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Abstract

Symmetry and dominance breaking can be crucial for solv-
ing hard combinatorial search and optimisation problems, but
the correctness of these techniques sometimes relies on sub-
tle arguments. For this reason, it is desirable to produce effi-
cient, machine-verifiable certificates that solutions have been
computed correctly. Building on the cutting planes proof sys-
tem, we develop a certification method for optimisation prob-
lems in which symmetry and dominance breaking are easily
expressible. Our experimental evaluation demonstrates that
we can efficiently verify fully general symmetry breaking in
Boolean satisfiability (SAT) solving, thus providing, for the
first time, a unified method to certify a range of advanced SAT
techniques that also includes XOR and cardinality reasoning.
In addition, we apply our method to maximum clique solving
and constraint programming as a proof of concept that the
approach applies to a wider range of combinatorial problems.

1 Introduction
Symmetries pose a challenge when solving hard combinato-
rial problems. For example, consider the Crystal Maze puz-
zle1 shown in Figure 1, which is often used in introductory
constraint modelling courses. A human modeller might no-
tice that the puzzle is the same under a vertical mirror sym-
metry, and could introduce the constraint A < G to elim-
inate this. Or, they may notice a horizontal mirror symme-
try, which could be broken with A < B. Alternatively, they
might spot that the values are symmetrical, and that we can
interchange 1 and 8, 2 and 7, and so on; this can be elim-
inated by saying that A ≤ 4. In each case a constraint is
being added that preserves satisfiability overall, but that re-
stricts a solver to finding (ideally) just one witness from each
equivalence class of solutions—the hope is that this will im-
prove solver performance. However, although we may be
reasonably sure that any of these three constraints is cor-
rect individually, are combinations of these constraints valid
simultaneously? What if we had said F < C instead of
A < B? And what if we could use numbers more than
once? Getting symmetry elimination constraints right can be
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1https://theconversation.com/what-problems-will-ai-solve-in-
future-an-old-british-gameshow-can-help-explain-49080

error-prone even for experienced modellers, and when deal-
ing with larger problems with many constraints and inter-
acting symmetries it can be hard to tell whether an instance
is genuinely unsatisfiable, or was made so by an incorrect
symmetry constraint.

Despite these difficulties, symmetry elimination using
both manual and automatic techniques has been key to
many successes across modern combinatorial optimisation
paradigms such as constraint programming (CP) (Garcia de
la Banda et al. 2014), Boolean satisfiability (SAT) (Biere
et al. 2021), and mixed-integer programming (MIP) (Achter-
berg and Wunderling 2013). As these optimisation tech-
nologies are increasingly being used for high-value and
life-affecting decision-making processes, it becomes vital
that we can trust their outputs—and unfortunately, cur-
rent solvers do not always produce the correct answer
(Brummayer, Lonsing, and Biere 2010; Cook et al. 2013;
Akgün et al. 2018; Gillard, Schaus, and Deville 2019). The
most promising way to address this problem appears to
be to use certification, or proof logging, where a solver
must produce an efficiently machine-verifiable certificate
that the solution given is correct (Alkassar et al. 2011;
McConnell et al. 2011). This approach has been success-
fully used in the SAT community, with numerous proof
logging formats such as RUP (Goldberg and Novikov
2003), TraceCheck (Biere 2006), DRAT (Heule, Hunt Jr.,
and Wetzler 2013a,b; Wetzler, Heule, and Hunt Jr. 2014),
GRIT (Cruz-Filipe, Marques-Silva, and Schneider-Kamp
2017), and LRAT (Cruz-Filipe et al. 2017). However, cur-
rently used methods work only for decision problems, and
do not support the full range of SAT solving techniques,
let alone CP and MIP solving. As a case in point, there is
no efficient proof logging for symmetry breaking, except
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Figure 1: The Crystal Maze puzzle. Place numbers 1 to 8 in
the circles, with every circle getting a different number, so
that adjacent circles do not have consecutive numbers.
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for limited cases with small symmetries which can interact
only in simple ways (Heule, Hunt Jr., and Wetzler 2015).
Tchinda and Djamégni (2020) recently proposed a proof
logging method DSRUP for symmetric learning of variants
of derived clauses, but this format does not support sym-
metry breaking (in the sense just discussed) and is also in-
herently unable to support pre- and inprocessing techniques,
which are crucial in state-of-the-art SAT solvers.

In this work, we develop a proof logging method for opti-
misation problems, where we are given a formula F and an
objective function f , that can deal with dominance, a gener-
alization of symmetry. Dominance breaking starts from the
observation that we can strengthen F by imposing a con-
straint C if every solution of F that does not satisfy C
is dominated by another solution of F . This technique is
used in many fields of combinatorial optimisation (Walsh
2006, 2012; Gent, Petrie, and Puget 2006; McCreesh and
Prosser 2016; Jouglet and Carlier 2011; Gebser, Kamin-
ski, and Schaub 2011; Bulhões, Sadykov, and Uchoa 2018;
Hoogeboom et al. 2020; Baptiste and Pape 1997; Demeule-
meester and Herroelen 2002). The core idea of our method
is to present an explicit construction of the dominating solu-
tion, so that a verifier can check that this construction strictly
improves the objective value and preserves satisfaction of F .
This constructed solution might itself be dominated, and
hence not satisfy C, but since the objective value decreases
with every application, the process must eventually termi-
nate. Importantly, verification does not require construction
of an assignment satisfying C, and can be performed ef-
ficiently even when multiple constraints are to be added;
this resolves a practical issue with earlier approaches like
(Heule, Hunt Jr., and Wetzler 2015), which struggle with
large or overlapping symmetries. Following preliminaries in
Section 2, we describe this method in full detail in Section 3.

We have developed a proof format and verifier on top
of VeriPB (Elffers et al. 2020; Gocht and Nordström 2021;
Gocht, McCreesh, and Nordström 2020; Gocht et al. 2020).
The pseudo-Boolean constraints and cutting planes proof
system (Cook, Coullard, and Turán 1987) used by VeriPB
are convenient to express and reason with dominance in-
equalities, and moreover also make it possible to cer-
tify XOR and cardinality reasoning (Gocht and Nordström
2021), two other advanced techniques which previous SAT
proof logging methods have not been able to support effi-
ciently. In Section 4, we demonstrate that our new verifier
can efficiently check automated static symmetry breaking in
SAT, manual static symmetry breaking in CP, and automated
dynamic dominance handling in maximum clique solving.
While the latter two applications are proofs of concept, for
static symmetry breaking we show in full generality, and
for the first time, that proof logging is practical by running
experiments on SAT competition benchmarks. We conclude
the paper with some brief remarks in Section 5.

2 Preliminaries
Let us briefly review some standard material, referring the
reader to, e.g., Buss and Nordström (2021) for more details.
A literal ` over a Boolean variable x is x itself or its negation
x = 1− x, where variables take values 0 (false) or 1 (true).

A pseudo-Boolean (PB) constraint is a 0–1 linear inequality

C
.
=
∑
iai`i ≥ A , (1)

where ai and A are integers (and .
= denotes syntactic equal-

ity). We can assume without loss of generality that PB con-
straints are normalized; i.e., that all literals `i are over dis-
tinct variables and that the coefficients ai and the degree (of
falsity) A are non-negative, but most of the time we will not
need this. Instead, we will write PB constraints in more re-
laxed form as

∑
i ai`i ≥ A +

∑
j bj`j or

∑
i ai`i ≤ A +∑

j bj`j when convenient, or even use equality
∑
i ai`i = A

as syntactic sugar for the pair of inequalities
∑
i ai`i ≥ A

and
∑
i−ai`i ≥ −A, assuming that all constraints are im-

plicitly normalized if needed. The negation ¬C of the con-
straint C in (1) is

¬C .
=
∑
i − ai`i ≥ −A+ 1 . (2)

A pseudo-Boolean formula is a conjunction F .
=
∧
j Cj

of PB constraints, which we can also think of as the set⋃
j{Cj} of constraints in the formula, choosing whichever

viewpoint seems most convenient. Note that a (disjunctive)
clause `1 ∨ · · · ∨ `k is equivalent to the PB constraint
`1 + · · ·+ `k ≥ 1, so formulas in conjunctive normal form
(CNF) are special cases of PB formulas.

A (partial) assignment is a (partial) function from vari-
ables to {0, 1}; a substitution can also map variables to lit-
erals. We extend an assignment or substitution ρ from vari-
ables to literals in the natural way by respecting the mean-
ing of negation, and for literals ` over variables x not in the
domain of ρ, denoted x 6∈ dom(ρ), we use the convention
ρ(`) = `. (That is, we can consider all assignments and sub-
stitution to be total, but to be the identity outside of their
specified domains. Strictly speaking, we also require that all
substitutions be defined on the truth constants {0, 1} and be
the identity on these constants.) We sometimes write x 7→ b
when ρ(x) = b, for b a literal or truth value.

We write ρ ◦ ω to denote the composed substitution re-
sulting from applying first ω and then ρ, i.e., ρ ◦ ω(x) =
ρ(ω(x)). As an example, for ω = {x1 7→ 0, x3 7→ x4, x4 7→
x3} and ρ = {x1 7→ 1, x2 7→ 1, x3 7→ 0, x4 7→ 0} we have
ρ ◦ ω = {x1 7→ 0, x2 7→ 1, x3 7→ 1, x4 7→ 0}. Applying ω
to a constraint C as in (1) yields

C�ω
.
=
∑
iaiω(`i) ≥ A , (3)

substituting literals or values as specified by ω. For a for-
mula F we define F�ω

.
=
∧
j Cj�ω .

Since we will sometimes have to make fairly elaborate use
of substitutions, let us discuss some further notational con-
ventions. IfF is a formula over variables ~x = {x1, . . . , xm},
we can write F (~x) when we want to stress the set of vari-
ables over which F is defined. For a substitution ω with
domain (contained in) ~x, the notation F

(
~x�ω
)

is under-
stood to be a synonym of F�ω . For the same formula F
and ~y = {y1, . . . , ym}, the notation F (~y) is syntactic sugar
for F�ω with ω denoting the substitution (implicitly) de-
fined by ω(xi) = yi for i = 1, . . . , n. Finally, for a formula
G = G(~x, ~y) over ~x∪~y and substitutions α and β defined on
~z = {z1, . . . , zn} (either of which could be the identity), the
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notation G(~z�α, ~z�β) should be understood as G�ω for ω de-
fined by ω(xi) = α(zi) and ω(yi) = β(zi) for i = 1, . . . , n.

The (normalized) constraint C in (1) is satisfied by ρ if∑
ρ(`i)=1 ai ≥ A. A PB formula F is satisfied by ρ if all

constraints in it are, in which case it is satisfiable. If there is
no satisfying assignment, F is unsatisfiable. Two formulas
are equisatisfiable if they are both satisfiable or both unsat-
isfiable. We also consider optimisation problems, where in
addition to F we are given an integer linear objective func-
tion f

.
=
∑
i wi`i and the task is to find an assignment

that satisfies F and minimizes f . (To deal with maximiza-
tion problems we can just negate the objective function.)

Cutting planes (Cook, Coullard, and Turán 1987) is a
method for iteratively deriving constraints C from a pseudo-
Boolean formula F . We write F ` C for any constraint C
derivable as follows. Any axiom constraint C ∈ F is triv-
ially derivable, as is any literal axiom ` ≥ 0. If F ` C
and F ` D, then any positive integer linear combination
of these constraints is derivable. Finally, from a constraint
in normalized form

∑
i ai`i ≥ A we can use division by a

positive integer d to derive
∑
idai/de`i ≥ dA/de, dividing

and rounding up the degree and coefficients. For a set of PB
constraints F ′ we write F ` F ′ if F ` C for all C ∈ F ′.

For PB formulas F , F ′ and constraints C, C ′, we say that
F implies or models C, denoted F |= C, if any assignment
satisfying F also satisfies C, and write F |= F ′ if F |= C ′

for all C ′ ∈ F ′. It is easy to see that if F ` F ′ then F |= F ′,
and so F and F ∧ F ′ are equisatisfiable. A constraint C is
said to literal-axiom-imply another constraint C ′ if C ′ can
be derived from C by addition of literal axioms ` ≥ 0.

A constraint C unit propagates the literal ` under ρ if
C�ρ cannot be satisfied unless ` 7→ 1. During unit propa-
gation on F under ρ, ρ is extended iteratively by any propa-
gated literals until an assignment ρ′ is reached under which
no constraint C ∈ F is propagating, or under which some
constraint C would propagate a literal had it not already
been assigned to the opposite value. The latter scenario is
referred to as a conflict, since ρ′ violates the constraint C
in this case, and ρ′ is called a conflicting assignment. Using
the generalization of (Goldberg and Novikov 2003) in (Elf-
fers et al. 2020), we say that F implies C by reverse unit
propagation (RUP), and that C is a RUP constraint with
respect to F , if F ∧ ¬C unit propagates to conflict under
the empty assignment. If C is a RUP constraint with respect
to F , then it can be proven that there is also a derivation
F ` C. More generally, it can be shown that F ` C if and
only if F ∧¬C ` ⊥, where⊥ is a shorthand for the trivially
false constraint 0 ≥ 1. Therefore, we will extend the nota-
tion and write F ` C also when C is derivable from F by
RUP or by contradiction. It is worth noting here again that,
as shown in (2), the negation of any PB constraint can also
be expressed syntactically as a PB constraint—this fact will
be convenient in what follows.

3 A Proof System for Dominance Breaking
We proceed to develop our formal proof system for verifying
dominance breaking, which we have implemented on top of
the version of VeriPB in (Gocht and Nordström 2021). We

remark that for applications it is absolutely crucial not only
that the proof system be sound, but that all proofs be effi-
ciently machine-verifiable. There are significant challenges
involved in making proof logging and verification efficient,
but in this section we mostly ignore these aspects of our
work and focus on the theoretical underpinnings.

Our foundation is the cutting planes proof system de-
scribed in Section 2. However, in a proof in our system
for (F, f), where f is a linear objective function to be
minimized under the pseudo-Boolean formula F (or where
f

.
= 0 for decision problems), we also allow strength-

ening F by adding constraints C that are not implied by
the formula. Pragmatically, adding C should be in order as
long as we keep some optimal solution, i.e., a satisfying
assignment to F that minimizes f , which we will refer to
as an f -minimal solution of F . We will formalize this idea
by allowing the use of an additional pseudo-Boolean for-
mula O�(~u,~v) that, together with a sequence of variables ~z,
defines a relation α � β to hold between assignments α
and β if O�(~z�α, ~z�β) evaluates to true. We require (a cut-
ting planes proof) that O� is such that this defines a pre-
order, i.e., a reflexive and transitive relation. Adding new
constraints C will be valid as long as we guarantee to pre-
serve some f -minimal solution that is also minimal with re-
spect to �. In other words, � can be combined with f to
define a preorder �f on assignments by

α �f β if α � β and f�α ≤ f�β , (4)

and we require that all derivation steps in the proof should
preserve some solution that is minimal with respect to �f .
The preorder defined by O�(~u,~v) will only become impor-
tant once we introduce our new dominance-based strength-
ening rule later in this section. For simplicity, up until that
point the reader can assume that the pseudo-Boolean for-
mula is O>

.
= ∅ inducing the trivial preorder relating all

assignments, though all proofs presented below work in full
generality for the orders that will be introduced later.

A proof for (F, f) in our proof system consists of a se-
quence of proof configurations (C ,D ,O�, ~z, v), where

• C is a set of pseudo-Boolean core constraints;
• D is another set of pseudo-Boolean derived constraints;
• O� is a PB formula encoding a preorder and ~z a set of

literals on which this preorder will be applied; and
• v is the best value found so far for f .

The initial configuration is (F, ∅,O>, ∅,∞). The distinction
between C and D is only relevant when a nontrivial preorder
is used; we will elaborate on this when discussing domi-
nance. The intended semantics of f and v is that if v < ∞,
then there exists a solution α satisfying F such that f�α ≤ v,
and in this case the proof can make use of the constraint
f ≤ v − 1 in the search for better solutions. As long as
the optimal solution has not been found, it should hold that
f -minimal solutions of C ∪D have the same objective value
as f -minimal solutions of F . The precise relation is formal-
ized in the notion of valid configurations as defined next.

Definition 1. A configuration (C ,D ,O�, ~z, v) is (F, f)-
valid if the following conditions hold:
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1. If v <∞, then there is a total assignment ρ satisfying F
such that f�ρ ≤ v.

2. For every v′ < v, it holds that the sets F ∪ {f ≤ v′} and
C ∪ {f ≤ v′} are equisatisfiable.

3. For every total assignment ρ satisfying the con-
straints C ∪ {f ≤ v − 1}, there exists a total assignment
ρ′ �f ρ satisfying C ∪D ∪ {f ≤ v − 1}.

We will show that (F, f)-validity is an invariant of our
proof system, i.e., that it is preserved by all derivation rules.
Note that the two last items together imply that if the con-
figuration (C ,D ,O�, ~z, v) is such that v is not yet the value
of an optimal solution, then f -minimal solutions of F and
of C ∪D have the same objective value, just as desired.

A proof in our proof system ends when the configuration
(C ,D ,O�, ~z, v∗) is such that C ∪D contains contradiction
⊥ .

= 0 ≥ 1. In that case, either v∗ = ∞ and F is unsatis-
fiable, or v∗ is the optimal value (or v∗ = 0 for a satisfiable
decision problem). We state this as a formal theorem (but
due to space constraints, proofs of all statements in this sec-
tion can be found in (Bogaerts et al. 2022)).

Theorem 2. Let F be a pseudo-Boolean formula and f an
objective function. If (C ,D ,O�, ~z, v∗) is an (F, f)-valid
configuration with {0 ≥ 1} ⊆ C ∪D , then

• F is unsatisfiable if and only if v∗ =∞; and
• if F is satisfiable, then there is an f -minimal solution α

of F with objective value f�α = v∗.

We are now ready to give a formal description of the rules
in our proof system.

Implicational Derivation Rule

If we can exhibit a derivation of the pseudo-Boolean con-
straint C from C ∪ D ∪ {f ≤ v − 1} in our (slightly ex-
tended) version of cutting planes as described in Section 2
(i.e., in formal notation, if C∪D∪{f ≤ v−1} ` C), then we
can go from the configuration (C ,D ,O�, ~z, v) to the config-
uration (C ,D ∪ {C},O�, ~z, v) by the implicational deriva-
tion rule. By the soundness of the cutting planes proof sys-
tem, this means that C ∪ D ∪ {f ≤ v − 1} |= C, and so
(F, f)-validity is preserved, but, more importantly, the cut-
ting planes derivation provides a simple and efficient way
for an algorithm to verify that this implication holds. This is
a key feature of all rules in our proof system—not only are
they sound, but the soundness of every rule application can
be efficiently verified by checking a simple, syntactic object.

When doing proof logging, the solver would need to spec-
ify by which sequence of cutting planes derivation rules C
was obtained. For practical purposes, though, it greatly sim-
plifies matters that in many cases the verifier can figure out
the required proof details automatically, meaning that the
proof logger can just state the desired constraint without any
further information. One important example of this is when
C is a reverse unit propagation (RUP) constraint with re-
spect to C ∪ D ∪ {f ≤ v − 1}. Another case is when C is
literal-axiom-implied by some other constraint.

Objective Bound Update Rule
The objective bound update rule allows improving the esti-
mate of what value can be achieved for the objective func-
tion f . We can go from (C ,D ,O�, ~z, v) to (C ,D ,O�, ~z, v′)
if we know an assignment α satisfying C such that f�α =
v′ < v. When actually doing proof logging, the solver would
specify such an assignment α, which would then be checked
by the proof verifier (in our case VeriPB).

To argue that this rule preserves (F, f)-validity, we note
that the last two items are trivially satisfied (they are weaker
after applying the rule than before). The first item is satisfied
since item 2 guarantees the existence of an α′ satisfying F
with an objective value that is at least as good as v′. Note
that we have no guarantee that α′ will be a solution to F .
However, although we will not emphasize this point here,
it follows from our formal treatment below that the proof
system guarantees that such an f -minimal solution α′ to the
original formula F can be efficiently reconstructed from the
proof (where efficiency is measured in the size of the proof).

Redundance-Based Strengthening Rule
The redundance-based strengthening rule allows deriving a
constraint C from C ∪D even if C is not implied, provided
that it can be shown that any assignment α that satisfies
C ∪D can be transformed into another assignment α′ �f α
that satisfies both C ∪D and C (in case O� = O>, the con-
dition α′ �f α just means that f�α′ ≤ f�α). This rule is
borrowed from (Gocht and Nordström 2021), which in turn
relies heavily on (Heule, Kiesl, and Biere 2017; Buss and
Thapen 2019). We extend this rule here from decision prob-
lems to optimization problems in the natural way.

Formally, we say that C can be derived from
(C ,D ,O�, ~z, v) by redundance-based strengthening, or just
redundance for brevity, if there is a substitution ω (which we
will refer to as the witness) such that

C ∪D ∪ {¬C} `
(C ∪D ∪ C)�ω ∪ {f�ω ≤ f} ∪ O�(~z�ω, ~z) .

(5)

Intuitively, (5) says that if some assignment α satisfies C∪D
but falsifies C, then α′ = α ◦ ω still satisfies C ∪ D and
also satisfies C. In addition, the condition f�ω ≤ f en-
sures that α ◦ ω achieves an objective function value that
is at least as good as that for α. This together with the con-
straints O�(~z�ω, ~z) guarantees that α′ �f α. For proof log-
ging purposes, the witness ω as well as any non-immediate
cutting planes derivations of constraints on the right-hand
side of (5) would have to be specified, but, e.g., all RUP
constraints or literal-axiom-implied constraints can be left
to the verifier to check.
Proposition 3. If C is derivable from an (F, f)-valid con-
figuration (C ,D ,O�, ~z, v) by redundance-based strength-
ening, then (C ,D ∪ {C},O�, ~z, v) is (F, f)-valid as well.

Deletion Rule
We also need to be able to delete previously derived con-
straints. From a configuration (C ,D ,O�, ~z, v) we can tran-
sition to (C ′,D ′,O�, ~z, v) using the deletion rule if
1. D ′ ⊆ D and
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2. C ′ = C or C ′ = C \ {C} for some constraint C deriv-
able via the redundance rule from (C ′, ∅,O�, ~z, v).

This last condition above perhaps seems slightly odd, but
it is there since deleting arbitrary constraints could vio-
late (F, f)-validity in two different ways. Firstly, it would
allow finding better-than-optimal solutions. Secondly, and
perhaps surprisingly, in combination with the dominance-
based strengthening rule, which we will discuss below, arbi-
trary deletion is unsound, as it can turn satisfiable instances
into unsatisfiable ones. This is illustrated in Example 5 fur-
ther below.

To see that deletion preserves (F, f)-validity, it is clear
that item 1 remains satisfied by deletion, as does the direc-
tion of item 2 that claims satisfiability of C ∪ {f ≤ v′}. For
the other direction of item 2 and for item 3, intuitively the re-
dundance rule guarantees that solutions of the configuration
after deletion can be mapped to solutions of the configura-
tion before deletion that are at least as good.

An alternative to condition 2 would be to enforce the more
restrictive demand C ′ ` C . However, this would prevent the
use of some SAT preprocessing techniques such as bounded
variable elimination (Eén and Biere 2005).

Transfer Rule
Constraints can always be moved from the derived set D
to the core set C using the transfer rule, which allows a
transition from (C ,D ,O�, ~z, v) to (C ′,D ,O�, ~z, v) if C ⊆
C ′ ⊆ C ∪D . This clearly preserves (F, f)-validity.

The transfer rule together with deletion allows replacing
constraints in the original formula with stronger constraints.
For example, assume that x + y ≥ 1 is in C and that we
derive x ≥ 1. Then we can move x ≥ 1 from D to C
and then delete x + y ≥ 1. The required redundance check
{x ≥ 1,¬(x+ y ≥ 1)} ` ⊥ is immediate.

The rules discussed so far do not change O�, and so any
derivation using these rules only will operate with the triv-
ial preorder O> imposing no conditions. The proof system
defined in terms of these rules is a straightforward exten-
sion of VeriPB as developed in (Elffers et al. 2020; Gocht,
McCreesh, and Nordström 2020; Gocht et al. 2020; Gocht
and Nordström 2021) to an optimization setting. We next
discuss the main contribution of this paper, namely the new
dominance rule making use of the preorder O�.

Dominance-Based Strengthening Rule
Any preorder � induces a strict order ≺ defined by α ≺ β
if α � β and β 6� α. The relation ≺f obtained in this
way from the preorder (4) coincides with what Chu and
Stuckey (2015) call a dominance relation in the context of
constraint optimisation. Our dominance rule allows deriv-
ing a constraint C from C ∪ D even if C is not implied,
similar to the redundance rule. However, for the dominance
rule an assignment α satisfying C ∪D but falsifying C need
only to be mapped to an assignment α′ that satisfies C , but
not necessarily D or C. On the other hand, the new assign-
ment α′ should satisfy the strict inequality α′ ≺f α and
not just α′ �f α as in the redundance rule. To show that
this new dominance rule preserves (F, f)-validity, we will

prove that it is possible to construct an assignment that sat-
isfies C ∪D ∪{C} by iteratively applying the witness of the
dominance rule, in combination with (F, f)-validity of the
configuration before application of the dominance rule. As
our base case, if α′ satisfies C ∪D ∪{C}, we are done. Oth-
erwise, since α′ satisfies C , by (F, f)-validity we are guar-
anteed the existence of an assignment α′′ satisfying C ∪ D
for which α′′ ≺f α′ ≺f α holds. If α′′ still does not sat-
isfy C, we can repeat the argument. In this way, we get a
strictly decreasing sequence (with respect to ≺f ) of assign-
ments. Since the set of possible assignments is finite, this
sequence will eventually terminate.

Formally, we can derive C by dominance-based strength-
ening provided that there exists a substitution ω such that

C ∪D ∪ {¬C} `
C�ω ∪ O�(~z�ω, ~z) ∪ ¬O�(~z, ~z�ω) ∪ {f�ω ≤ f} ,

(6)

where O�(~z�ω, ~z) and ¬O�(~z, ~z�ω) together state that
α ◦ ω ≺ α for any assignment α. A minor technical problem
is that the pseudo-Boolean formula O�(~z, ~z�ω) may contain
multiple constraints, so that the negation of it is no longer a
PB formula. To get around this, we split (6) into two sepa-
rate conditions and shift ¬O�(~z, ~z�ω) to the premise of the
implication, which eliminates the negation. Thus, the for-
mal version of our dominance-based strengthening rule, or
just dominance rule for brevity, says that we can go from
(C ,D ,O�, ~z, v) to (C ,D ∪ {C},O�, ~z, v) if there is a sub-
stitution ω such that the conditions

C ∪D ∪ {¬C} ` C�ω ∪ O�(~z�ω, ~z) ∪ {f�ω ≤ f} (7a)
C ∪D ∪ {¬C} ∪ O�(~z, ~z�ω) ` ⊥ (7b)

are satisfied. Just as for the redundance rule, the witness ω
as well as any non-immediate derivations would have to be
specified in the proof log.
Proposition 4. If C is derivable from an (F, f)-valid con-
figuration (C ,D ,O�, ~z, v) by dominance-based strengthen-
ing, then (C ,D ∪ {C},O�, ~z, v) is also (F, f)-valid.

When introducing the deletion rule, we already mentioned
that deleting arbitrary constraints can be unsound in combi-
nation with dominance-based strengthening. We now illus-
trate this phenomenon.
Example 5. Consider the formula F = {p ≥ 1} with ob-
jective f .

= 0 and the configuration

(C1 = {p ≥ 1},D1 = {p ≥ 1},O�, {p},∞) , (8)

where O�(u, v) is defined as {v+u ≥ 1}. This configuration
is (F, f)-valid and C ∪D is satisfiable. If we were allowed
to delete constraints arbitrarily from C , we could derive a
configuration with C2 = ∅ and D2 = {p ≥ 1}. However,
now the dominance rule can derive C .

= p ≥ 1, using the
witness ω = {p 7→ 0}. To see that all conditions for apply-
ing dominance-based strengthening are indeed satisfied, we
notice that conditions (7a)–(7b) simplify to

∅ ∪ {p ≥ 1} ∪ {p ≥ 1} ` ∅ ∪ {p+ 1 ≥ 1} ∪ ∅ (9a)
∅ ∪ {p ≥ 1} ∪ {p ≥ 1} ∪ {0 + p ≥ 1} ` ⊥ (9b)

respectively. Both claims clearly hold, meaning that we ar-
rive at a configuration that contains both p ≥ 1 and p ≥ 1.
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Preorder Encodings
As mentioned before, O� is shorthand for a pseudo-Boolean
formula O�(~u,~v) over two sets of formal placeholder vari-
ables ~u = {u1, . . . , un} and ~v = {v1, . . . , vn} of equal size,
which should also match the size of ~z in the configuration.
To use O� in a proof, it is required to show that this formula
encodes a preorder. This is done by providing (in a proof
preamble) cutting planes derivations establishing

∅ ` O�(~u, ~u) (10a)
O�(~u,~v) ∪ O�(~v, ~w) ` O�(~u, ~w) (10b)

where (10a) formalizes reflexivity and (10b) transitivity (and
where notation like O�(~v, ~w) is shorthand for applying to
O�(~u,~v) the substitution ω that maps ui to vi and vi to wi,
as discussed in Section 2). These two conditions guarantee
that the relation � defined by α � β if O�(~z�α, ~z�β) forms
a preorder on the set of assignments.

By way of example, to encode the lexicographic order
u1u2 . . . un �lex v1v2 . . . vn, we can use a single constraint

O�lex
(~u,~v)

.
=
∑n
i=12

n−i · (vi − ui) ≥ 0 . (11)

Reflexivity is vacuously true since O�lex
(~u, ~u)

.
= 0 ≥ 0,

and transitivity also follows easily since adding O�lex
(~u,~v)

and O�lex
(~v, ~w) yields O�lex

(~u, ~w).
A potential concern with encodings such as (11) is that

coefficients can become very large as the number of vari-
ables in the order grows. It is perfectly possible to address
this by allowing order encodings using auxiliary variables in
addition to ~u and ~v. We have chosen not to develop the the-
ory for this in the current paper, however, since we feel that
it makes the exposition unnecessarily complicated without
adding anything of real significance to the scientific contri-
bution.

Order Change Rule
The final proof rule that we need is a rule for introducing
a nontrivial order, and it turns out that it can also be con-
venient to be able to use different orders at different points
in the proof. Switching orders is possible, but to maintain
soundness it is important to first clear the set D (after trans-
ferring the constraints we want to keep to C ). The reason for
this is simple: if we allow arbitrary order changes, then the
third item of (F, f)-validity would no longer hold, but when
D = ∅, it is trivially true.

Formally, provided that O�2 has been established to be
a preorder (via cutting planes proofs for (10a) and (10b)),
and provided that ~z2 is a list of variables of the size re-
quired by this order, it is allowed to go from the configura-
tion (C , ∅,O�1 , ~z1, v) to the configuration (C , ∅,O�2 , ~z2, v)
using the order change rule. As explained above, it is clear
that this rule preserves (F, f)-validity.

This concludes the presentation of our proof system. Each
rule has been shown to preserve (F, f)-validity, and the
initial configuration is clearly (F, f)-valid. Therefore, by
Theorem 2 our proof system is sound: whenever we can
derive a configuration (C ,D ,O�, ~z, v) such that C ∪ D
contains 0 ≥ 1, it holds that v is the value of f in any
f -minimal solution of F (or, for a decision problem, we

have v < ∞ precisely when F is satisfiable). As men-
tioned above, in this case the full sequence of configura-
tions (C ,D ,O�, ~z, v) together with annotations about the
derivation steps—including, in particular, any witnesses ω—
contains all information needed to efficiently reconstruct
such an f -minimal solution of F . It is also straightforward
to show that our proof system is complete: after using the
bound update rule to log an optimal solution v∗, it follows
from the implicational completeness of cutting planes that
contradiction can be derived from F ∪ {f ≤ v∗ − 1}.

4 Applications
We now exhibit three applications that have not previously
admitted efficient certification, and demonstrate that our
new method can support simple, practical proof logging in
each case. We first show that, by enhancing the BreakID
tool for SAT solving (Devriendt et al. 2016) with VeriPB
proof logging, we can cover the entire solving toolchain
when symmetries are involved. We then revisit the Crys-
tal Maze example from the introduction. Finally, we dis-
cuss how dominance-based strengthening can be used to
support vertex domination reasoning in a maximum clique
solver. All code for our implementations and experiments,
as well as data and scripts for all plots, can be found at
https://doi.org/10.5281/zenodo.6373986.

Symmetry Breaking in SAT Solvers
Symmetry handling has a long and successful history in SAT
solving, with a wide variety of techniques considered by,
e.g., Aloul, Sakallah, and Markov (2006); Benhamou and
Saı̈s (1994); Benhamou et al. (2010); Devriendt et al. (2012);
Devriendt, Bogaerts, and Bruynooghe (2017); Metin, Baarir,
and Kordon (2019); Sabharwal (2009). These techniques
were used to great effect in, e.g., the 2013 and 2016 editions
of the SAT competition,2 where the SAT+UNSAT hard com-
binatorial track and the no-limit track, respectively, were
won by solvers employing symmetry breaking. However, the
victory in 2013 can partly be explained by a small parser
bug. For reasons such as this, proof logging is now oblig-
atory in the main track of the SAT competition. While it
is hard to overemphasize the importance of this develop-
ment, it unfortunately means that symmetry breaking can
no longer be used, since there is no way of efficiently cer-
tifying the correctness of such reasoning in DRAT . We will
now explain how pseudo-Boolean reasoning with the domi-
nance rule can provide proof logging for the static symmetry
breaking techniques of Devriendt et al. (2016).

Let π be a permutation of the set of literals in a given
CNF formula F (i.e., , a bijection on the set of literals),
extended to (sets of) clauses in the obvious way. We say
that π is a symmetry of F if it commutes with negation, i.e.,
π(`) = π(`), and preserves satisfaction of F , i.e., α◦π satis-
fies F if and only if α does. A syntactic symmetry in addition
satisfies that π(F ) .

= F�π
.
= F . As is standard, we only

consider syntactic symmetries.
The most common way of breaking symmetries is by

adding lex-leader constraints (Crawford et al. 1996). We
2www.satcompetition.org
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here use �lex to denote the lexicographic order on assign-
ments induced by the sequence of variables x1, . . . , xm.
Given a set G of symmetries of F , a lex-leader constraint
is a formula ψLL such that α satisfies ψLL if and only if
α �lex α ◦π for each π ∈ G. Let {xi1 , . . . , xin} be the sup-
port of π (i.e., all variables x such that π(x) 6= x), ordered
so that ij ≤ ik if and only if j ≤ k. Then the constraints

y0 ≥ 1 (12a)
yj−1 + xij + π(xij ) ≥ 1 1 ≤ j ≤ n (12b)

yj + yj−1 ≥ 1 1 ≤ j < n (12c)

yj + π(xij ) + xij ≥ 1 1 ≤ j < n (12d)

yj + yj−1 + xij ≥ 1 1 ≤ j < n (12e)

yj + yj−1 + π(xij ) ≥ 1 1 ≤ j < n (12f)

form a lex-leader constraint for π, where each yj is a fresh
variable representing that α and α ◦ π are equal up to xij ,
and where (12b) does the actual breaking.

To derive this in our proof system, assume that we have a
configuration (C ,D ,O�, ~x, v) where assignments are com-
pared lexicographically on ~x = {x1, . . . , xm} according
to O� as in (11). Let π be a syntactic symmetry of C (i.e.,
such that C�π

.
= C ) with support contained in ~x. In this case

CLL
.
=
∑m
i=1 2

m−i · (π(xi)− xi) ≥ 0 (13)

expresses that π(~x) is greater than or equal to ~x. Noting
that SAT problems lack an objective function, we can ap-
ply the dominance rule with ω = π to derive CLL. To see
that (7a) holds, we note that ¬CLL expresses that ~x is strictly
larger than π(~x), and hence this implies O�(~x�π, ~x). Clearly,
(7b) is true as well, since its premise contains both CLL and
its negation. Since the y-variables are fresh, we can also
derive the constraints (12a) and (12c)–(12f) as explained
by Gocht and Nordström (2021). It remains to show how
to deduce the constraints (12b) from CLL.

As before, assume that the support of π is {xi1 , . . . , xin}
with ij ≤ ik if and only if j ≤ k. Note first that for all xi that
are not in the support of π, the term π(xi) − xi disappears
since π(xi) = xi and thus CLL simplifies to∑n

j=1 2
m−ij · (π(xij )− xij ) ≥ 0 , (14)

which can only hold if the term with the largest coefficient is
non-negative. It follows that CLL implies π(xi1)− xi1 ≥ 0
by reverse unit propagation (RUP), and hence can be derived
from our current configuration with the implicational rule,
also yielding the weaker constraint (12b) with j = 1.

To deal with j > 1, we define

CLL(0)
.
= CLL (15a)

CLL(k)
.
= CLL(k − 1) + 2m−ik · (12d [j = k]) (15b)

where (12d [j = k]) denotes substitution of j by k in (12d).
Simplifying CLL(k) yields∑k

i=1 2
m−iyj +

∑m
i=k+1 2

m−i · (π(xi)− xi) ≥ 0 , (16)

which, in combination with all constraints (12c), directly en-
tails (12b) with j = k. To see this, note that if yk is false,

then (12b) is trivially true for j = k + 1. On the other hand,
if yk is true, then so are all the preceding y-variables, and
the dominant term in CLL(k) becomes π(xik)− xik , which
implies (12b) for j = k analogously to the case for j = 1.

It is important to note here that the order is set once and is
the same for all symmetries π ∈ G to be broken. Since con-
straints are added only to D , dominance rule applications
for different symmetries will not interfere with each other.
Furthermore, contrary to the symmetry logging approach of
Heule, Hunt Jr., and Wetzler (2015), handling a symmetry
once is enough to guarantee complete breaking. See (Bo-
gaerts et al. 2022) for a worked-out VeriPB example of sym-
metry breaking together with explanations of how the proof
logging syntax matches rules in our proof system.

To validate our approach, we implemented VeriPB proof
logging for the symmetry breaking method in BreakID, and
modified Kissat3 to output VeriPB-proofs (since the redun-
dance rule is a generalization of the RAT rule, this required
only minor changes). We used a simpler version of the dele-
tion rule that only guarantees to prove a lower bound on the
objective value—if this lower bound is infinity, this certifies
that decision problems are unsatisfiable (see the discussion
of weak (F, f)-validity in (Bogaerts et al. 2022)).

Out of all the benchmark instances from all the SAT
competitions since 2016, we selected all instances in which
at least one symmetry was detected; there were 1089
such instances in total. We performed our experiments on
machines with dual Intel Xeon E5-2697A v4 processors
with 512GBytes RAM and solid-state drive (SSD), running
Ubuntu 20.04. We ran twenty instances in parallel on each
machine, limiting each instance to 16GBytes RAM, and
with a timeout of 5,000s for solving and 100,000s for ver-
ification.

The left plot in Figure 2 displays the performance over-
head for symmetry breaking, comparing for each instance
the running time with and without proof logging. For most
instances, the overhead is negligible (99% of instances are at
most 32% slower). The other two plots in Figure 2 display
the relationship between the time needed to generate a proof
(both for SAT and UNSAT instances) and to verify the cor-
rectness of this proof. When only considering verification of
the symmetry breaking (middle plot), 1058 instances out of
1089 could be verified, 2 timed out, and 29 terminated due to
running out of memory. 75% of the instances could be veri-
fied within 3.2 times the solving time and 95% within a fac-
tor 20. The time needed for verification is thus considerably
longer than solving time, but still practical in the majority
of cases. After symmetry breaking, 721 instances could be
solved with the SAT solver (right plot) and we could verify
671 instances, while for 33 instances verification timed out
and for 17 instances the verifier ran out of memory. Notably,
84 instances could only be solved with symmetry breaking,
out of which we could verify 81.

Symmetries in Constraint Programming
In the general setting considered in constraint programming,
we must deal with variables with larger (non-Boolean) do-

3http://fmv.jku.at/kissat/
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Figure 2: On the left, performance overhead due to proof logging symmetry breaking. In the center, performance of verifying
symmetry breaking. On the right, performance of verifying symmetry breaking and SAT solving. Points behind the vertical
dashed line indicate timeouts (left) and out of memory (right).

mains and with rich constraints supported by propagation
algorithms. One might think that a proof system based upon
Boolean variables and linear inequalities would not be suit-
able for this larger class of problem. However, Elffers et al.
(2020) showed how to use VeriPB for constraint satisfac-
tion problems by first encoding variables and constraints in
pseudo-Boolean form, and then constructing cutting planes
proofs to justify the behaviour of propagators such as alld-
ifferent. Similarly, the work we present here can also be ap-
plied to constraint satisfaction and optimisation problems.

Recall the symmetry breaking constraints proposed for
the Crystal Maze puzzle in the introduction. Given the dif-
ficulties in knowing which combinations of constraints are
valid, it would be desirable if these constraints could be in-
troduced as part of a proof, rather than taken as axioms. This
would give a modeller immediate feedback as to whether the
constraints have been chosen correctly. Our proof system is
indeed powerful enough to express all three of the examples
we presented, and we have implemented a small tool which
can write out the appropriate proof fragments; this allows
the entire Crystal Maze example to be verified with VeriPB.
Interestingly, although symmetries can be broken in differ-
ent ways in high-level CP models (including through lexi-
cographic and value precedence constraints), when we en-
code the problem in pseudo-Boolean form these differences
largely disappear, and after creating a suitable order we can
re-use the SAT techniques just discussed. So, although a full
proof-logging constraint solver does not yet exist, we can
confidently claim that symmetries no longer block this goal.

Lazy Global Domination in Maximum Clique
Gocht et al. (2020) showed how VeriPB can be used to im-
plement proof logging for a wide range of maximum clique
algorithms, observing that the cutting planes proof system
is rich enough to justify a wide range of bound and in-
ference functions used by various solvers (despite cutting
planes not knowing what a graph or clique is). However,
there is one clique-solving technique in the literature that is
not amenable to cutting planes reasoning. In order to solve
problem instances that arise from a distance-relaxed clique-
finding problem, McCreesh and Prosser (2016) enhanced

their maximum clique algorithm with a lazy global domi-
nation rule that works as follows. Suppose that the solver
has constructed a candidate clique C and is considering to
extend C by two vertices v and w, where the neighbourhood
of v excluding w is a (non-strict) superset of the neighbour-
hood of w excluding v. Then if the solver first tries v and
rejects it, there is no need to branch on w as well.

In principle, it should be possible to introduce additional
constraints justifying this kind of reasoning in advance using
redundance-based strengthening, without the need for the
full dominance breaking framework in Section 3 (with some
technicalities involving consistent orderings for tiebreak-
ing). However, due to the prohibitive cost of computing the
full vertex dominance relation in advance, McCreesh and
Prosser instead implement a form of lazy dominance detec-
tion, which only triggers following a backtrack.

To provide proof logging for this, we must instead be able
to introduce vertex dominance constraints precisely when
they are used. It is hard to see how to achieve this with the
redundance rule, but it is possible using dominance-based
strengthening: we have implemented this in the proof log-
ging maximum clique solver in (Gocht et al. 2020), as dis-
cussed in more detail in (Bogaerts et al. 2022).

5 Conclusion
In this paper, we show that the pseudo-Boolean proof log-
ging method in VeriPB (Gocht and Nordström 2021) can be
extended with a rule for dominance breaking so as to effi-
ciently certify unlimited symmetry breaking in SAT solv-
ing, even when combined with XOR and cardinality rea-
soning. A natural next question is whether our method is
strong enough to capture other techniques such as those used
for MaxSAT; several such techniques, such as the domi-
nating unit-clause rule (Niedermeier and Rossmanith 2000)
and group subsumed label elimination (Leivo, Berg, and
Järvisalo 2020), appear to be special cases of dominance,
making this a promising direction. Our work also contributes
towards extending proof logging techniques from SAT to
other combinatorial solving paradigms such as constraint
programming and dedicated graph solving algorithms.
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Tchinda, R. K.; and Djamégni, C. T. 2020. On Certifying
the UNSAT Result of Dynamic Symmetry-Handling-Based
SAT Solvers. Constraints, 25(3–4): 251–279.
Walsh, T. 2006. General Symmetry Breaking Constraints. In
Proceedings of the 12th International Conference on Prin-
ciples and Practice of Constraint Programming (CP ’06),
volume 4204 of LNCS, 650–664. Springer.
Walsh, T. 2012. Symmetry Breaking Constraints: Recent
Results. In Proceedings of the 26th AAAI Conference on
Artificial Intelligence (AAAI ’12), 2192–2198.
Wetzler, N.; Heule, M. J. H.; and Hunt Jr., W. A. 2014.
DRAT-trim: Efficient Checking and Trimming Using Ex-
pressive Clausal Proofs. In Proceedings of the 17th Inter-
natjuional Conference on Theory and Applications of Satis-
fiability Testing (SAT ’14), volume 8561 of LNCS, 422–429.
Springer.

3707


