
A Provably-Efficient Model-Free Algorithm for Infinite-Horizon Average-Reward
Constrained Markov Decision Processes

Honghao Wei,1 Xin Liu, 2 Lei Ying 1

1 University of Michigan, Ann Arbor
2 ShanghaiTech University

honghaow@umich.edu, liuxin7@shanghaitech.edu.cn, leiying@umich.edu

Abstract

This paper presents a model-free reinforcement learning (RL)
algorithm for infinite-horizon average-reward Constrained
Markov Decision Processes (CMDPs). Considering a learn-
ing horizon K, which is sufficiently large, the proposed al-
gorithm achieves Õ

(√
SAκ
δ

K
5
6

)
regret and zero constraint

violation, where S is the number of states, A is the number
of actions, and κ and δ are two constants independent of the
learning horizon K.

Introduction
Reinforcement Learning has gained significant attention be-
cause of its successes in board games and video games such
as Go (Silver et al. 2017) and StarCraft (Vinyals et al. 2019),
and in highly-complex robotics systems (Andrychowicz
et al. 2020). An agent’s objective in a typical RL problem is
to maximize the cumulative reward through interacting with
an unknown environment. In board games or video games,
the outcomes of a random action are not consequential to the
users (e.g. not life-threatening). However, a careless action
in an engineering system might have catastrophic outcomes
such as collisions and fatalities in robotics and autonomous
driving (Ono et al. 2015; Garcia and Fernández 2012; Fisac
et al. 2018) or surgical robotics (Richter, Orosco, and Yip
2019). Therefore, it is critical to strike a balance between
reward maximization and safety in real-world applications.
A standard formulation for RL with constraints is the Con-
strained Markov Decision Processes framework (Altman
1999), in which the agent aims at learning a policy that max-
imizes the expected cumulative reward under safety con-
straints during and after learning.

A CMDP problem can be solved using linear program-
ming (LP) or the dual approach (Altman 1999) when the
model (the transition kernel) is given. For example, (Zheng
and Ratliff 2020) proposed a LP-based algorithm which
learns the optimal policy while satisfying the constraints
for a CMDP with a known model. Recent model-based al-
gorithms (Singh, Gupta, and Shroff 2020; Brantley et al.
2020; Kalagarla, Jain, and Nuzzo 2021; Efroni, Mannor, and
Pirotta 2020; Qiu et al. 2020) follow a similar approach but
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learn the models from the data samples collected. This ap-
proach has also been utilized for CMDPs with linear func-
tion approximation (Ding et al. 2021) under the assumption
that the transition kernel is linear. Leveraging the estimated
model, the CMDPs can be solved approximately as long as
the estimate becomes more and more accurately. The works
mentioned above are proved to achieve sublinear constraint
violation. A detailed discussion on the sample complexity of
CMDPs of model-based approaches can be found in (Hasan-
zadeZonuzy, Kalathil, and Shakkottai 2021). While model-
based RL algorithms are sample efficient, they need to con-
tinuously solve LPs when the estimated models are updated,
so these algorithms are often computationally inefficient and
require a large memory to maintain a large number of model
parameters.

Model-free algorithms, on the other hand, learn state or
action value functions, instead of transition kernels, so re-
quire significantly less memory space and have lower com-
putational complexity. In (Borkar 2005), the author pro-
poses an actor-critic RL algorithm and shows its asymptotic
global convergence using multi-timescale stochastic approx-
imation theory for infinite-horizon average-reward CMDPs
when the model is unknown. Policy gradient approaches
have also been developed (Tessler, Mankowitz, and Man-
nor 2018; Stooke, Achiam, and Abbeel 2020; Yang et al.
2020) and seen successes in practice for solving constrained
RL problems, though they lack regret and constraint viola-
tion analysis. (Ding et al. 2020; Xu, Liang, and Lan 2020;
Chen, Dong, and Wang 2021) show that sublinear regrets
and constraint violations are achievable when policy “sim-
ulators” (or generative models) are given. Two very recent
works (Liu et al. 2021a; Wei, Liu, and Ying 2021) show
that sublinear regret bound and zero violation are possible
for episodic CMDPs without simulators. In particular, (Liu
et al. 2021a) proposes a model-based algorithm and (Wei,
Liu, and Ying 2022) presents a model-free algorithm, and
(Bura et al. 2021) proves that it is possible to achieve zero
violation during training given a safe baseline policy based
on a model-based approach. Despite these significant devel-
opments, the following question is still open:

Can we design efficient RL algorithms for infinite-
horizon, average-reward CMDPs with provably regret and
constraint violation guarantees?

We answer this question affirmatively and present a
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Algorithm Regret Constraint Violations
Known Model C-UCRL (Zheng and Ratliff 2020) Õ(SA

√
K1.5) 0

Model-based UCRL-CMDP (Singh, Gupta, and Shroff 2020) Õ(S
√
AK

2
3 ) Õ(S

√
AK

2
3 )

Known Model CMDP-PSRL (Agarwal, Bai, and Aggarwal 2021) Õ(poly(SAD)
√
K) Õ(poly(SA)

√
K)

Model-based∗ OptPess-LP (Liu et al. 2021a) Õ(H3
√
S3AK) 0

Model-based∗ OptPess–PrimalDual (Liu et al. 2021a) Õ(H3
√
S3AK) O(1)

Model-based∗ OPSRL(Bura et al. 2021) Õ(
√
S4H7AK) 0

Model-free This Paper Õ
(√

SA
δ K

5
6

)
0

Table 1: Regrets and constraint violations of RL algorithms for infinite-horizon average-reward CMDPs (∗ These algorithms
are designed for episodic CMDPs). S is the number of states, A is the number of actions, K is the number of steps, D is the
diameter of the CMDP whose definition can be found in the supplementary material, δ is the slackness that will be defined
later (Eq. (10)), and poly(X) denotes a polynomial function of x. Throughout the paper, we use the notation Õ to suppress log
terms. Õ(f(K)) denotes O(f(K) lognK) with n > 0.

model-free RL algorithm that achieves sub-linear regret and
zero constraint violation. Table 1 compares the results in this
paper with those in the literature. We remark that the pro-
posed algorithm synthesizes the Triple-Q algorithm in (Wei,
Liu, and Ying 2022) for episodic CMDPs and Optimistic Q-
Learning (Wei et al. 2020) that reduces the average-reward
problem to a discounted reward problem.

Preliminaries
An infinite-horizon average-reward CMDP can be defined
as (S,A, r, g, p), where S is the finite state space, A is the
finite action space, r(g) : S × A → [0, 1] is the unknown
reward (utility) function, and p : S × A × S → [0, 1] is the
transition kernel such that p(s′|s, a) := P(sk+1 = s′|sk =
s, ak = a) for sk ∈ S, ak ∈ A.A stationary policy is a map-
ping π : S → A, the long-term average reward (reward rate)
of a stationary policy π with initial state s ∈ S is defined as

Jπr (s) := lim
K→∞

1

K
E

[
K∑
k=1

r(sk, π(sk))

∣∣∣∣∣ s1 = s

]
,

and the long-term average utility (utility rate) is defined as

Jπg (s) := lim
K→∞

1

K
E

[
K∑
k=1

g(sk, π(sk))

∣∣∣∣∣ s1 = s

]
.

We assume that under any stationary policy, sk is an irre-
ducible an aperiodic Markov chain, so it has a unique sta-
tionary distribution and the limits above are well defined.
Letting sπ∞ denote the Markov chain at steady-state under
policy π, we have
Jπr = E [r(s∞, π(s∞))] and Jπg = E [g(s∞, π(s∞))] ,

where we removed the dependence on the initial condition
s because the stationary distribution is independent of the
initial condition for a finite-state, irreducible and aperiodic
Markov chain.

An optimal stationary policy π∗ is defined to be the solu-
tion of the following problem:

max
π

Jπr s.t. Jπg ≥ ρ. (1)

This paper considers a constrained RL problem with K
steps. At each step k, the agent observes state sk, takes
an action ak, and receives reward r(sk, ak) and utility
g(sk, ak). The next state sk+1 is sampled according to the
probability distribution p(·|sk, ak). Our goal is to develop
an online RL algorithm, which may be nonstationary, that
minimizes both the regret and the constraint violation de-
fined below.

Regert(K) = E

[
K∑
k=1

(
Jπ
∗

r − r(sk, ak)
)]

, (2)

Violation(K) = E

[
K∑
k=1

(ρ− g(sk, ak))

]
. (3)

When the transition kernel p(s′|s, a) is known, the opti-
mal stationary policy that solves problem (1) can be obtained
by solving the following LP problem (Altman 1999):

max
{q(s,a):(s,a)∈S×A}

∑
s,a

q(s, a)r(s, a) (4)

s.t.
∑
s,a

q(s, a)g(s, a) ≥ ρ, ∀s ∈ S, ∀a ∈ A (5)

q(s, a) ≥ 0, ∀s ∈ S, ∀a ∈ A (6)∑
s,a

q(s, a) = 1 (7)

∑
a

q(s, a) =
∑
s′,a′

p(s|s′, a′)q(s′, a′), (8)

where the q(s, a) is called the occupancy measure, which is
defined as the set of distributions generated by executing the
associated induced policy π in the infinite-horizon CMDP.∑
a q(s, a) represents the probability the system is in state

s, and q(s,a)∑
a′ q(s,a

′) is the probability of taking action a in state
s. The utility constraint is represented in (5). More details
can be found in (Altman 1999).

To analyze the performance of our algorithm, we need to
consider a tightened version of the above LP problem later,
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which is defined below:

max
{q(s,a):(s,a)∈S×A}

∑
s,a

q(s, a)r(s, a) (9)

s.t.
∑
s,a

q(s, a)g(s, a) ≥ ρ+ ε, ∀s ∈ S, ∀a ∈ A

(6)− (8),

where ε > 0 is called a tightness constant. As in previous
works (Ding et al. 2021, 2020; Efroni, Mannor, and Pirotta
2020; Paternain et al. 2019), we make the following standard
assumption of Slater’s condition.

Assumption 1. (Slater’s Condition). There exist δ > 0 and
a feasible solution q(s, a) to the LP such that∑

s,a

q(s, a)g(s, a)− ρ ≥ δ. (10)

It is obvious that when ε < δ the problem (9) has a feasi-
ble solution due to Slater’s condition. The Slater’s condition
is commonly assumed in previous works to ensure the LP
problem has strong duality, see proofs in (Paternain et al.
2019, 2022). Unlike (Ding et al. 2021; Efroni, Mannor, and
Pirotta 2020), which assume δ is known, and (Achiam et al.
2017; Liu et al. 2021a; Bura et al. 2021), where a strictly
feasible policy is given, our assumption is less restrictive.
Let

J∗r =
∑
s,a

q∗(s, a)r(s, a), (11)

J∗g =
∑
s,a

q∗(s, a)g(s, a). (12)

be the optimal reward rate and utility rate, where q∗(s, a) is
the optimal solution obtained by solving the LP problem (4).
Moreover it is obvious that J∗r and J∗g are independent of the
initial state and we have J∗r = Jπ

∗

r and J∗g = Jπ
∗

g .
In the following, we use superscript ∗ to denote the op-

timal policy achieved by solving the LP (4) of the original
CMDP, and superscript ε,∗ to denote the optimal policy re-
lated to the ε-tightened version of LP (9).

Primal-Dual-Based, Two-Time-Scale
Optimistic SARSA (Triple-QA)

In this section, we introduce our algorithm Triple-QA (see
Algorithm 1 for pseudo-code) which achieves sub-linear re-
gret and zero constraint violation. The algorithm is inspired
by Triple-Q, an algorithm for episodic CMDPs in (Wei,
Liu, and Ying 2021). Triple-QA is for the infinite-horizon
average-reward CMDPs with a different update rule. The al-
gorithm further solves the discounted CMDPs with the dis-
count factor γ close to one, an idea used in (Wei et al. 2020).
The discounted CMDP is defined on the same state space,
action space, reward/utility functions, the transition kernel.
The intuition is that the reward of the discounted problem
(scaled by 1 − γ)) approaches to that of the average reward
problem as γ goes to 1.

Algorithm 1: Triple-QA

1: Initialize Q1(s, a) = Q̂1(s, a) ← H = K
1
6 and

n1(s, a) ← 0, ∀(s, a) ∈ S × A, γ = 1 − 1
H , V̂1(s) =

H, ∀s ∈ S
2: Choose χ = K

1
3 , η = K

1
6 , ι = 8 log(

√
2K), β = 2

3 .

3: Choose ε = 9κ
√
SAι

K
1
6

, κ(Eq.(17))}.
4: Initialize C̄ ← 0, Z1 ← 0.

5: Define , ατ = χ+1
χ+τ , bτ = κ

√
(χ+1)ι
χ+τ .

6: for episode k = 1, . . . ,K do
7: Take ak = arg maxa

(
Q̂k(sk, a) + Z

η Ĉk(sk, a)
)
.

8: Observe sk+1.
9: nk+1(sk, ak)← nk(sk, ak)+1, τ ← nk+1(sk, ak).

10: Update Qk+1(sk, ak)← (1− ατ )Qk(sk, ak)

11: +ατ [r(sk, ak) + γV̂k(sk+1) + bτ ],
12: Update Ck+1(sk, ak)← (1− ατ )Ck(sk, ak)

13: +ατ [g(sk, ak) + γŴk(sk+1) + bτ ].

14: if Qk+1(sk, ak) ≤ Q̂k(sk, ak) and Ck+1(sk, ak) ≤
Ĉk(sk, ak) then

15: Q̂k+1(sk, ak)← Qk+1(sk, ak)

16: Ĉk+1(sk, ak)← Ck+1(sk, ak)
17: else
18: Q̂k+1(sk, ak)← Q̂k(sk, ak)

19: Ĉk+1(sk, ak)← Ĉk(sk, ak)

20: C̄ ← C̄ + (1− γ)Ĉk(sk, ak)

21: a′ = arg maxa

(
Q̂k+1(sk, a) + Z

η Ĉk+1(sk, a)
)

22: V̂k+1(sk)← Q̂k+1(sk, a
′)

23: Ŵk+1(sk)← Ĉk+1(sk, a
′)

24: if k mod Kβ = 0 then
25: Z ←

(
Z + ρ+ ε− C̄

Kβ

)
26: Reset C̄ ← 0, nt(s, a)← 0.

27: Reset Q̂k+1(s, a), Qk+1(s, a), Vk+1(s) to H
28: Reset Ĉk+1(s, a), Ck+1(s, a),Wk+1(s) to H

Under the discounted CMDP setting, given a policy π, the
reward value function V πk at step k is the expected cumula-
tive rewards from step k under policy π :

V πk (s) = E

[ ∞∑
i=k

γi−kr(si, π(si))

∣∣∣∣∣ sk = s

]
.

The rewardQ-functionQπk (s, a) at step k is the expected cu-
mulative rewards when agent starts from a state-action pair
(s, a) at step k and then follows policy π :

Qπk (s, a) = r(s, a) +E

[ ∞∑
i=k

γi−kr(si, π(si))

∣∣∣∣∣ sk = s
ak = a

]
.

Similarly, we use Wπ
k (s) : S → R+ and Cπk (s, a) : S ×

A → R+ to denote the utility value function and utility Q-
function at step k:

Wπ
k (x) = E

[ ∞∑
i=k

γi−kg(si, πi(si))

∣∣∣∣∣ sk = s

]
,
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Cπk (s, a) = g(s, a) +E

[ ∞∑
i=k

γi−kg(si, π(si))

∣∣∣∣∣ sk = s
ak = a

]
.

It is obvious that all the reward and utility value (Q-value)
functions are bounded by 1

1−γ because the reward and util-
ity are bounded by 1. We define H = 1

1−γ . Then given a
state-action pair (s, a) at step k, our algorithm updates the
estimate of reward (utility) Q−value functions of the dis-
counted CMDP setting instead.

The design of the algorithm is based on the primal-dual
approach for constrained optimization problems. Suppose
that V π(s) (Wπ(s)) is an accurate estimate of Jπr

1−γ

(
Jπg

1−γ

)
.

The formal proof is deferred to the next section. Given La-
grangian multiplier µ, we consider the following problem:

max
π

Jπr (s) + µ(Jπg (s)− ρ)

≈max
π

(1− γ)(V π(s) + µWπ(s))− µρ

which can be interpreted as an unconstrained MDP with a
modified reward function (1− γ)(r + µg).

The algorithm is an extension of Triple-Q (Wei, Liu, and
Ying 2021) for episodic CMDPs by including the discount
factor and replacing episode-by-episode updates with step-
by-step updates. We adopt the same notations used in (Wei
et al. 2020). Same as Triple-Q, the algorithm maintains
an estimate V̂k(s) (Ŵk(s)) for the optimal value function
V ∗(s)(W ∗(s)) and Q̂k(s, a) (Ĉk(s, a)) for the optimal Q-
functionQ∗(s, a) (C∗(s, a)). At each step k, after observing
state s, the agent selects action a∗k based on the combined Q-
value:

a∗k ∈ arg max
a

Q̂k(s, a) +
Z

η
Ĉk(s, a), (13)

where Z
η can be treated as an estimate of the Lagrange mul-

tiplier µ. Similar to (Wei, Liu, and Ying 2021), we need to
carefully tune the frequency of updating the Lagrange mul-
tiplier to balance the convergence and optimality. Updating
it too frequent would lead to divergence and too infrequent
would result in a large regret and large constraint violation.
The algorithm tackles this difficulty by updating Z at a slow
time-scale, i.e., every Kβ steps in line 25− 26 in Algorithm
1, with the following update

Z ←
(
Z + ρ+ ε− C̄

Kβ

)+

, (14)

where (x)+ = max{x, 0}, and C̄ is the summation of all
(1− γ)Ĉk(sk, ak) of the steps in the previous frame, where
each frame consists of Kβ consecutive steps.

During each frame, the algorithm learns the combined Q
functions for fixed Z at a fast time scale. The estimates of re-
ward and utility value functions are updated after observing
a new state-action pair.

It is important to note that for a CMDP,

V ∗(s) 6= max
a

Q∗(s, a). (15)

This means optimistic Q-learning algorithms for uncon-
strained MDPs (e.g. (Jin et al. 2018; Wei et al. 2020; Dong

et al. 2019)) cannot be used for estimating the optimal value
functions of CMDPs. Instead, Triple-Q (Wei, Liu, and Ying
2021) and this algorithms use a SARSA-type updating rule,
as shown in line 11− 14.

We note that the optimal policy for a CMDP is stochastic
in general. The policy under our algorithm is a stochastic
policy because the virtual queue Z varies during and after
the learning process, which results in a stochastic policy.

We further introduce additional notations before present-
ing our main theorem. Let vπ(s) and wπ(s) denote the re-
ward and utility relative value functions for state s under
average-reward setting, and qπ(s, a), cπ(s, a) be the reward
and utility Q value functions for any state-action pair (s, a).
Based on the Bellman equation, we have

Jπr + qπ(s, a) = r(s, a) + Es′∼p(·|s,a)[v
π(s′)]

vπ(s) =
∑
a

qπ(s, a)P(π(s) = a)

Jπg + cπ(s, a) = g(s, a) + Es′∼p(·|s,a)[w
π(s′)]

wπ(s) =
∑
a

cπ(s, a)P(π(s) = a)

Define
sp(f) = max

s∈S
f(s)−min

s∈S
f(s) (16)

to be the span of the function f. It is well known that the
span of the optimal reward relative value function sp(v∗)
and utility relative value function sp(w∗) are bounded for
weakly communication or ergodic MDPs. In particular, they
are bounded by the diameter of the MDP (Lattimore and
Szepesvári 2020).

Let

κ = max
0≤ε≤ρ/2

(max{sp(vε,∗), sp(wε,∗), 1}) (17)

and assume that κ which is used in the algorithm is known
beforehand as in (Wei et al. 2020, 2021). We can always sub-
stitute them with any upper bound (e.g. the diameter) when
it is unknown. We now state the main results in the following
theorem.

Theorem 1. Assume K ≥
(

18κ
√
SAι
δ

)6

and let ε =

9κ
√
SAι

K
1
6

such that ε ≤ δ
2 . By choosing m = K

1
6 logK,

H = K
1
6 , η = K

1
6 , χ = K

1
3 , and β = 2

3 , Algorithm 1
guarantees

Regret(K) ≤ Õ

(√
SAκ

δ
K

5
6

)

Violation(K) ≤ 92K
2
3

δ
log

(
24

δ

)
−
√
SAιK

5
6 = 0,

where ι = 32 log(
√

2K).

Proof of the Main Theorem
Notations
Throughout the paper, we use shorthand notation

{f − g}(x) = f(x)− g(x),
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where f(·) and g(·) the the same argument value. Similarly,

{(f − g)q}(x) = (f(x)− g(x))q(x).

Due to the page limit, we will only present several key lem-
mas and the key intuitions in this section. The complete
proof can be found in the appendix.

Regret Analysis
We start the proof by adding and subtracting the correspond-
ing terms to the regret defined in (2), we obtain

Regret(K) = E

[
K∑
k=1

(J∗r − r(sk, ak))

]

=E

[
K∑
k=1

(J∗r − Jε,∗r )

]
(18)

+E

[
K∑
k=1

(Jε,∗r − (1− γ)V ε,∗(sk))

]
(19)

+E

[
K∑
k=1

(1− γ)
(
V ε,∗(sk)− Q̂k(sk, ak)

)]
(20)

+E

[
K∑
k=1

(
(1− γ)Q̂k(sk, ak)− r(sk, ak)

)]
. (21)

We will bound each of the four terms above in the following
sequence of lemmas.

Term (18) is the difference between the original CMDP
and its corresponding ε−tighten version which is a perturba-
tion of the original problem. We establish a bound by using
the following lemma. The proof is deferred to supplemen-
tary material.
Lemma 2. Under assumption 1, given ε ≤ δ, we have

K∑
t=1

(J∗r − Jε,∗r ) ≤ εK

δ
(22)

For the second term (19), we establish a bound by us-
ing Lemma 3, which shows the difference between value
functions of the average-reward problem and the value func-
tions of the discounted setting problem is small. The proof is
based on the Bellman equations under teh two settings. The
proof follows Lemma 2 in (Wei et al. 2020) closely.
Lemma 3. For an arbitrary policy π, we have

Jπr − (1− γ)V π(s) ≤ (1− γ)sp(vπ(s)), (23)
|V π(s1)− V π(s2)| ≤ 2sp(vπ(s)); (24)

Jπg − (1− γ)Wπ(s) ≤ (1− γ)sp(wπ(s)), (25)

|Wπ(s1)−Wπ(s2)| ≤ 2sp(wπ(s)), (26)

where V π(s) is the value function for the discounted setting
under policy π, and Jπr (Jπg ) is the reward (utility) rate under
policy π.

Then it is easy to obtain

Jε,∗r − (1− γ)V ε,∗(s) ≤ (1− γ)κ, (27)

Next we establish a bound on term (20) by using the
Lyapunov-drift analysis. In unconstrained MDPs, the bound
is established by showing that optimistic Q-learning guaran-
tees that Q̂k(s, a) is an overestimate of Q∗(s, a). However
this does not hold in CMDPs because the algorithm needs to
consider reward and utility simultaneously so Q̂k(s, a) is not
necessarily an overestimate of Q∗(s, a). To bound this term,
we first add and subtract some additional terms to obtain

K∑
k=1

(1− γ)
(
V ε,∗(sk)− Q̂k(sk, ak)

)
=

K∑
k=1

(1− γ)
∑
a

{
Qε,∗qε,∗ +

Zk
η
Cε,∗qε,∗

}
(sk, a) (28)

−
K∑
k=1

(1− γ)
∑
a

{
Q̂kq

ε,∗ +
Zk
η
Ĉkq

ε,∗
}

(sk, a) (29)

+
K∑
k=1

(1− γ)

(∑
a

{
Q̂kq

ε,∗
}

(sk, a)− Q̂k(sk, ak) (30)

+
Zk
η

∑
a

{
Ĉkq

ε,∗ − Cε,∗qε,∗
}

(sk, a)

)
. (31)

We can see (28) + (29) is the difference of
the two combined Q functions. We will show that{
Q̂k + Zk

η Ĉk,h

}
(s, a) is always an over-estimate of{

Qε,∗ + Zk
η C

ε,∗
}

(s, a) (i.e. (28) + (29) ≤ 0) for all
(s, a, k) simultaneously with a high probability in Lemma
4. This result further implies an upper bound in expectation

E [(28) + (29)] ≤ (1− γ)
3H

ηK
. (32)

Lemma 4. With probability at least 1 − 1
K3 , the following

inequality holds simultaneously for all (s, a, k) ∈ S × A ×
[K] :{(

Q̂k −Qε,∗
)

+
Zk
η

(
Ĉk − Cε,∗

)}
(s, a) ≥ 0, (33)

Then for the term (30) + (31), we can bound it by using
the following lemma.
Lemma 5. Assuming ε < δ, we have

E

[
K∑
k=1

(1− γ)

(∑
a

{
Q̂kq

ε,∗
}

(sk, a)− Q̂k(sk, ak)

+
Zk
η

∑
a

{
Ĉkq

ε,∗ − Cε,∗qε,∗
}

(sk, a)

)]

≤2K

η
+
K1−β∑
T=1

E [ZT ]
(1− γ)κ

η
. (34)

To see the idea behind Lemma 5, we need to consider
the Lyapunov function LT = 1

2Z
2
T , where T is the frame

index and ZT is the virtual-queue length at the beginning
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of T th frame. Recall that each frame contains Kβ consecu-
tive steps. In the proof of Lemma 5, we will show that the
Lyapunov-drift satisfies

E[LT+1 − LT ] ≤ a negative drift

+ 2 + E [ZT ]
(1− γ)κ

Kβ
− η

Kβ

(T+1)Kβ∑
k=TKβ+1

Φk, (35)

where

Φk =(1− γ)

(∑
a

{
Q̂kq

ε,∗
}

(sk, a)− Q̂k(sk, ak)

+
Zk
η

∑
a

{
Ĉkq

ε,∗ − Cε,∗qε,∗
}

(sk, a)

)
.

Then summing both sides of the equation over all K1−β

frames, we can obtain

E[L1 − LK1−β+1]

≤2K1−β +

K1−β∑
T=1

E [ZT ]
(1− γ)κ

Kβ
− η

Kβ

∑
k

Φk.

Therefore

(30) + (31) =
∑
k

Φk

≤K
βE[L1 − LK1−β+1]

η
+

2K

η
+

K1−β∑
T=1

E [ZT ]
(1− γ)κ

η

≤2K

η
+
K1−β∑
T=1

E [ZT ]
(1− γ)κ

η
,

where the last inequality holds because L1 = 0 and LT ≥ 0
for all T.

Then combining the result form (32) and Lemma 5, we
can obtain

K∑
k=1

((1− γ)
(
V ε,∗(sk)− Q̂k(sk, ak))

)

≤2K

η
+
K1−β∑
T=1

E [ZT ]
(1− γ)κ

η
+

3H

ηK
. (36)

The term E[ZT ] is proved uniformly bounded in Lemma 6
by using the Lyapunov-drift analysis on the moment gener-
ating function of Z i.e. E[erZ] can be bounded by a con-
stant uniformly over the entire learning horizon. The reason
is that when the virtual queue Z is large, our algorithm takes
actions to almost greedily reduce the virtual-queue.
Lemma 6. Assuming ε ≤ δ

2 and H ≥ 6κ
δ , we have for any

1 ≤ T ≤ K1−β ,

E[ZT ] ≤ 92

δ
log

(
24

δ

)
+

6η

δ
.

We apply the following lemma to bound the last term (21).

Lemma 7. For any T ∈ [K1−β ] and any m ∈ Z+,

E

 TKβ∑
k=(T−1)Kβ+1

({
(1− γ)Q̂k − r

}
(sk, ak)

) ≤ 2mS

+ γmKβ +
Kβm

χ
+ 4(1− γ)mκ

√
(χ+ 1)SAKβι

E

 TKβ∑
k=(T−1)Kβ+1

({
(1− γ)Ĉk − g

}
(sk, ak)

) ≤ 2mS

+ γmKβ +
Kβm

χ
+ 4(1− γ)mκ

√
(χ+ 1)SAKβι.

This lemma is one of our key technical contributions,
which shows that the cumulative estimation error over one
frame (Kβ consecutive episodes) between weighted re-
ward(utility) Q-value functions and average reward (utility)
is upper bounded. From the lemma above, we can immedi-
ately conclude that:

E

[
K∑
k=1

({
(1− γ)Q̂t − r

}
(sk, ak)

)]
≤ γmK +

Km

χ

+ 4(1− γ)mκ
√

(χ+ 1)SAK2−βι+ 2mSK1−β (37)

To balance the terms in regret, we carefully select that

m = H logK = K
1
6 logK, χ = K

1
3 , β =

2

3
.

Then we have

γm =

(
1− 1

H

)H logK

≤ 1

K
, (38)

and the order of the second and third terms in the above
equation (37) is Õ(K

5
6 ), which is also the dominate term

in our regret bound.
Then by appropriately choosing other parameters ε, ι and

η, to balance the terms and combining the results from (36),
(37), Lemma 2, Lemma 3, and Lemma 6, we finish the proof
for the regret bound. The details can be found in the supple-
mentary material.

Constraint Violation Analysis
Recall that we use ZT to denote the value of virtual-queue
in frame T. According to the update of virtual-queue length,
we have

ZT+1 =

(
ZT + ρ+ ε− C̄T

T β

)+

≥ZT + ρ+ ε− C̄T
Kβ

, (39)

which implies that

TKβ∑
k=(T−1)Kβ+1

(−g(sk, ak) + ρ) ≤ Kβ (ZT+1 − ZT )
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Figure 1: A Grid World with Safety Constraints

+
TKβ∑

k=(T−1)Kβ+1

(
(1− γ)Ĉk(sk, ak)− g(sk, ak)− ε

)
.

Summing the inequality above over all frames and taking ex-
pectation on both sides, we obtain the following upper bound
on the constraint violation:

E

[
T∑
t=1

ρ− g(sk, ak)

]
≤ −Kε+KβE [ZK1−β+1]

+ E

[
K∑
k=1

(1− γ)Ĉk(sk, ak)− g(sk, ak)

]
, (40)

where we used the fact Z1 = 0. Combining the upper
bound on the estimation error of Ĉk in Lemma 7 and the
upper bound on E[ZT ] in Lemma 6 yields the constraint vi-
olation bound. Furthermore, under our carefully choices of
m, γ, ε, η, α, β and ι, it can be easily verified that Kε domi-
nates the upper bounds in (40), which leads to fact that con-
straint violation because zero when K is sufficiently large.
In particular, under our assumption onK,which implies that
ε ≤ δ

2 , and leads to

Violation(K) = 0.

The details can be found in the supplementary material.

Simulations
In this section, we present simulation results that evaluate
our algorithm using the 2D safety grid-world exploration
problem (Zheng and Ratliff 2020; Leike et al. 2017). Fig-
ure 1 shows the map of a 10× 10 grid-world with a total of
100 states. We chose an error probability 0.03 which means
with probability 0.03 the agent will choose an action uni-
formly at random to make the environment stochastic. The
objective of the agent is to travel to the destination (the red
star) from the original position (the blue triangle) as quickly
as possible while limiting the number of times hitting the ob-
stacles (the yellow squares). Hitting an obstacle incurs cost
1 and otherwise, there is no cost. The reward for the desti-
nation is 1, and for others are the normalized Euclidean dis-
tance between them and the destination times a scaled factor
0.1. We set constraint limit as 0.15 through the simulation
which means the expected cost rate should below the limit.
To account for statistical significance, the results of each ex-
periment are averaged over 5 trials. We remark that in the

Figure 2: Average reward and cost of our algorithm and Op-
timistic Q-learning during training. The shaded region rep-
resents the standard deviations.

simulation we consider the following constraint

lim inf
K→∞

1

K
Eπ

[
K∑
k=1

g(sk, ak)

]
≤ ρ,

which is similar to the constraint that the average utility
needs to be above a threshold.

Figure 2 shows the performance comparison of our algo-
rithm in terms of average reward and average cost during
training compared with the algorithm in (Wei et al. 2020).
We can see that our algorithm is able to learn a policy that
achieves a high reward while satisfying the safety constraint
very quickly. The optimistic Q-learning algorithm (Wei et al.
2020) was for unconstrained MDPs, so it yields a higher re-
ward but also violates the safety constraint.

We further generalized Triple-QA for environments with
continuous state and action spaces by incorporating with
neural network function approximations. The details are in-
cluded in the supplementary material.

Conclusion
In this paper, we proposed the first model-free RL algorithm
for infinite-horizon average-reward CMDPs. The design of
the algorithm is based on the primal-dual approach. By us-
ing the Lyapunov drift analysis, we proved that our algo-
rithm achieves sublinear regret and zero constraint violation.
Our regret bound scales as Õ(K

5
6 ) and is suboptimal com-

pared to model-based approaches. However, this is the first
model-free and simulator-free algorithm with sub-linear re-
gret and optimal constraint violation. It is still an interesting
open problem that how to achieve Õ(

√
K) regret bound via

model-free algorithms.
The algorithm is also computationally efficient from al-

gorithmic perspective because it is model-free, which means
that it is potential to apply our method for complex and chal-
lenging CMDPs in practice. Simulation result also demon-
strates the good performance of our algorithm.
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