features are obtained by decoding the corresponding
unique classification part and unique localization part, re-
spectively. Subsequently, the context-based aggregation net-
work aggregates and enhances our disentangled proposal-
level representations via fine-grained modeling of snippet-
level representations and higher-level modeling of the video-
level representation. After obtaining the final disentangled
proposal-level representations, the classification and local-
ization tasks are performed on their corresponding features
instead of using shared features.

In summary, our contributions lie in three folds:

• Previous proposal-based TAL approaches take it for
granted that proposal-level features should be shared for
both classification and localization. To our knowledge,
we are the first to identify the problem of this practice:
the shared representation can not handle both tasks well.

• We design a novel disentanglement network to obtain
representations suitable for classification and represen-

tations suitable for localization, respectively. This is
achieved by learning disentangled classification parts and
localization parts, which are orthogonal to each other,
from the original shared proposal-level features.

• Our model achieves the state-of-the-art performance on
two popular TAL benchmarks, i.e., THUMOS14 (Jiang
et al. 2014) and ActivityNet v1.3 (Heilbron et al. 2015).

Related Work
Action Recognition. Action recognition is essentially a
classification task in video understanding and has been
widely studied in the past few years. Two-stream net-
works (Simonyan and Zisserman 2014; Shi et al. 2019; Zhu
et al. 2018) as a type of popular methods adopt RGB frames
and optical flows to capture appearance and motion informa-
tion. Specially, Simonyan et al. (Simonyan and Zisserman
2014) fuse the predictions made on RGB frames and optical
flows. We also adopt this strategy in our model.

There are a few methods exploring the feature disentan-
glement for action recognition. Liu et al. (Liu et al. 2015)
disentangle the features of similar actions (fencing, sword,
draw sword) and let them contribute to the maximum ex-
tent. Liu et al. (Liu et al. 2020) disentangle the skeleton node
features at separate spatial-temporal neighborhoods in graph
convolutions. Their disentanglement aims to obtain better
representations for one task while our disentanglement is to
obtain eligible representations for different tasks.

Temporal Action Localization. Prior TAL methods
can be divided into two categories. One-stage approaches
(Huang, Dai, and Lu 2019; Long et al. 2019; Liu and Wang
2020; Lin et al. 2021) classify and locate action instances
from an input video in a single shot. Their advantage is that
they can be easily trained in an end-to-end fashion.

Two-stage approaches (Gao et al. 2017; Bai et al. 2020)
as described in Section usually obtain superior performance.
Some approaches focus on the proposal generation. For ex-
ample, Gao et al. (Gao et al. 2020) capture global contextual
information and simultaneously detect actions with different
durations. Lin et al. (Lin et al. 2018) locate temporal bound-
aries with high probabilities, then directly combine these
boundaries into proposals and predict whether a proposal
contains an action. Some other works focus on proposal
classification and localization. For example, Li et al. (Li and
Yao 2021) design two auxiliary tasks by reconstructing the
available label information and then facilitate the learning of
the temporal action detection model. They focus on network
construction and context modeling in videos.

Huang et al. (Huang, Dai, and Lu 2019) design two
branches to learn representations separately for localization
or classification. In contrast, we explicitly disentangle the
original shared representation of a proposal into a unique
classification part, a unique localization part and a common
part, and then carefully recompose them into two representa-
tions respectively suitable for localization and classification.
To our knowledge, feature disentanglement has never been
studied in TAL.

Disentanglement in Videos. Disentanglement networks
are widely used in various video understanding tasks but
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Figure 2: The framework of the proposed method (left) and the structure of the disentanglement network (right). Left: Taking
an untrimmed video consisting of non-overlapping snippets as the input, snippet-level features are first extracted. Afterwards,
the features of snippets within a proposal are disentangled to classification and localization features by corresponding feature
extractors. The aggregation network (A-Net) aggregates and enhances these disentangled features to obtain better proposal-
level features. Finally, instead of using shared features for both classification and localization, different features are fed into
corresponding prediction layers. Right: The disentanglement network leverages an autoencoder structure to divide original
features into three components. By substituting the localization (or classification) component with zero vector, the learned
decoder outputs the classification (or localization) features.

not in TAL, such as video facial authentication (Kim et al.
2020), video representation learning (Denton and Birodkar
2017) and video generation (Wang et al. 2020). Common
disentanglement networks are divided into Generative Ad-
versarial Networks (GANs) (Sun, Xu, and Saenko 2020) and
Autoencoders (Bhagat et al. 2020; Ding et al. 2020).

Specially, Bhagat et al. (Bhagat et al. 2020) use Gaus-
sian processes to model the latent space for the unsupervised
learning of disentangled representations in video sequences.
Ding et al. (Ding et al. 2020) use an adversarial excitation
and inhibition mechanism to encourage the disentanglement
of the latent variables. Different form the prior disentangle-
ment networks based on Autoencoders, we replace the un-
related latent variables with zero vectors in latent space to
implement the disentanglement.

Our Approach

Framework
The proposed framework is presented in Figure 2. The in-
put untrimmed video is denoted as V = {st}Tt=1, where st
is a video snippet consisting of a small number of consec-
utive frames and T denotes the number of non-overlapping
snippets. The snippet-level features {xt ∈ RD×1}Tt=1 are
extracted snippet-by-snippet, where xt denotes the features
of st, and D is the feature dimension. Assuming V con-
tains N action proposals, denoting as P = {pi | pi =
(ti,s, ti,e)}Ni=1, the i-th proposal pi is parameterized by its
start time ti,s and end time ti,e.

For pi, its features Yi ∈ RD×Ki are obtained by concate-
nating features of Ki snippets, where Ki denotes the num-
ber of snippets within pi. Yi is disentangled to the clas-
sification features Fcls

i ∈ RD×Ki and the localization fea-

tures Floc
i ∈ RD×Ki by the disentanglement network. Af-

terwards, Fcls
i and Floc

i are fed to different context-based
aggregation networks (A-Nets) to obtain the aggregated fea-
tures, denoted as f clsi ∈ RD and f loci ∈ RD, respectively.

To better consider the temporal contextual information for
localization, we follow the common practice in TAL (Shou
et al. 2017; Zeng et al. 2019; Lin et al. 2018, 2020) to use the
extended proposal to achieve localization predictions. We
extend pi on both ends by 50% of its temporal duration.
The extended regions on the two sides are also treated as
two proposals to obtain extended features YL

i ∈ RD×(Ki/2)

and YR
i ∈ RD×(Ki/2) on the left and right extended regions,

respectively. Afterwards, the corresponding localization fea-
tures fL,loc

i ∈ RD and fR,loc
i ∈ RD are obtained by feeding

YL
i ∈ RD×(Ki/2) and YR

i ∈ RD×(Ki/2) into the localization
feature extractor and the A-Net. The final localization fea-
tures of the i-th proposal pi are obtained by concatenating
f loci , fL,loc

i and fR,loc
i .

After obtaining the final classification features (f clsi ) and
localization features, the classification and localization pre-
dictions are achieved by feeding them to Multilayer Percep-
trons (MLPs).

The Disentanglement Network
According to our discussion in Section , the representations
that are most suitable for classification and localization are
different. For classification, the representation should focus
on the most discriminative features of the action phase that
are relevant to the action category, e.g., the “take-off” mo-
tion to distinguish “high jump” and “long jump”, and the
background “pool” to classify the action as “diving” instead
of “gymnastics”. For localization, the representation is sup-
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posed to reflect the completeness and extent of an action,
which include the action phase and the action start and end.
Note features of action start and end alone are not sufficient
for localization as action boundaries are often ambiguous,
and the action phase can help reduce this ambiguity and also
infer the action completeness.

The analysis above motivates us to divide the representa-
tion of a proposal into three parts: the unique classification
part, the unique localization part, and the common part. The
unique classification part includes features that are suitable
for classification but not localization, e.g., the background
context shared by both action and non-action frames. The
unique localization part includes features that are suitable
for localization but not classification, e.g., the action start
and end. The common part include features that are suit-
able for both tasks, e.g., discriminative features of the action
phase.

As shown in Figure 2 (right), our disentanglement net-
work is divided into an autoencoder, a classification fea-
ture extractor, and a localization feature extractor. Instead
of performing explicit disentanglement, we implicitly dis-
entangle features via different tasks. In other words, the net-
work learns the representations suitable for different tasks
by itself.

Autoencoder. We divide a proposal-level representation
Yi into three parts: the unique classification part, the unique
localization part and the common part. We use the autoen-
coder to learn the hidden variables corresponding to these
three parts. These hidden variables can be formulated by

Hcls
i = Wcls

e Yi,H
loc
i = Wloc

e Yi,H
com
i = Wcom

e Yi,
(1)

where {Hcls
i ,Hloc

i ,Hcom
i } ∈ RDh×Ki are the hidden vari-

ables of classification, localization and common parts, re-
spectively. Dh is the feature dimension of hidden variables.
{Wcls

e ,Wloc
e ,Wcom

e } ∈ RDh×D are learnable weights. We
hope that these hidden variables can successfully reconstruct
the original proposal featuresYi through

Ŷi = σ(Wd · [Hcls
i ,Hcom

i ,Hloc
i ]), (2)

where Ŷi ∈ RD×Ki denotes the reconstructed proposal fea-
tures, [·] denotes the concatenation, σ is the ReLU function,
and Wd ∈ RD×3Dh is the learnable weights. We adopt the
Mean Squared Error loss and the Cosine Similarity loss as
the reconstruction losses:

Lrec = Lmse(Yi, Ŷi) +
1

Ki

Ki∑
t=1

Lcos(Yi(t), Ŷi(t)), (3)

where {Yi(t), Ŷi(t)} denotes the t-th element in {Yi, Ŷi}.
Classification Feature Extractor. In order to weaken the

interference of the unique localization part on the classifi-
cation task (e.g., the interference of “run-ups” to distinguish
the “long jump” and the “high jump”), we use the zero ma-
trix instead of the localization hidden variables when we de-
code the classification features. It is calculated as

Fcls
i = σ(Wd · [Hcls

i ,Hcom
i ,Hzero]), (4)

where Hzero ∈ RDh×Ki is a zero matrix and Fcls
i ∈ RD×Ki

denotes the disentangled classification features.

Localization Feature Extractor. In order to weaken the
interference of the unique classification part on the localiza-
tion task, we also adopt the zero matrix instead of classi-
fication hidden variables when we decode the localization
features. It is calculated as

Floc
i = σ(Wd · [Hzero,Hcom

i ,Hloc
i ]), (5)

where Floc
i ∈ RD×Ki denotes the disentangled localization

features.

The Context-based Aggregation Network
Since the duration of each proposal is uncertain, we need to
aggregate proposal-level features {Fcls

i ,Floc
i } ∈ RD×Ki of

variable lengths into fixed-length features {f clsi , f loci } ∈ RD.
Inspired by Zhu et al. (Zhu et al. 2021), we use the context-
based aggregation network to achieve the aggregation. Since
the representations of classification and localization are ag-
gregated in the same way, below we use Fi to represent ei-
ther Fcls

i or Floc
i and use fi to represent either f clsi or f loci .

Our aggregation process can be formulated as

fOi = Max-pooling(Fi), (6)

ai(t) = cos(fOi ,Fi(t)), (7)

fi,a = WO
a f

O
i +WaFia

T
i , (8)

where fOi ∈ RD denotes the original proposal-level fea-
tures. {ai(t),Fi(t)} denotes the t-th element in {ai,Fi}.
ai ∈ R1×Ki denotes the attention vector. cos denotes the co-
sine similarity. fi,a ∈ RD/2 is the aggregated proposal-level
features. {WO

a ,Wa} ∈ R(D/2)×D are learnable weights.
Our global context can be computed by

fg = Max-pooling({xt ∈ RD}Tt=1), (9)
fi,g = Wgfg + Avg-pooling(WlFi), (10)

where fg ∈ RD denotes the original global context.
fi,g ∈ RD/2 denotes the global context adapted to pi.
{Wg,Wl} ∈ R(D/2)×D are learnable weights capturing
global and local contexts. We obtain the final proposal-level
features fi ∈ RD by

fi = [fi,a, fi,g]. (11)

Prediction
With the disentanglement network and context-based aggre-
gation network, we can obtain f clsi and f loci from the pi. In
addition, we can obtain fL,loc

i and fR,loc
i from the extended

regions of it. The final predictions can be formulated as

{ĉi,m}Cm=0 =Mcls(f clsi ), (12)

{ẑi,m}Cm=1 =Mz([fL,loc
i , f loci , fR,loc

i ]), (13)

(t̂i,s, t̂i,e) =Mloc([fL,loc
i , f loci , fR,loc

i ]). (14)

Specially, Mcls is the classification head consisting of an
MLP followed by a fully-connected layer. Mz and Mloc

are heads for completeness prediction and temporal bound-
ary regression, respectively. They share an MLP followed

3647



by different fully-connected layers. {ĉi,m}Cm=0 is the clas-
sification prediction, where ĉi,m denotes the probability of
the m-th action category and C is the number of action cat-
egories. Here, m = 0 represents the background category.
{ẑi,m}Cm=1 is the completeness prediction, where ẑi,m de-
notes the completeness score of the m-th action category.
(t̂i,s, t̂i,e) are the localization predictions, where t̂i,s and t̂i,e
are the predicted start and end time of the action for pi.
Below we write {ĉi,m}Cm=0, {ẑi,m}Cm=1 and (t̂i,s, t̂i,e) com-
pactly as ĉi, ẑi and t̂i, respectively.

Loss Function
Our model not only predicts the action category but also re-
fines the proposal’s temporal boundary via regression. We
use a multi-task loss function to train our autoencoder, ac-
tion classifier, completeness classifier and boundary regres-
sor. For pi, the multi-task loss can be defined by

L =
∑
i

Lcls (ci, ĉi) + λ1
∑
i

Lreg

(
ti, t̂i

)
+ λ2

∑
i

Lcom (zi, ẑi) + Lrec,
(15)

where ci is the ground truth action label of the i-th proposal,
zi is the completeness label and ti is the start and end time
of the action which is closest to the pi. The classification
loss Lcls is the cross-entropy loss. The regression loss Lreg

is the smooth L1 loss. The completeness loss Lcom is the
hinge loss. In addition, we do not consider the completeness
of the background proposals. In all experiments, we set λ1 =
λ2 = 0.5.

Inference
For pi, we can obtain the classification scores {sclsi,m}Cm=1 =

{ĉi,m}Cm=1 by removing the score of the background cat-
egory. Then we get the corresponding completeness scores
{scomi,m }Cm=1 = exp({ẑi,m}Cm=1). The two sets of scores are
fused to obtain the final scores by element-wise multipli-
cation. Concretely, for each proposal, the final confidence
score of category m is computed as

sfinali,m = sclsi,m × scomi,m . (16)

Moreover, we fuse the predictions including the final con-
fidence scores and the regressed boundaries from the RGB
and optical flow streams. With the scores and boundaries,
we then use Non-Maximum Suppression (NMS) to obtain
the final predicted temporal proposals for each action cate-
gory separately.

Experiments
Datasets. The THUMOS14 (Jiang et al. 2014) dataset
provides temporal annotations for 20 action categories.
The videos of verification, background and test sets are
untrimmed. Following the common setting in THUMOS14,
we apply 200 videos (including 3,007 action instances) in
the validation set for training and conduct evaluation on
the 213 annotated videos (including 3,358 action instances)
from the test set. ActivityNet v1.3 (Heilbron et al. 2015) is

Method RGB Flow Fusion #Params
Baseline 44.58 51.42 53.50 10.1M

+ MLP1 46.73 52.15 54.70 11.7M
+ MLP2 46.31 52.70 55.09 11.7M
+ D-Net 47.28 55.10 57.02 11.7M

Table 1: Ablation study on the effectiveness of the disen-
tanglement network (D-Net). The context-based aggregation
network (A-Net) is taken as a strong baseline. MLP1 denotes
a shared MLP replacing D-Net. MLP2 denotes two different
MLPs replacing D-Net. The mAP of tIoU@0.5 are reported
on the THUMOS14 test set.

Cls. Loc. RGB Flow Fusion
Fcls Floc 47.28 55.10 57.02
Fcls Fcls 40.26 44.85 47.16
Floc Floc 17.02 23.57 25.53
Floc Fcls 14.81 17.89 21.26

Table 2: Ablation study on whether we successfully disen-
tangle the classification and localization features. “Cls.” and
“Loc.” in the first row denote the classification task and lo-
calization task, respectively. Fcls and Floc denote the disen-
tangled classification features and localization features, re-
spectively. The mAP of tIoU@0.5 are reported on the THU-
MOS14 test set.

currently the largest dataset of action analysis in videos, in-
cluding 20,000 Youtube videos with 200 action categories.
The training set contains about 10,000 untrimmed videos.
Both the validation set and the test set contain about 5,000
untrimmed videos. On average, each video has 1.5 action
instances. Following the standard practice, we train our
method on the training set and test it on the validation set.

Evaluation Metric. We evaluate the performance of our
model using mean average precision (mAP) values at dif-
ferent tIoU thresholds. On THUMOS14, the tIoU thresholds
are chosen from {0.3, 0.4, 0.5, 0.6, 0.7}. On ActivityNet
v1.3, the tIoU thresholds are from {0.5, 0.75, 0.95}.

Implementation Details. The interval between snippets
is set to 16 frames. The I3D network (Carreira and Zis-
serman 2017) is used to extract snippet-level features.
BSN (Lin et al. 2018) is responsible for generating pro-
posals. The ratio of fusing the RGB and optical flow pre-
dictions is 5:6. The video-level classification results gener-
ated by UntrimmedNet (Wang et al. 2017) as an common
practice (Zeng et al. 2019; Su et al. 2021; Qing et al. 2021)
improves the performance. Moreover, we appropriately add
some incomplete proposals as positive samples for classi-
fication to help our disentanglement network find the most
discriminative parts.

Ablation Study
In order to explore the effectiveness of our disentanglement
network and how disentangled features are better than orig-
inal features, we conducted in-depth ablation experiments.

3648



Cls. Loc. RGB Flow Fusion
Fpro Fpro 44.58 51.42 53.50
Fpro Floc 46.85 54.84 56.76
Fcls Fpro 44.99 51.47 53.72
Fcls Floc 47.28 55.10 57.02

Table 3: Ablation study on advantages of the disentangled
features over the original features. Fpro denotes the original
proposal-level features. The mAP of tIoU@0.5 are reported
on the THUMOS14 test set.
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Figure 3: The visualization of frames concerned by the orig-
inal features (the orange lines) and our disentangled local-
ization features (the red lines) on the THUMOS14 test set.
The original features focus on the background frames (top)
useful for classification and the most discriminative frames
(bottom). Nevertheless, Our disentangled localization fea-
tures focus the frames at the start and end of the action.

All results are reported on THUMOS14.
Sub-networks. The direct use of max-pooling to aggre-

gate disentangled features will blur features and cause great
damage to the process of disentanglement. Compared with
max-pooling, the context-based aggregation network (A-
Net) can better aggregate disentangled features through a
query-and-retrieval procedure. Therefore, we take it as a
strong baseline to validate the effectiveness of our disentan-
glement network. The results are shown in Table 1.

Based on the context-based aggregation network, our dis-
entanglement network improves 2.70% on the RGB stream
and 3.68% on the optical flow stream at tIoU 0.5. In addi-
tion, the performance after fusion is improved by 3.52%.

The model size of our model is 11.7M. Specially, the
context-based aggregation network has 10.1M parameters
and the disentanglement network only has 1.6M parameters.
Although the additional number of parameters brought by
the disentanglement network is quite small, for a fair com-
parison, we still add some MLPs to the context-based aggre-
gation network to fill up the gap. Table 1 reports the results.

Method RGB Flow Fusion
Random vectors 45.05 53.94 56.00
Only common 46.64 51.70 54.26
W/o common 44.75 53.20 55.75
Ours 47.28 55.10 57.02

Table 4: Ablation study on alternative design choices. The
mAP of tIoU@0.5 are reported on the THUMOS14 test set.

MLP1 denotes we add an MLP for both classification and
localization branches. MLP2 means we add two different
MLPs for classification and localization branches, respec-
tively. In both cases, the performance improvement of MLP
is far less than that of our disentanglement network.

Several conclusions can be drawn from this experiment.
(1) The disentanglement of classification and localization
representations via the disentanglement network benefits
TAL. (2) The performance improvement of our disentangle-
ment network is not caused by a deeper or larger network.
(3) Simply using two MLPs to obtain different representa-
tions for classification and localizations is not as effective as
our disentanglement network.

Successful Disentanglement. To explore whether we
successfully disentangle the classification and localization
features, we regroup the tasks and features in testing. Ta-
ble 2 reports the results. When the disentangled localization
features are used for the classification task, the performance
drops a lot. It indicates the disentangled localization features
do not focus on the most discriminative parts.

When the disentangled classification features are used
for the localization task, the performance does not drop so
much. Therefore, up to a certain extent, the disentangled
classification features can handle the localization task. This
may also be the reason why previous work using shared I3D
features suitable for classification can work on classification
and localization tasks. Meanwhile, it also indicates that the
disentangled classification features are indeed not the most
suitable for the localization task.

Advantages of Disentangled Features. Prior approaches
perform classification and localization tasks on the shared
proposal-level features. In order to explore how the disen-
tangled features are better than the original features, we add
classification and localization branches based on the original
features. These branches are independent of our network.
Then we combine the results of the two new branches and
our disentangled branches. The results are shown in Table 3.

Compared with the original features, the advantages of
our disentangled classification features are not obvious. The
reason is that the original I3D features are extracted with the
classification network.

However, in the localization task, our disentangled local-
ization features have obvious advantages compared with the
original features. In both two cases, it brings 3.26% and
3.30% improvements on tIoU 0.5, respectively. This again
verifies that our disentangled localization features are more
suitable for the localization task.

Design Choices. We experiment with the design choices
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Method THUMOS14 ActivityNet v1.3
0.3 0.4 0.5 0.6 0.7 Avg. 0.5 0.75 0.95 Avg.

BSN (Lin et al. 2018) 53.5 45.0 36.9 28.4 20.0 36.8 46.45 29.96 8.02 30.03
TAL-Net (Chao et al. 2018) 53.2 48.5 42.8 33.8 20.8 39.8 38.23 18.30 1.30 20.22
P-GCN (Zeng et al. 2019) 63.6 57.8 49.1 — — — 48.26 33.16 3.27 31.11
GTAN (Long et al. 2019) 57.8 47.2 38.8 — — — 52.61 34.14 8.91 34.31
MGG (Liu et al. 2019) 53.9 46.8 37.4 29.5 21.3 37.8 — — — —
BMN (Lin et al. 2019) 56.0 47.4 38.8 29.7 20.5 38.5 50.07 34.78 8.29 33.85
Li et al. (Li et al. 2020) 57.1 51.6 38.6 28.9 17.0 38.6 — — — —
G-TAD (Xu et al. 2020) 54.5 47.6 40.2 30.8 23.4 39.3 50.36 34.60 9.02 34.09
BU-MR (Zhao et al. 2020) 53.9 50.7 45.4 38.0 28.5 43.3 43.47 33.91 9.21 30.12
BSN++ (Su et al. 2021) 59.9 49.5 41.3 31.9 22.8 41.1 51.27 35.70 8.33 34.88
TCANet (Qing et al. 2021) 60.6 53.2 44.6 36.8 26.7 44.4 51.91 34.92 7.46 34.43
Lin et al. (Lin et al. 2021) 67.3 62.4 55.5 43.7 31.1 52.0 52.40 35.30 6.50 34.40
ContextLoc (Zhu et al. 2021) 68.3 63.8 54.3 41.8 26.2 50.9 56.01 35.19 3.55 34.23
MUSES (Liu et al. 2021) 68.9 64.0 56.9 46.3 31.0 53.4 50.02 34.97 6.57 33.99
Ours 72.1 65.9 57.0 44.2 28.5 53.5 58.14 36.30 6.16 35.24

Table 5: Action localization results on THUMOS14 and ActivityNet v1.3. On the THUMOS14 test set, the mAP (%) at different
tIoU thresholds and the average mAP of IoU thresholds from 0.3 to 0.7 are reported. On the ActivityNet v1.3 validation set, the
mAP (%) at different tIoU thresholds and the average mAP of IoU thresholds from 0.5 to 0.95 are reported. Bold fonts indicate
the best performance.

Method 0.5 0.75 0.95 Average
TCANet [BSN] 51.91 34.92 7.46 34.43
Ours [BSN] 58.14 36.30 6.16 35.24
TCANet [BMN] 54.33 39.13 8.41 37.56
Ours [BMN] 61.94 39.51 6.58 38.45

Table 6: Results on the ActivityNet v1.3 validation set. For
fair comparison, we combine proposals with the scores of
BMN (Lin et al. 2019).

and report the results in Tab. 4. (1) Comparing “random vec-
tors” and “ours” indicates replacing zero vectors with ran-
dom vectors degrades the performance. The reason might be
that random vectors not only remove information (like zero
vectors) but also bring noise. (2) Comparing “only common”
and “ours” indicates using only the common hidden vari-
ables degrades the performance. It verifies the necessity of
feature disentanglement. (3) Comparing “w/o common” and
“ours” indicates not having the common hidden variables
also degrades the performance. It verifies the importance
of modeling the common features in addition to the unique
classification features and the unique localization features.

More Visualization Results about Advantages. Quanti-
tative experiments (Table 3) show our disentangled localiza-
tion features are better than the original features. In order to
explain it better, we perform more visualizations.

In the action “billiards”, the original features focus on
the background frame. But our disentangled localization fea-
tures can accurately focus on the start and end frames.

In the action “basketball dunk”, the original features focus
on the most discriminative frames. In contrast, our disentan-
gled localization features focus on the start and end frames.
The above two examples once again illustrate the advantages

of our disentangled localization features. More qualitative
results can be found in the supplementary material.

Comparison with State-of-the-Art Methods
This section will compare the proposed network with state-
of-the-art methods on THUMOS14 and ActivityNet v1.3.

THUMOS14. We compare our model with the state-of-
the-art methods on THUMOS14 in Table 5. At tIoU 0.3, our
model outperforms the previously best method MUSES (Liu
et al. 2021) by 3.2% absolute improvement. At tIoU 0.5, our
model achieves the best performance. This demonstrates the
benefit of finding the appropriate features for the localization
and classification tasks.

ActivityNet v1.3. Table 5 compares our model with
other methods on ActivityNet v1.3. Our model outperforms
all other methods on average mAP for tIoU thresholds
{0.5:0.05:0.95}. At tIoU 0.5, our model reaches an mAP of
58.14% which is 2.13% higher than the current best 56.01%
achieved by ContextLoc (Zhu et al. 2021).

TCANet (Qing et al. 2021) combines proposals with the
scores of BMN (Lin et al. 2019) for better performance. For
fair comparison, we additionally conduct experiments with
the same strategy on ActivityNet v1.3. Table 6 shows our
model still has obvious advantages.

Conclusion
This paper introduces a novel disentanglement network to
solve TAL. It disentangles features that are more suitable for
classification and localization tasks from the original fea-
tures. Ablation experiments under controlled settings indi-
cate that (1) our model succeeds in disentanglement and (2)
our model indeed disentangles features that are more suit-
able for the localization task compared to the original fea-
tures. Results on two benchmark datasets demonstrate that
our model outperforms state-of-the-art TAL methods.
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