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Abstract

We consider applications involving a large set of instances of
projecting points to polytopes. We develop an intuition guided
by theoretical and empirical analysis to show that when these
instances follow certain structures, a large majority of the
projections lie on vertices of the polytopes. To do these pro-
jections efficiently we derive a vertex-oriented incremental
algorithm to project a point onto any arbitrary polytope, as well
as give specific algorithms to cater to simplex projection and
polytopes where the unit box is cut by planes. Such settings
are especially useful in web-scale applications such as optimal
matching or allocation problems. Several such problems in
internet marketplaces (e-commerce, ride-sharing, food deliv-
ery, professional services, advertising, etc.), can be formulated
as Linear Programs (LP) with such polytope constraints that
require a projection step in the overall optimization process.
We show that in some of the very recent works, the polytopic
projection is the most expensive step and our efficient pro-
jection algorithms help in gaining massive improvements in
performance.

Introduction
Euclidean projection onto a polytope is not only a funda-
mental problem in computational geometry (He, Leng, and
Li 2006; Rambau and Ziegler 1996), but also has several
real-life applications ranging from decoding of low-density
parity-check codes (Wei and Banihashemi 2017) to gener-
ating screening rules for Lasso (Wang et al. 2013). Recent
work (Basu et al. 2020; Boyd et al. 2011) also uses polytope
projection as an operation in solving large optimization prob-
lems. Several such large-scale optimization solvers which
use polytopic projection (Parikh and Boyd 2014) are being
used to tackle different problems in the internet industry such
as matching (Azevedo and Weyl 2016) and multi-objective
optimization (Agarwal et al. 2011, 2012). Other examples in-
clude problems in natural language processing like structured
prediction (Smith 2011; Rush and Collins 2012; Martins
et al. 2015), semi-supervised approaches (Chang, Sundarara-
jan, and Keerthi 2013), multi-class/hierarchical classifica-
tion (Keerthi, Sellamanickam, and Shevade 2012), etc.

Given a compact set C and a point x, let ΠC(x) de-
note the (euclidean) projection of x onto C, i.e., ΠC(x) =
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arg miny∈C ‖y − x‖. Certain large scale optimization prob-
lems, especially those arising from applications in the inter-
net industry, have a huge number of polytope constraint sets,
{Ci}. To solve such problems each iteration of an algorithm
requires the projection of points {xi} to {x̃i = ΠCi(xi)}.
Computing such sets of projections is usually the key bot-
tleneck (Wei and Banihashemi 2017) and hence efficiently
solving the projections is crucially important to solve such
large-scale optimization problems.

The set of points, {xi} usually has some structure connect-
ing the xi that dictates the nature of the projections. Most
general purpose solvers such as ADMM (Boyd et al. 2011),
Block Splitting (Parikh and Boyd 2014) and Splitting Conic
Solver (O’Donoghue et al. 2019) do not exploit this spe-
cial structure. Very recently, Basu et al. (2020) proposed
ECLIPSE (shorthand Ecl) - to solve such large scale prob-
lems while exploiting some general overall structure, but still
used off-the-shelf projection solvers such as the one in Duchi
et al. (2008) to tackle the projection step. As a result, similar
to the general purpose algorithms, the major computational
bottleneck for Ecl is also the projection step.

Although there are many different forms of projection
structures, in this paper we focus on a particular structure mo-
tivated by applications in the internet industry. We consider
those, for which, a majority of the projections, x̃i lies on a
vertex of Xi and also, over all i, the mean dimension of the
minimal face (Grünbaum et al. 2003) of Xi that contains x̃i
is very small. We refer to this as the vertex oriented structure.
Even for special polytopes such as the simplex and box-cut
(a hypercube cut by a single plane) general purpose projec-
tion algorithms are not designed to be efficient for the above
situation. The main goal of this paper is to develop special
purpose projection algorithms that (a) are specially efficient
for the vertex oriented structure; and (b) are applicable to
special polytopes such as the simplex, box-cut, and general
polytope forms.

To show the efficacy of these special purpose projection
algorithms, we switch out the projection step of Ecl , and
run an ablation study over various internet marketplace prob-
lems. We call this new solver DuaLip, a Dual decomposition-
based Linear Programming framework which shows dras-
tic speedups over the existing state-of-the-art. Moreover,
Ecl only tackled simple polytope constraints such as the
unit box or the simplex, which not only reduced the gener-
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ality, but also made the solver tough to use right out of the
box. By replacing the projection component with the novel
algorithms developed in this paper, DuaLip is now capable
of solving a much wider range real-world applications, much
more efficiently.

The rest of the paper is organized as follows; We first intro-
duce the problem, the motivating applications, and describe
the Ecl algorithm. We then focus on the efficient projection
algorithms in detail and specialize the general solution to
special structured polytopes. We empirically show the im-
pact of these algorithms on web-scale data, before finally
concluding with a discussion. All formal proofs are given in
the Appendix.

Problem Setup
We begin with some notation. Let x ∈ RK denote the
point that we wish to project onto a compact polytope C.
The projection operator ΠC(x) can be written as ΠC(x) =
argminy∈C ‖y − x‖ where ‖ · ‖ denotes the Euclidean dis-
tance. Throughout this paper, we consider the following set
of polytopes:
1. Box : C = {x : 0 ≤ xk ≤ 1 ∀k}
2. Simplex-Eq : C = {x : xk ≥ 0 ∀k,

∑
k xk = 1}

3. Simplex-Iq : C = {x : xk ≥ 0 ∀k,
∑
k xk ≤ 1}

4. Box-Cut-Eq : C = {x : 0 ≤ xk ≤ 1 ∀k,
∑
k xk = δ}

(δ = positive integer, 1 < δ < K)
5. Box-Cut-Iq : C = {x : 0 ≤ xk ≤ 1 ∀k,

∑
k xk ≤ δ}

(δ = positive integer, 1 < δ < K)
6. Parity Polytope: C = co {vr} where the vr are binary

vectors with an even number of 1s and co denotes convex
hull.

7. General Polytope : C = co {v : v ∈ V } where V is a
finite set of polytope vertices.

Here we use E, I to denote an equality or inequality sign de-
noting whether we are interested in the surface or the closed
interior of the polytope. Such polytopes naturally occur as
constraints in different optimization formulations in the inter-
net industry. We motivate the need of such polytopes through
typical recommender system problems.

We denote users by i = 1, . . . , I and items by k =
1, . . . ,K . Let xik denote any association between user i and
item k, and be the variable of interest. For example, xik
can be the probability of displaying item k to user i. The
vectorized version is denoted by x = (x1, . . . , xI) where
xi = {xik}Kk=1. Throughout this paper we consider prob-
lems of the form:

min
x

cTx s.t. Ax ≤ b, xi ∈ Ci, i ∈ [I], (1)

where, Am×n is the constraint matrix, bm×1 and cn×1 are
the constraint and objective vectors respectively, and Ci are
compact polytopes. x ∈ Rn is the vector of optimization
variables, where n = IK and [I] = {1, . . . , I}.

Applications
Basu et al. (2020) described two major classes of problems,
volume optimization (focused on email/notifications) and
optimal matching (for network growth). We cover a much

larger class of problems using a variety of different polytopic
constraints.

Diversity in Network Growth: “Rich getting richer” is a
common phenomenon in building networks of users (Fleder
and Hosanagar 2009). Frequent or power users tend to have
a large network and get the most attention, while infrequent
members tend to lose out. To prevent these from happening,
and to improve the diversity in the recommended users, we
can frame the problem as a LP:

max
x

∑
ik
xikcik (Total Utility)

s.t.
∑

i
xikaik ≥ bk ∀k (Infrequent User Bound)∑
k
xik = δi, 0 ≤ xik ≤ 1

where c, a are utility and invitation models, bk denotes the
minimum number of invitations to the k-th infrequent user,
and δi denotes the number of recommendations to the i-th
user. This makes Ci the Box-Cut-Eq polytope.

Item Matching in Marketplace Setting: In many two-
sided marketplaces, there are creators and consumers. Each
item created has an associated budget and the problem is to
maximize the utility under budget constraints. For example,
in the ads marketplace, each ad campaign has a budget and
we need to distribute impressions appropriately. For the jobs
marketplace, each paid job has a budget and the impressions
need to be appropriately allocated to maximize job applica-
tions. Each of these problems can be written as

max
x

∑
ik
xikcik

s.t.
∑

i
xikaik ≤ bk ∀k ∈ [K],∑
k
xik ≤ δi and 0 ≤ xik ≤ 1

(2)

where c, a are models estimating utility and budget revenue,
respectively and δi is the maximum number of eligible items
to be shown to the i-th member. Here the polytope constraint
is Box-Cut-Iq .

Multiple Slot Assignment: This is an extension of the
item ranking problem where the utility of an item depends
on the position in which it was shown (Keerthi and Tomlin
2007). Consider for each request or query i, we have to rank
Li items (` = 1, . . . , Li) in Si slots (s = 1, . . . , Si). We want
to maximize the associated utility subject to constraints on
the items. Mathematically this bipartite structure of multiple
items and slots can be framed as:

max
x

∑
i`s
xi`sci`s

s.t.
∑

i`s
xi`sa

(j)
i`s ≤ cj ∀j ∈ [J ]∑

s
xi`s = 1,

∑
`
xi`s = 1 and xi`s ≥ 0 ∀i, `, s

where c and a(j) are the associated utility and j-th constraint
values. Note that the projection set Ci captures the need to
show each item and the fact that each slot can contain only
one item.

This formulation involves a special Ci and hence, special
projections. We avoid this by using a revised formulation that
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Application Objective (cik) Constraint (aik) Projection K n
Email Optimization (Basu et al. 2020) sessions unsubscribes Box 100 10b
Diversity in Network Growth connection invitation Box-Cut-Eq 20k 2t
Item Matching (Jobs Recommendation) job applies budget Box-Cut-Iq 1m 100t
Multiple Slot Assignment (Feed) engagement revenue Assignment 10b 1q
Slate Optimization (Ads Ranking) revenue budget Slate 10b 1q

Table 1: A list of applications with constraints, projections and size. Here we use -Eq,-Iq to denote an equality or inequality
sign in the constraints. Finally the short hand, k,m, b, t, q denotes thousand, million, billion, trillion and quintillion (1018),
respectively.

introduces an index k = 1, . . . ,K with each k denoting a set
of distinct items (instead of being a single item) in the set
of slots. The optimal assignment is then choosing one such
assignment per request. Thus we have,

max
x

∑
ik
xikcik s.t.

∑
ik
xika

(j)
ik ≤ cj ∀j ∈ [J ]∑

k
xik = 1 and xik ≥ 0 ∀i, k

Slate Optimization: This is a variant of the multiple slot
assignment problem, where each of the Li items are ranked
and each index k (slate) corresponds to a ranked selection of
distinct items to be placed in the slots. This can be set up as
a path search on a DAG; see Keerthi and Tomlin (2007) for
more details. Both the Slate and Assignment problems can
be written using the Simplex-Eq polytopic constraint. Table
1 describes these applications with respect to the associated
models, projection, and problem size.

In the subsequent sections, we describe how we develop
new projection algorithms to handle such larger classes of
problems. To demonstrate the value of these novel algorithms,
we mainly work with a proprietary Jobs Matching Dataset
(D). Here, we are trying to solve the problem of the form
in (2), where instead of the Box-Cut constraint we consider
the simplex constraint:

∑
k xik = 1 and 0 ≤ xik ≤ 1 and

we have n = 100 trillion. We rely on a real-world dataset
only to represent the scale of the problem, i.e. the number of
coupling and non-coupling constraints seen in practice. The
data does not contain any personally identifiable information,
respects GDPR and does not contain any other user informa-
tion. To promote reproducible research we open source (with
FreeBSD License)1 the solver with all the efficient projection
operators discussed in the paper. There, we report the solver’s
performance on the open-source movie-lens dataset (Harper
and Konstan 2015), which contains user rating of movies
to formulate an optimization problem (taking a similar ap-
proach to (Manshadi et al. 2013)). Movie-lens is a public
domain matching problem of a much smaller scale than seen
in internet marketplaces.

Solving the LP
For sake of completeness, we briefly describe Ecl algorithm
here. To solve problem (1), Ecl introduces a new perturbed
problem

min
x

cTx+
γ

2
xTx s.t. Ax ≤ b, xi ∈ Ci, i ∈ [I] (3)

1https://github.com/linkedin/DuaLip

where γ > 0 helps to make the dual objective function
smooth; γ is kept small to keep the solution close to that of
the original problem (1). To make the problem (3) amenable
to first order methods, Ecl considers the Lagrangian dual,

gγ(λ) = min
x∈C

{
cTx+

γ

2
xTx+ λT (Ax− b)

}
, (4)

where C = ΠI
i=1Ci. Now, by strong duality (Boyd and

Vandenberghe 2004), the optimum objective g∗γ of the dual
g∗γ := maxλ≥0 gγ(λ)

is the minimum of (3). Ecl shows that λ 7→ gγ(λ) is differ-
entiable and the gradient is Lipschitz continuous. Moreover,
by Danskin’s Theorem (Danskin 2012) the gradient can be
explicitly expressed as,∇gγ(λ) = Ax∗γ(λ)− b where,

x∗γ(λ) = argmin
x∈C

{
cTx+

γ

2
xTx+ λT (Ax− b)

}
=
{

ΠCi [− 1
γ (ATi λ+ ci)]

}I
i=1

(5)

where ΠCi(·) is the Euclidean projection operator onto Ci,
and, Ai, ci are the parts of A and c corresponding to xi.
Based on this Ecl uses accelerated gradient method as the
main optimizer to solve the problem. For more details, see
Basu et al. (2020).

Cost Profiling
On large datasets such as D we find that Ecl takes days
to solve. This motivates us to understand which parts can
be improved to get the biggest overall speedup. We profile
each of the parts to analyze the performance bottlenecks of
Ecl . Table 2 shows the complexity of each term required to
compute the gradient along with the sample time spent per
iteration of the solver. It is clear that the optimizer’s internal
update steps only take 3% of the time while the rest (97%)
is used to compute the gradient (columns 2 to 6 in Table 2).
The results are consistent on other datasets as well when the
number of executors is tuned appropriately.

For the rest of paper, we only focus on the most expensive
(74%) step in the gradient computation, that is the projection
operation to compute x∗γ(λ) as in (5).

Efficient Projection Algorithms
Recall the projection problem to be solved: for each i, we
want to find

(x∗γ(λ))i = ΠCi [− 1
γ (ATi λ+ ci)] = arg min

xi∈Ci
‖xi − x̂i‖2
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Profiling ATi λ x̂i(λ) Aix̂i Ax̂, cx̂, ||x̂|| λT (Ax− b) LBFGS
Complexity O(k) O(k log k) O(µi) O(I/w) +O(w) O(K) O(K)
Sample time 10% 74% 2% 8% 3% 3%

Table 2: Complexity analysis of different components on dataset D1 with w = 100 nodes. k, µi as defined later. (a) In gray is the
time spent inside the optimizer, (b) in white is the time taken to compute the gradient.

where x̂i = − 1
γ (ATi λ+ ci). To simplify notation, we leave

out the ‘i’. The cost profiling shows that the projection step
forms the bulk of the overall algorithm cost and hence, im-
proving its speed would lead to overall algorithmic speedup.
If projections form φ fraction of the total solution cost, then
by making projections extremely efficient one can hope to
get up to a speedup of 1/(1−φ). We now focus on designing
efficient algorithms that are well suited to marketplace prob-
lems. Ecl covers Box and Simplex-Eq . The Box projection
solution is very efficient, but in our case the Simplex-Eq pro-
jection algorithm (Duchi et al. 2008) is not. This is primarily
because, for a large fraction of i’s, the projections are at a
vertex of Ci, which can be identified in a more efficient way.

The Main Intuition: We define a corral (Chakrabarty,
Jain, and Kothari 2014) as the convex hull of a subset of the
vertices of Ci with least cardinality that contains the projec-
tion of x̂i. Thus, if the projection is a vertex, then the vertex
itself is the corral; if the projection lies in the relative interior
of an edge formed by two vertices, then the corral is that
edge, and so on. The dimension of the corral is one less than
the cardinality of its vertex subset. A vertex is a corral of
dimension zero, an edge is a corral of dimension 1, and so on.
Clearly there exists a corral that contains the projection, x∗i .

Our efficient approach is based on the intuition that, for
small γ, the mean dimension of the corral over all i is small.
Since this is the main basis of the paper, we explain the
reasoning behind the intuition. We begin by giving a simple
example in 2d. Then we state a formal result that says what
happens at γ = 0. We follow that by taking the case of
Simplex-Eq and demonstrating how, as γ becomes larger than
zero, the mean corral dimension only increases gradually
with γ. Further, we give strong empirical support for the
intuition.

Let us begin by illustrating the intuition using an example
of Simplex-Eq with K = 2; see Figure 1. From the figure it
is clear that, for small values of γ, the probability that the
projection lies on a vertex (corral of dimension zero) is high.
We now state a formal result for the γ = 0 case. The proof of
Theorem 1 is given in the Appendix.
Theorem 1. Let: x ∈ C be expressed as Dx ≤ d, Ex = e,
p = (b, c, d, e), x∗(p) denote the optimal solution of (1),
and x∗0(p, λ) = arg minx∈C(c+ATλ)Tx (also same as (5)
with γ → 0). For any x define µ(x) =

∑
i µi/I to be the

mean corral dimension where µi is the corral dimension of
xi. Let Bε(z) denote the open ball with center z and radius ε.
Given εb, εc, εd, εe > 0, if we define B := {(b̃, c̃, d̃, ẽ) : b̃ ∈
Bεb(b), c̃ ∈ Bεc(c), d̃ ∈ Bεd(d), ẽ ∈ Bεe(e)}, then
1. x∗(p) is unique and µ(x∗(p)) ≤ m/I for almost all2

p ∈ B.
2‘almost all’ is same as ‘except for a set of measure zero’.

x̂γ1

x̂γ2

x̂ =
∏

C
−1

γ
(AT

λ+ c)

C

Special x̂ that gives
Most x̂ give vertex
projection as γ → 0

edge projection as γ → 0

γ = γ1

γ = γ2 = 0.75γ1

Figure 1: For a fixed feasible λ, the set of possible placements
of x̂ and below it for the definition of x̂) that project to the
relative interior of the simplex edge (corral of dimension =
1) is only the infinite rectangle (shown using dashed lines)
perpendicular to the edge. Unless x̂ is exactly perpendicular
to the edge (shown in red), when γ becomes small, x̂ crosses
out of that infinite rectangle, after which a vertex becomes
the projection.

2. x∗0(p, λ) is unique and µ(x∗0(p, λ)) = 0, for almost all
p ∈ B and λ ∈ Rm.

Note that since each µi ∈ Z, it directly follows from
Theorem 1 that Ĩ , the number of i’s with vertex solutions
(µi = 0) is at least I − m. Moreover, K, which denotes
the dimension of the xi, does not affect µ at all (due to the
structure of Ci and the repeating nature in i). This is beneficial
sinceK is very large in Assignment and Slate projections (see
Table 1). Comparing results 1 and 2 of Theorem 1, we can
see that non-vertex solutions start appearing as the solution
approaches λ0 = arg maxλ≥0 g0(λ), and even there, it is
well bounded. In web-scale marketplace applications m/I is
very small, say, smaller than 0.01. Thus, vertex projections
dominate and they occur in more than 99% of the i’s even as
we come close to λ0.

A limitation of the theorem is that it gives a bound on µ
only at γ = 0. On the other hand, in our solution process,
we use small γ > 0. By Lemma 2 of Basu et al. (2020), the
solution x∗ of (1) remains unchanged under the γ perturba-
tion for sufficiently small positive γ values (Figure 1 gives
the rough intuition), and so part 1 of the Theorem applies for
such positive γ.

To better explain what happens as we gradually increase
γ above zero, let us analyze the Simplex-Eq case. Let z =
−(ATλ+ c) so that x̂ = z/γ. We invoke Algorithm 2 (given
in the next section) to give a precise analysis. Given a λ and
hence, given x̂, we can use Algorithm 2 to quantify when a
vertex (corral of dimension 0) will be the projection, when
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an edge (corral of dimension 1) will contain the projection,
etc. In general position (think of random infinitesimal pertur-
bation of c) there will be a positive separation between the
components of z. Without loss of generality let the compo-
nents of z be ordered: z1 > z2 > z3 > . . .. With this in place,
it is easy to use Algorithm 2 and derive the following: (a) Pro-
jection will be a vertex if 0 < γ ≤ (z1 − z2); (b) Projection
will be on an edge if (z1− z2) < γ ≤ (z1− z3) + (z2− z3);
(c) and so on. Thus projections start lying on higher dimen-
sional corrals only slowly as γ is increased. There is a graded
increase in the optimal corral dimension with respect to γ.

Similarly, it is possible to give similar details for constraint
sets other than Simplex-Eq . The other key point is that, as we
move towards optimality, part 1 of Theorem 1 says that only
a few i’s (at most m of them at optimality where m is the
number of constraints in Ax ≤ b) will have non-vertex pro-
jections. Going by the graded effect of positive γ on optimal
corral dimensions, we get indications of what small values of
µ we can expect as we close in on optimality with small (not
necessarily extremely small) γ (also see Table 3).

Let us use empirical analysis to further understand what
happens for larger γ perturbations. Table 3 studies the behav-
ior of µ along optimization paths of maxλ gγ(λ) for a range
of γ values, on the representative dataset. Even with large γ
values, note that µ is usually small (less than 3). Obtaining
a theoretical bound on µ as a function of γ is an interesting
topic of future academic research.

Corral metric γ1 = 1 γ2 = 0.1 γ3 = 0.01
µ 2.55 0.12 0.03
Ĩ/I 0.4522 0.9232 0.9676

Table 3: Behavior of the mean corral dimension, µ along
optimization paths of gγ starting from λ = 0 for three values
of γ s.t. γ1 > γ2 > γ3.

Vertex-Oriented Approach
Guided by the theory and the empirical observations that (a)
vertex solutions occur most frequently and (b) the mean corral
size is small, we devise the powerful approach to projection
described in Algorithm 1.

Algorithm 1: DuaLip vertex-first projection

1: Let v0 be the vertex of C nearest to x̂.
2: Check if v0 is the optimal solution to (5).
3: If v0 is not optimal, include new vertices, vr and search

over corrals of increasing dimension.

As we will see later for Simplex-Eq and Box-Cut-Eq , the
algorithms designed with this approach as the basis are a
lot more efficient for our problem solution than off-the-shelf
algorithms. Also, for the Assignment and Slate cases, no
efficient projection algorithms exist in the literature. The
algorithms that we develop for them here are new and are
well-suited for our problem solution.

We first discuss a useful general purpose, vertex-oriented
projection algorithm for General Polytope. Many classical
algorithms exist for solving the projection-to-convex-hull
problem:

min
x∈C
‖x− x̂‖2 where C = co {v : v ∈ V } (6)

The algorithms in Gilbert (1966); Barr and Gilbert (1969);
Meyer and Polak (1970); Gilbert, Johnson, and Keerthi
(1988); Wolfe (1976) are a few of them. More than the algo-
rithm choice, the following three key pieces, which are all
our contributions, are absolutely essential for efficiency.3 (a)
While these algorithms allow an arbitrary corral for initial-
ization, our vertex-oriented approach always starts with the
nearest-vertex single-point corral. (b) Even outside of these
algorithms we check if this single-point corral is already opti-
mal for (6) and, if so, these algorithms are never called. Note
that the computations in (a) and (b) are an integral part of our
Algorithm 1 (steps 1 and 2 there). (c) While these algorithms
are set up for the projected point being the origin, doing a
transformation of the convex hull points to meet this require-
ment would lead to a large inefficiency. It is important that
we keep the original vertices as they are and carefully modify
all operations of the algorithms efficiently. Thus, for General
Polytope, DuaLip is not wedded specifically to any particular
general-purpose algorithm but rather to the problem (6), and,
for the class of problems and applications covered in the
paper, we do a lot more to make a chosen algorithm to work
efficiently than directly using that algorithm itself.

Wolfe’s algorithm for General Polytope
Due to its popularity, we delve into the classic algorithm
given by Wolfe (1976) for (5), which also nicely instantiates
the approach in Algorithm 1 for the General Polytope case.
We briefly outline this algorithm here. At a general iteration
of the Wolfe algorithm, there is a corral C formed using a
subset of vertices U , and x, the projection of x̂ to C. Using
optimality conditions it is easy to show that x solves (6) iff

min{(x− x̂)T v : v ∈ V \U} ≥ (x− x̂)Tx (7)
If (7) is violated then the inclusion of v = arg min{(x −
x̂)T v : v ∈ V \U} to the vertex set of C to form the new
corral, C̃ is guaranteed to be such that x̃, the projection on C̃,
satisfies ‖x̃− x̂‖2 < ‖x− x̂‖2. Since it is a descent algorithm
and the number of corrals are finite, the algorithm terminates
finitely. For more details see the Appendix.

Wolfe’s algorithm can be initialized with an arbitrary corral
and x as the projection to that corral. However, to be in line
with our approach in Algorithm 1, we initialize x to be the
vertex in V that is closest to x̂. This step is also simple and
efficient, requiring just a linear scan over the vertices. It is
also useful to note that the immediately following check
of optimality, (7) is also well in line with our approach in
Algorithm 1; the Wolfe algorithm terminates right there if the
projection is a vertex solution, which we know to be the case
for most i.

3For example, our initial implementation of using the Wolfe al-
gorithm (Wolfe 1976; Chakrabarty, Jain, and Kothari 2014) without
optimizations (a) through (c) made the projection 100x slower on a
test problem.
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Special Structured Polytope Projections
Wolfe’s algorithm as detailed in the previous section is highly
efficient when the corral dimension is small. It can be made
even more efficient for problems with a special structure such
as Simplex, Box-Cut and Parity Polytope.

Simplex Projection: For Simplex-Eq , C = co {vk}Kk=1
where vk is the vector whose k-th component is equal to 1
and all the other components are equal to 0. Ecl employs the
algorithm from Duchi et al. (2008) for Simplex-Eq , with
complexityO(K logK). The algorithm also requires all com-
ponents of x̂ to be available; in the cases of Assignment and
Slate, this is very expensive.

The algorithm of Duchi et al. (2008) is inefficient for our
problem since in most situations, the nearest vertex of C,
which can be done in O(K) effort, is expected to be the
projection. We can make it more efficient guided by the ap-
proach in Algorithm 1 and specifically, the Wolfe algorithm
outlined earlier. The steps are given in Algorithm 2. Since
‖vj − x̂‖2 = 1 + ‖x̂‖2 − 2x̂j , the first step is equivalent to
finding the index, k̃ that has the largest x̂ component, which
forms the initializing corral. The remaining steps correspond
to sequentially including the next best index (Step 3), check-
ing if it does not lead to any further improvement (Steps 4
and 5), and if so, stopping with the projection. Step 3 is worth
pointing out in more detail. It is based on (7). Because all
vertices of C are orthogonal to each other and x is a linear
combination of the vertices in U , xT v = 0 ∀v ∈ V \U . Thus,
arg min{(x − x̂)T v : v ∈ V \U} = arg max{x̂T v : v ∈
V \U}, leading to Step 3 of Algorithm 2.

Simplex-Iq can be efficiently solved by first obtaining
xbox, the box projection. If

∑
k x

box
k ≤ 1, then xbox is

also the Simplex-Iq projection; else, the Simplex-Eq projec-
tion is the the Simplex-Iq projection.

In the normal case where all components of x̂ are available,
the incremental determination of the next best vertex in step
3 can be done using the max heapify algorithm (Cormen
et al. 2001). If the algorithm stops in q steps, then the overall
complexity isO(K+q logK). van den Berg and Friedlander
(2008) gives a similar algorithm especially for Simplex-Eq ,
but without the geometrical intuition and the power of its
extension to structured outputs.

Simplex-Eq Projection for Structured Outputs: Con-
sider any structured output setting in which, for each i there
is a parameter vector, ξi and a possibly large set of configura-
tions indexed by k = 1, . . . ,K such that: (a) for each given
configuration k, cik and a(j)ik ∀j can be easily computed using
ξi; and (b) the incremental determination of the next best k
according to the value, ĉik = cik +

∑
j λja

(j)
ik is efficient.

Using a Simplex-Eq setup it is clear that Algorithm 2 effi-
ciently solves the projection problem for this case. Note that
the ĉik, cik, a(j)ik do not need to be computed for all k. Instead
of O(K), complexity is usually polynomial in terms of the
dimension of ξi. Assignment and Slate are special cases of
such a setup, with each k corresponding to a certain path on
a bipartite graph and a DAG, respectively.

Assignment projection: Using the previous notation,
let ξi = {ci`s, {a(j)i`s}j}`,s. Each index k corresponds

Algorithm 2: Modified Duchi et al. algorithm for Simplex-Eq

1: k1 ← arg maxk∈[K] x̂k, and set: K = {k1}
2: do
3: k̃ = arg maxk∈[K]\K x̂k. . next best vertex

4: α = x̂k̃ −
1

|K|+1

(∑
r∈K∪{k̃} x̂r − 1

)
.

5: Set K ← K ∪ {k̃}.
6: while α > 0
7: θ = 1

K
(∑

r∈K x̂r
)

8: return x∗r = x̂r − θ ∀r ∈ K, x∗r = 0 ∀r 6∈ K

to one assignment, i.e., a set {(lt, st)}Si
t=1, with cik =∑Si

t=1 ci`tst and a(j)ik =
∑Si

t=1 a
(j)
i`tst

. Thus, we have x̂ik =

cik +
∑m
j=1 λja

(j)
ik =

∑Si

t=1 φi`tst where φi`s = ci`s +∑m
j=1 λja

(j)
i`s. Thus, to pick ordered elements of {x̂k}k, we

just need to consider an assignment problem with cost defined
by φi`s. Step 1 of Algorithm 2 corresponds to picking the best
assignment. Step 3 corresponds to incrementally choosing the
next best assignments. Efficient polynomial time algorithms
for implementing these steps are well known (Bourgeois and
Lassalle 1971; Kuhn 1955).

Slate projection: The specialization of Algorithm 2 for this
case is similar to what we described above for Assignment .
Because ranking of items needs to be obeyed and there are
edge costs between consecutive items in a slate, dynamic
programming can be used to give an efficient polynomial
time Algorithm (Keerthi and Tomlin 2007) for Step 1. For
incrementally finding of the next best slate (Step 3), the ideas
in Haubold et al. (2018) can be used to give efficient poly-
nomial time algorithms. It is clear from these specializations
that Algorithm 2 is powerful and can be potentially applied
more generally to problems with other complex structures.

Box-Cut Projection: For Box-Cut-Eq , it is easy to see

that C = co {vr}
(K

p )
r=1 where each vr is a vector with p com-

ponents equal to 1 and all the other components equal to
0. Without enumeration of the vertices, it is easy to apply
Wolfe’s algorithm. First, for any given direction η ∈ RK let
us discuss the determination of maxr η

T vr. This is equiva-
lent to finding the top p components of η and setting them to
1 with all remaining components set to 0. Using a heap this
can be done efficiently in O(K) time. Let v̂(η) denote the
vertex of the Box-Cut polytope thus found.

The initializing step of the Wolfe algorithm is the finding of
the vertex x nearest to x̂. Since ‖vr−x̂‖2 = p+‖x̂‖2−2x̂T vr
and the first two terms do not depend on vr, this step is
equivalent to finding v̂(x̂). This nearest vertex is set as the
initializing corral. A general step of the Wolfe algorithm
requires the checking of (7). Since U is a corral and x is
the projection of x̂ to the affine hull of U , (x − x̂)Tu =
(x− x̂)Tx ∀u ∈ U . Thus (7) can also be written as

min{(x− x̂)T v : v ∈ V } ≥ (x− x̂)Tx. (8)

So, all that we need to do is to set η = (x̂ − x) and obtain
v̂(η) to check (8) as −ηT v̂(η) ≥ −ηTx to stop the Wolfe
algorithm or, if that fails, use v̂(η) as the next vertex for
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proceeding with the Wolfe algorithm. Since, by previous ar-
guments, the number of steps of the Wolfe algorithm will
be just 1 for most i’s, the cost of doing Box-Cut-Eq pro-
jection per i is just O(K). This way of doing projection is
much more efficient for use in our problem than more gen-
eral algorithms with O(K logK) complexity given in the
literature (Dai and Fletcher 2006).

Box-Cut-Iq can be done efficiently similar to the Simplex-
Iq projection by using the Box and the Box-Cut-Eq projection.

Parity Polytope Projection: ADMM based LP decoding
of LDPC codes (Wei and Banihashemi 2017) requires pro-
jections to a special polytope called the Parity (aka Check)
polytope, which is C = co {vr} where the vr are binary vec-
tors with an even number of 1s. The projection algorithms
in Lin et al. (2019) are specially designed for the case, but
they are general purpose algorithms that use the inequalities-
based representation of Ci and are not designed to be efficient
for the vertex oriented structure.

The specialization of the Wolfe algorithm, that provides
such an efficiency, is similar to that for Box-Cut-Eq . The
key computations are: (a) finding the vertex v nearest to
x̂; and (b) checking (8), which requires, for any given any
direction η, v̂(η) = arg maxv∈V η

T v. Let us start with (b).
v̂(η) is a binary vector and we need to find the elements of
v̂(η) having the 1s. Since we are maximizing ηT v, take the
positive indices, P = {i : ηi > 0}. If |P | is even, choose
the set of elements of v̂(η) with 1s as P . If |P | is odd, let i1
be the index of the element of P with the smallest ηi, and
i2 be the index of the element of the complement of P with
the largest ηi. If ηi1 + ηi2 > 0, include i1 and i2 in P ; else,
remove i1 from P . This is the optimal way of choosing |P |
to be even. Then choose the set of elements of v̂(η) with 1s
as P . Thus, the determination of v̂(η) requires just a linear
scan of {ηi}.

Let us now come to the finding of the vertex v nearest to x̂,
i.e., arg minv ‖x̂ − v‖2. Now, ‖x̂ − v‖2 = ‖x̂‖2 + ‖v‖2 −
2x̂T v. Since ‖x̂‖2 is a constant in the finding of v, and, for
binary vectors, ‖v‖2 = eT v where e is a vector of all 1s, we
get arg minv ‖x̂−v‖2 = arg maxv η

T v, where η = x̂−0.5e.
With η set this way, we get arg minv ‖x̂ − v‖2 to be v̂(η),
whose determination was described in the previous paragraph.
Thus, the finding of the vertex nearest to x̂ also requires just
a linear scan of {ηi}.

Experiments
We demonstrate the value of the above algorithms empiri-
cally using dataset D. We solve the problem, using different
number of cluster nodes (w) and report the speedup in Table
4 by comparing with the large scale Ecl solver. Note that,
since Ecl only supported the Simplex-Eq projection via off-
the-shelf projection algorithms, we focus our results on the
Simplex-Eq use case on their data (Basu et al. 2020) to show-
case an apples to apples comparison of the overall LP solver.
The speedup measures the improvement in time taken to ag-
gregate I/w projection operations. Note that for large values
I/w, both methods have a fixed cost of going over a lot of
data instances that reduces the relative speedup of the DuaLip
projection. From Table 4, it is clear that even for a simple
projection type such as Simplex-Eq , employing off-the-shelf

# nodes (w) 55 85 165 800
dI/we (in 100k) 15 10 5 1
Speedup 6x 6.5x 7.5x 8x

Table 4: Speedup is the ratio of time taken by the DuaLiP
projection algorithm to that of Ecl (based on (Duchi et al.
2008)).

algorithms (Duchi et al. 2008) may not be ideal. Basu et al.
(2020) show that commercial solvers (SDPT3, CPLEX, CLP,
GUROBI) do not scale to the problem-sizes in web-scale
marketplaces and use a distributed version of the Splitting
Conic Solver (SCS ) (O’Donoghue et al. 2019)) to establish
a baseline for scale. We benchmark DuaLip against Ecl and
SCS in Table 5 on real data to show a 7x improvement over
the state-of-the-art. Ecl and DuaLip exploit the data sparsity
in the constraint matrix (A) often present in marketplace data
unlike SCS and other commercial solvers. Additionally, Du-
aLip benefits from efficient projection. We observe similar
large efficiency gains on multiple applications of comparable
size using our incremental projection algorithm. Tables 4 and
5 show that the speed-up depends less on the dataset and is
more a function of the projection and I/w.

Problem Scale n Time (hr)
DuaLip Ecl SCS

Email Optimization
(Basu et al. 2020)
nnz(A) = 10I ≈ 1B

107 0.11 0.8 2.0
108 0.16 1.3 >24
109 0.45 4.0 >24

Item Matching (2)
nnz(A) = 100I ≈ 10B

1010 0.62 4.5 >24
1011 1.1 7.2 >24
1012 2.60 11.9 >24

Table 5: Run time (hrs) for extreme-scale problems on real
data. Here, nnz(A) denotes the number of non-zero entries
in A and all runs are on Spark 2.3 clusters with up to 800
processors.

Discussion
Through empirical evidence and guided by theory, we have
developed novel algorithms for efficient polytope projections
under a vertex oriented structure. Such structures commonly
occur in very large-scale industrial applications. Using these
novel algorithms we were able to achieve a drastic over-
all speedup compared to the state-of-the-art while solving
such web-scale Linear Programs. This scalability allows us
to expand to a much larger class of problems with com-
plex structured constraints such as Slate and Assignment .
It also opens up the applicability in semi-supervised learn-
ing, structured prediction on text data, optimal marketplace
auctions (Edelman, Ostrovsky, and Schwarz 2007), and rank
order of items. All trends reported in this paper hold across
many web marketplace problems. We provide results from
one large-scale internal dataset for clarity of impact and open-
sourced the solver on Github4 with benchmarks on a public-
domain dataset for reproducibility.

4https://github.com/linkedin/DuaLip
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