
TextHoaxer: Budgeted Hard-Label Adversarial Attacks on Text

Muchao Ye,1 Chenglin Miao,2 Ting Wang,1 Fenglong Ma1*

1The Pennsylvania State University, University Park, Pennsylvania 16802
2University of Georgia, Athens, Georgia 30602

muchao@psu.edu, cmiao@uga.edu, ting@psu.edu, fenglong@psu.edu

Abstract

This paper focuses on a newly challenging setting in hard-
label adversarial attacks on text data by taking the budget
information into account. Although existing approaches can
successfully generate adversarial examples in the hard-label
setting, they follow an ideal assumption that the victim model
does not restrict the number of queries. However, in real-
world applications the query budget is usually tight or lim-
ited. Moreover, existing hard-label adversarial attack tech-
niques use the genetic algorithm to optimize discrete text
data by maintaining a number of adversarial candidates dur-
ing optimization, which can lead to the problem of gener-
ating low-quality adversarial examples in the tight-budget
setting. To solve this problem, in this paper, we propose a
new method named TextHoaxer by formulating the budgeted
hard-label adversarial attack task on text data as a gradient-
based optimization problem of perturbation matrix in the con-
tinuous word embedding space. Compared with the genetic
algorithm-based optimization, our solution only uses a sin-
gle initialized adversarial example as the adversarial candi-
date for optimization, which significantly reduces the num-
ber of queries. The optimization is guided by a new objec-
tive function consisting of three terms, i.e., semantic similar-
ity term, pair-wise perturbation constraint, and sparsity con-
straint. Semantic similarity term and pair-wise perturbation
constraint can ensure the high semantic similarity of adver-
sarial examples from both comprehensive text-level and in-
dividual word-level, while the sparsity constraint explicitly
restricts the number of perturbed words, which is also helpful
for enhancing the quality of generated text. We conduct ex-
tensive experiments on eight text datasets against three repre-
sentative natural language models, and experimental results
show that TextHoaxer can generate high-quality adversarial
examples with higher semantic similarity and lower pertur-
bation rate under the tight-budget setting.

Introduction
Deep neural networks (DNNs) have gone through rapid de-
velopment in recent years, and they have been successfully
utilized in various natural language processing (NLP) tasks
such as text classification (Zhang, Zhao, and LeCun 2015)
and natural language inference (Bowman et al. 2015). Al-
though researchers are thrilled to witness the employment

*Corresponding author.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of DNN technologies in making machines better understand
human language, they still doubt the robustness and secu-
rity of DNNs despite their superior prediction performance.
Thus, to improve the reliability of implementing DNNs in
real-world NLP applications, it is necessary to improve the
techniques for understanding the robustness of text DNNs.

To achieve this goal, the primary task is to reveal the sen-
sitivity of DNNs by enhancing the adversarial attack tech-
nique, which is to generate adversarial examples on text
to fool DNNs and change their correct predictions to in-
correct ones by adding small perturbation to the input text
data. Existing researches have gradually made the setting of
generating adversaries more and more realistic from con-
ducting white-box adversarial attacks (Ebrahimi et al. 2018)
to black-box ones (Li et al. 2019; Ren et al. 2019; Ma-
heshwary, Maheshwary, and Pudi 2021). In the early stage,
black-box methods are usually proposed in the soft-label set-
ting, which requires the victim model to provide the prob-
ability scores of all categories (Li et al. 2019; Ren et al.
2019). However, it is still unrealistic because in the real-
world scenarios, DNNs are deployed through application
programming interfaces (APIs), and users have no access
to both parameter gradients and probability distributions of
all categories. Thus, researchers further develop black-box
text adversarial attack methods in the hard-label (decision-
based) setting, which only utilizes the predicted labels with
the maximum probability output by the victim models (Ma-
heshwary, Maheshwary, and Pudi 2021). Although we shall
be delightful to see such a progress in text adversarial at-
tacks, there still exists a gap between the existing method-
ologies and the real-world adversarial attack setting.

To elaborate, in real-world applications, DNN systems
usually restrict the number of queries from users to defend
against malicious attacks. Therefore, it is impossible for at-
tackers to constantly query the text DNN systems. However,
such an important constraint, i.e., hard-label adversarial at-
tacks with a tight budget, is ignored by existing work (Ma-
heshwary, Maheshwary, and Pudi 2021). In fact, this draw-
back stems from the optimization approach used by existing
work. Since text data are discrete and gradient-based opti-
mization approaches cannot directly work on such a discrete
space, existing work uses the genetic algorithm (GA) for op-
timization. To move the adversarial examples close to the
decision boundary, the GA-based optimization approaches

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

3877

must generate a large population of adversarial candidates
first because a single one will not give GA enough search
space to generate good adversarial examples. This step un-
avoidably cost many queries from text DNN system, which
can lead to the failure of GA-based optimization when the
query budget is tight. Thus, how to design an effective opti-
mization approach for the tight-budget hard-label adversar-
ial attacks is a new challenge that needs our attention.

To address this challenge, in this paper we propose a new
method named TextHoaxer for conducting adversarial at-
tacks in the tight-budget hard-label setting, which formu-
lates the hard-label adversarial attack as a gradient-based
optimization problem in the word embedding space. The in-
tuition behind such a formulation for the tight-budget hard-
label setting is that searching optimal adversarial example in
the high-dimensional continuous word embedding space al-
lows us to represent word perturbations in a perturbation ma-
trix with an identical shape for different adversarial exam-
ples. Consequently, unlike the GA-based optimization that
needs a large population of adversarial candidates for opti-
mization, we only use one adversarial candidate and employ
the gradients of the objective function w.r.t. the perturbation
matrix to generate high-quality adversarial examples.

The objective function consists of three terms, i.e., seman-
tic similarity term, pair-wise perturbation constraint, and
sparsity constraint. Since the goal of text adversarial attacks
is to generate adversarial examples with higher semantic
similarity, we use an auxiliary function to measure the com-
prehensive text-level semantic similarity between the adver-
sarial example x′ and the original input x and then to guide
the optimization. Besides, we use two constraints to fur-
ther enhance the quality of generated adversarial examples.
Intuitively, in the word embedding space, the smaller vec-
tor difference (i.e., the perturbation matrix P) between x′
and x means the higher similarity of these two sentences
in the semantic space. Thus, we use the L2 distance be-
tween each pair of words in the embedding space as the pair-
wise perturbation constraint. Similarly, a smaller number of
changed words also indicates higher semantic similarity. To-
wards this end, we design a sparsity constraint to explicitly
restrict the number of perturbed words. Using this objective
function w.r.t. P formulated in the word embedding space,
we then optimize the generated adversarial example given a
single initialized candidate via the alternating optimization
method. To sum up, our contributions are as follows:

• To the best of our knowledge, we are the first to utilize
the blessing of dimensionality (Gorban and Tyukin
2018) of word embedding space and formulate the
hard-label text adversarial attack problem as a gradient-
based optimization problem in a high-dimensional
space. The implementation code is available at
https://github.com/machinelearning4health/TextHoaxer.

• By utilizing the semantic representation encoded in the
embedding space, we propose a new method named Tex-
tHoaxer, which is able to generate adversarial examples
with higher semantic similarity under the tight-budget
setting without consuming unnecessary queries, e.g., on
repeated operations for constructing an adversarial exam-

ple group like the GA-based optimization.
• We propose an optimization formulation w.r.t. the per-

turbation matrix by taking both semantic deviations and
sparsity into consideration. The proposed framework can
continuously search better substitutes for original words
while penalizing the substitutions in insignificant posi-
tions. As a result, the semantic similarity of generated
text adversarial examples can further improve during the
optimization.

• The experimental results show that the proposed method
is able to generate adversarial examples with higher se-
mantic similarity and lower perturbation rate in eight
commonly used text datasets compared to existing meth-
ods in the tight-budget setting. Furthermore, additional
quantitative and qualitative experiments also verify the
effectiveness of the proposed TextHoaxer.

Methodology
Problem Formulation
Suppose we have a text sample x with n words x =
[w1, w2, · · · , wn] whose ground truth label is y. We call x′
an adversarial example when x′ can make the victim model
f that previously could correctly classify x into the class of
y (f(x) = y) change its prediction, i.e.,

f(x′) 6= f(x),

which is constructed by replacing the original words wi’s
with a synonym s in the synonym set Swi

. The goal of the
text adversarial attack task is to generate an optimal adver-
sarial example x∗ among all x′. Note that in this paper, we
focus on the more realistic and practical hard-label setting,
and the black-box victim model f only outputs the discrete
predicted label ŷ = f(x′).

Since text data consists of discrete words whose change
can be perceived by humans, we always want the optimized
adversarial example x∗ to be semantically closest to the orig-
inal text sample x. Thus, the objective function of this task
can be defined as follows:

x∗ = min
x′
−G(x, x′), s.t. f(x′) 6= f(x), (1)

where G(x, x′) denotes the semantic similarity between x
and x′, and the minus sign is for minimization formulation.

The Proposed TextHoaxer
Overview Existing worksuse heuristic algorithms such as
GA (Maheshwary, Maheshwary, and Pudi 2021) to search
a solution to the objective function Eq. (1). However, as
discussed in the previous section, the GA-based optimiza-
tion needs a large number of queries to generate adversar-
ial examples with high semantic similarity, which is not
suitable for the tight-budget hard-label setting. To address
this problem, we propose TextHoaxer as shown in Fig-
ure 1, which maintains only one adversarial candidate x′0
that walks around in a high-dimensional word embedding
space to find the optimal adversarial candidate x∗ based on
the perturbation matrix P.

3878

𝑥

𝑥

…

𝑥

𝑥

𝑥
∗

𝐏
𝐏

…𝐏

Decision

Boundary

Word

Embedding

Space

Figure 1: Overview of TextHoaxer for hard-label text ad-
versarial attack. With an initialized adversarial example x′0,
the optimization in TextHoaxer is guided by the perturbation
matrix calculated in the word embedding space.

Initialization For each input x, we first get an initialized
adversarial candidate x′0 by random initialization (Mahesh-
wary, Maheshwary, and Pudi 2021), if there exists an x′0 that
satisfies f(x′0) 6= f(x). For each word wi in x, we can uti-
lize a pretrained word embedding spaceH such as Counter-
Fitted Word Vectors (Mrksic et al. 2016) to obtain its word
embedding ei = [e(i,1), e(i,2), · · · , e(i,m)] ∈ R1×m, where
m is the dimension of word embedding. As a result, we can
get an n×m embedding matrix E for x and similarly E0 for
x′0 inH. Based on E and E0, we can get an initial perturba-
tion matrix P0 = E0 − E. By minimizing the perturbation
matrix under the objective function, TextHoaxer is able to
efficiently optimize x′0 and improve its semantic similarity.

Objective Function An ideal adversarial example x∗

should have high semantic similarity with the original text
x. Otherwise, it is easy for humans to realize it is adversar-
ial. Thus, the goal of this task is to optimize the initialized x′0
to make it have higher semantic similarity and close to the
decision boundary of the victim model f . To this end, we in-
corporate an auxiliary semantic similarity calculation func-
tion sim(·, ·) to guide the optimization, where sim(·, ·) is a
model that can output the semantic similarity between two
text samples, e.g., Universal Sequence Encoder (Cer et al.
2018). Recall that the perturbation matrix P is a combina-
tion of difference vectors denoting how far the substitution
words deviate the original words in the embedding space.
Given the perturbation matrix P at any step during optimiza-
tion, we can utilize the embedding matrix E′ = E+P to get
a new adversarial text example x′ first. More specifically, for
each embedding e′i = ei+pi of the i-th word in E′, we map
it to a word s in the synonym set Swi

(including wi itself)
by calculating the L2 norm between e′i and the word embed-
ding of every s ∈ Swi

. Then the synonym with the smallest
distance will be treated as the i-th word w′i in x′.

After getting the new adversarial example x′ in the pro-
cess described above, we explicitly define our objective
function in Eq. (1) by measuring the semantic similarity with
sim(·, ·) based on the perturbation matrix P as follows:

`sim(P) = −sim(x, x′), s.t. f(x′) 6= f(x), (2)
where the minus sign is for minimization formulation. Note
that our objective function is defined in the continuous word

embedding space. To increase the semantic similarity be-
tween x and x′ and try to achieve the optimal, Eq. (2)
may update each element in P, which leads to the dramatic
change of the perturbation matrix P. In such a case, when
we map E′ to x′, most words in x′ will be different from x,
even for those unimportant words that are the same in both
x and x′0. Thus, only optimizing Eq. (2) cannot completely
guarantee low perturbation rate and may hurt the quality of
the generated adversarial example. To mitigate this problem,
we propose two effective constraints as follows.

Pair-wise Perturbation Constraint. It is known that the
word embedding space contains semantic information of dif-
ferent words. If we want to generate an adversarial example
x∗ with high semantic similarity, it is beneficial that each
pair of the original wordwi and its substitute is close to each
other in the space H. Since the matrix P can be written as
P = [p1,p2, · · · ,pn]T where pi is the vector difference
of wi and its substitute in the embedding space, we use the
following constraint to restrict the deviation of semantics for
each pair to achieve the goal of optimizing the semantic sim-
ilarity of adversarial example, which can be measured by the
squared L2 norm of pi, i.e.,

`pwp(P) =
n∑
i=1

||pi||22. (3)

Sparsity Constraint. Another aspect that we need to
consider for optimizing P is the sparsity of word substitu-
tion because retaining original words is helpful for main-
taining original semantics. Towards this end, we divide
each pi into two components, i.e., magnitude γi and di-
rection ρi, and we then have P = [p1,p2, · · · ,pn]T =
[γ1ρ1, γ2ρ2, · · · , γnρn]T.

Now we can employ the magnitude component to con-
strain the sparsity, and ideally, all magnitudes are close to
0. The following sparsity constraints is used for guiding the
optimization:

`spa(P) =

n∑
i=1

|γi|. (4)

Final Loss. Based on Eq. (2), Eq. (3), and Eq. (4), we
have the following overall objective function to help us gen-
erate adversarial examples with high semantic similarity and
small perturbation rate, i.e.,

min
P
L = min

P
λ1`sim + λ2`pwp + λ3`spa,

s.t. f(x′) 6= f(x),
(5)

where λ1, λ2 and λ3 are positive scalar hyperparameters,
and the constraint f(x′) 6= f(x) can be easily tested by
putting each generated sample into the victim model .

Optimization Procedure In this subsection, we discuss
how to optimize P in Eq. (5). As mentioned before, for
each perturbation in the embedding space, P can be writ-
ten as P = [γ1ρ1, γ2ρ2, · · · , γnρn]T. Thus, given the
objective function in Eq (5), we need to optimize both
[ρ1,ρ2, · · · ,ρn] and γ = [γ1, · · · , γn], respectively. Since
they do not have closed form solutions, we need to opti-
mize them in an alternating optimization fashion. In other

3879

words, we need to estimate their solutions by firstly opti-
mizing ρi’s with fixed γi’s, and in turn, optimizing γi’s with
fixed ρi’s. Suppose that we optimize them by an iterative
process in T steps. The optimization process in each step t
(0 ≤ t ≤ T − 1) is described as below, where we denote x′t
as the adversarial example we have during step t.

Optimizing ρi. In step t, we fix all the γi’s and start
to optimize [ρ1,ρ2, · · · ,ρn], which is solved in a gradi-
ent descent fashion similar to (Cheng et al. 2019). To spec-
ify, we first randomly sample a perturbation direction U =
[u1, · · · ,un]T ∈ Rn×m from a zero-mean Gaussian distri-
bution, and we can get a neighboring perturbation

V = P+ βU = [v1, · · · ,vn]T, (6)

where β is a hyperparameter for controlling the perturbation
strength. After that, we generate a new adversarial exam-
ple v′t that is a neighbor of previous adversarial example x′t
according to the perturbation V in a similar manner how
we construct x′: we replace the original words of x in de-
scending order of L2 norm of the perturbation V, and the
i-th word in v′t is the synonym s ∈ Swi

whose embed-
ding is closest to the embedding ei + vi measured by L2

norm. The replacement process stops as soon as the corre-
sponding neighboring sample v′t becomes adversarial, i.e.,
f(v′t) 6= f(x).

Now given v′t and x′t, using their corresponding semantic
similarity scores with original sample x, i.e., sim(x, v′t) and
sim(x, x′t), we get the gradient direction w.r.t. Eq (2) for the
i-th perturbation pi in step t,

g
(t)
i = − sim(x, v′t)− sim(x, x′t)

β
· ui, (7)

and then we update the perturbation pi for the i-th word in
step t by Eq. (5) as

pi ← pi − η1(g(t)
i + 2λ2pi), (8)

where η1 is a hyperparameter, and ρi at time step t is up-
dated as ρi = pi/γi with fixed γi.

Optimizing γi. After we optimize [ρ1,ρ2, · · · ,ρn], we
then begin to optimize γ = [γ1, · · · , γn]. According to
Eq. (5), we can optimize each γi by its gradient,

γi ← γi − η2∇γiL, (9)

where η2 is a hyperparameter, and∇γiL is calculated by

∇γiL = λ1∂`sim/∂γi + θ(λ3, γi), (10)

where θ(λ3, γi) is the soft threshold function as follows:

θ(λ3, γi) =

γi + λ3 if γi ≤ −λ3,
0 if |γi| ≤ λ3,
γi − λ3 if λ3 ≤ γi,

(11)

and ∂`sim/∂γi is estimated by removing the i-th word of the
adversarial example.

During the T iterations of alternatively optimizing ρi’s
and γi’s, we can obtain new adversarial example x′ after
getting new perturbation matrix, and we maintain the adver-
sarial example that has the highest semantic similarity. The
best one attained after T iterations is used as the optimized
solution x∗ for solving Eq. (5).

Experiments
In this section, we evaluate the performance of our proposed
attack method. Specifically, we first introduce the experi-
mental settings and then analyze the experimental results.

Experimental Settings
Datasets We adopt the following text datasets that are col-
lected against different text classification and natural lan-
guage inference: (1) MR (Pang and Lee 2005), a movie
review dataset used in the task of sentiment classifica-
tion with two categories (2) AG (Zhang, Zhao, and LeCun
2015), a news classification dataset with 4 classes includ-
ing “world”, “sports”, “business”, and “science”; (3) Ya-
hoo (Zhang, Zhao, and LeCun 2015), a topic classification
dataset collected from the questions and answers of Yahoo
with 10 clasess; (4) Yelp (Zhang, Zhao, and LeCun 2015),
a widely used text dataset collected for the binary senti-
ment classification task; (5) IMDB (Maas et al. 2011), an-
other binary sentiment classification dataset collected from
movie reviews; (6) SNLI (Bowman et al. 2015) and (7)
MNLI (Williams, Nangia, and Bowman 2018), two datasets
collected for the natural language inference task; and (8)
mMNLI, a variant of the MNLI dataset with mismatched
premise and hypotheses pairs. In our experiments, we follow
the settings of (Maheshwary, Maheshwary, and Pudi 2021)
and (Jin et al. 2020), taking the same 1,000 test samples of
each dataset to conduct adversarial attack.

Victim Models For fair comparison with existing hard-
label adversarial attack methods, we adopt the follow-
ing victim models: BERT (Devlin et al. 2019), Word-
CNN (Kim 2014), and WordLSTM (Hochreiter and Schmid-
huber 1997), which are widely used in natural language
processing tasks. For WordCNN and WordLSTM, the input
words are embedded into 200 dimensional Glove (Penning-
ton, Socher, and Manning 2014) embeddings.

Baselines The adopted baseline methods are all proposed
for the black-box text adversarial attack. For the methods
that are originally proposed in the soft-label setting, we take
the hard-label scores as their inputs. The baselines include
(1) TextFooler (Jin et al. 2020), a soft-label text adversarial
attack method which replaces the original words in the or-
der of the position importance scores, and the replacement
of original words are determined by the semantic similarity
change it brings; (2) PWWS (Ren et al. 2019), an improved
saliency score-based method that takes the soft-label score
changes into consideration; (3) TextBugger (Li et al. 2019),
another soft-label black-box method that uses the saliency
score as the guide of adversarial examples construction; (4)
DeepWordBug (Gao et al. 2018), one of the earliest works
on soft-label black-box adversarial attack, effectively em-
ploying the saliency score of each word to determine the
order of words being attacked; and (5) HLBB (Maheshwary,
Maheshwary, and Pudi 2021), a recent method proposed in
the setting of hard-label text adversarial attack, which em-
ploys the genetic algorithm to optimize the semantic similar-
ity between the generated text sample and original samples.

The first step of baselines and TextHoaxer is to find an
initialized adversarial example. For the hard-label adversar-

3880

Dataset Method BERT WordCNN WordLSTM
Acc Sim Pert Acc Sim Pert Acc Sim Pert

MR

TextFooler

1.0%

56.7% 16.294%

0.7%

58.2% 15.961%

0.7%

58.6% 16.026%
PWWS 59.3% 16.082% 61.6% 15.695% 60.2% 16.438%

TextBugger 61.7% 15.056% 64.5% 14.615% 62.5% 15.184 %
DeepWordBug 61.5% 15.120% 62.8% 14.882% 63.6% 15.183%

HLBB 62.5% 14.532% 64.4% 14.028% 63.5% 14.462%
TextHoaxer 67.3% 11.905% 68.6% 12.056% 67.3% 12.324%

AG

TextFooler

2.8%

57.6% 18.954%

1.4%

68.8% 14.845%

5.7%

60.0% 18.902%
PWWS 58.4% 18.538% 70.0% 15.353% 61.1% 18.689%

TextBugger 60.6% 17.871% 72.0% 14.167% 62.9% 17.592%
DeepWordBug 60.2% 17.845% 71.7% 14.315% 63.4% 17.579%

HLBB 60.5% 17.769% 71.9% 13.855 % 61.8% 17.890%
TextHoaxer 63.2% 15.766% 73.9% 12.716% 63.8% 16.520%

Yahoo

TextFooler

0.5%

64.0% 8.594%

0.8%

69.4% 9.197%

1.9%

61.5% 10.140%
PWWS 65.7% 8.555% 70.2% 9.158% 62.2% 10.298%

TextBugger 66.6% 8.266% 71.6% 8.775% 63.8% 9.504%
DeepWordBug 65.8% 8.228% 71.6% 8.787% 63.3% 9.895%

HLBB 68.7% 7.453% 71.9% 8.564% 63.8 % 9.531%
TextHoaxer 70.2% 6.841% 74.8% 7.740% 67.0% 8.502%

Yelp

TextFooler

5.2%

69.5% 10.874%

0.6%

76.8% 10.300%

3.2%

76.9% 9.120%
PWWS 70.5% 10.884% 77.8% 10.311% 77.0% 9.201%

TextBugger 71.1% 10.814% 78.2% 9.898% 78.2% 8.920%
DeepWordBug 71.7% 10.518% 78.3% 9.823% 78.6% 8.832%

HLBB 71.9% 10.411% 79.7% 9.102% 78.8% 8.654%
TextHoaxer 73.8% 9.585% 81.3% 8.545% 80.4% 8.108%

IMDB

TextFooler

0.1%

82.2% 5.804%

0.0%

89.4% 4.433%

0.3%

86.7% 4.626%
PWWS 82.1% 5.822% 89.3% 4.519% 87.5% 4.665%

TextBugger 82.9% 5.662% 89.7% 4.349% 87.3% 4.606%
DeepWordBug 82.7% 5.612% 89.6% 4.412% 87.3% 4.516%

HLBB 83.2% 5.571% 89.2% 4.529 % 87.6% 4.464%
TextHoaxer 84.7% 5.202% 90.1% 4.266% 88.8% 4.197%

Table 1: Comparison of semantic similarity (Sim) and perturbation rate (Pert) with budget limit of 1,000 when attacking against
text classification models. Acc stands for model prediction accuracy after adversarial attack, which is determined by the random
initialization step and the same for different adversarial attack methods.

ial attack methods in the image domain, they (Chen, Jordan,
and Wainwright 2020) usually attain initialized adversarial
examples by gradually increasing of uniform noise weight
to the original image until it is misclassified due to the un-
availability of soft-label scores. Similarly, a random word
initialization method is adopted by HLBB to find initialized
adversarial examples and can achieve relatively high attack
success rate. Thus, in experiments for fair comparison all
methods use the same random word initialization to initial-
ize the adversarial examples, which leads to the same attack
success rate after adversarial attacks for all methods.

Evaluation Metrics The evaluation metrics we use to
quantify the quality of the generated adversarial examples
include semantic similarity and perturbation rate. The se-
mantic similarity sim(·, ·) is calculated by putting the orig-
inal text sample and generated adversarial example into the
Universal Sequence Encoder (Cer et al. 2018), which is in
the range of [0, 1] and the higher the better. As for the per-
turbation rate, it is defined as the ratio of the changed words
in the generated sample compared to the original text sam-

ple, and the lower the better.

Setting of TextHoaxer TextHoaxer is implemented with
an NVIDIA V100 GPU. The used word embedding spaceH
is from Counter-Fitted Word Vectors (Mrksic et al. 2016).
The synonym Swi

for each word wi is the same with the
baselines. We set λ1 = 1, λ2 = λ3 = 0.1, β = 0.5, η1 =
0.3 and η2 = 0.05, and all γi’s are initialized as 0.3. We
keep λ2 and λ3 relatively smaller than λ1 to make them as
regularizers, β and η1 relatively large to have large step size,
and η2 and γi’s relatively small to achieve high sparsity.

Experimental Results
Performance Comparison In this paper, the budget is de-
fined as the number of allowed queries from the attacker.
Based on the initialized adversarial examples generated by
the random initialization method, our goal is to further find
out the adversarial examples with higher semantic similarity
and lower perturbation rate under the tight budget. Due to the
space limit, we only show the comparison results when bud-
get is 1,000, which are relatively tight. As shown in Table 1

3881

Model SNLI MNLI mMNLI
Acc Sim Pert Acc Sim Pert Acc Sim Pert

TextFooler

1.3%

29.7% 20.043%

2.9%

42.6% 16.455%

1.7%

43.7% 16.035%
PWWS 31.9% 20.016% 44.5% 16.426% 45.7% 16.056%

TextBugger 33.2% 19.322% 47.1% 15.208% 48.0% 15.055%
DeepWordBug 33.4% 19.200% 46.8% 15.270% 47.4% 15.248%

HLBB 35.9% 18.510% 49.6% 14.498% 50.7% 14.349%
TextHoaxer 38.7% 16.615% 52.9% 12.730% 54.4% 12.453%

Table 2: Comparison of semantic similarity and perturbation rate when attacking against natural language inference model
(BERT) with budget limit of 1,000.

Method Average Rank of Adversarial
Example w.r.t. Similarity

TextHoaxer 3.39 (SD=1.44)
HLBB 3.39 (SD=1.51)

TextFooler 3.43 (SD=1.79)
DeepWordBug 3.52 (SD=1.72)

PWWS 3.58 (SD=1.55)
TextBugger 3.67 (SD=1.55)

Table 3: Human evaluation results. “SD” denotes the stan-
dard deviation, and the lower SD is the better one.

and Table 2, when the query limit is 1,000, our method can
generate optimized adversarial examples with higher seman-
tic similarity and lower perturbation rate in all cases for text
classification and natural language inference models. Partic-
ularly, for the MR dataset, which contains relatively short
text, the average semantic similarity of the adversarial ex-
amples generated by our method is 4.8%, 4.1%, and 3.7%
higher than that of the second best method when the vic-
tim models are BERT, WordCNN, and WordLSTM, respec-
tively, and the average perturbation rate is 2.627%, 1.972%,
and 2.138% lower than that of the second best method when
the victim models are BERT, WordCNN, and WordLSTM,
respectively. Furthermore, since HLBB is a strong hard-
label baseline, we compare the semantic similarity and per-
turbation rate w.r.t. different budget limits between HLBB
and TextHoaxer with budget sampling at 100, 400, 700 and
1,000. Without the loss of generality, we show the compar-
ison results of attacking WordLSTM on IMDB dataset. As
shown in Figure 2, the average semantic similarity of Tex-
tHoaxer keeps on increasing as the budget increases, and it
is always higher than that of HLBB. We also observe that
the average perturbation rate of TextHoaxer has the trend of
decreasing as the budget increases, and it is always lower
than that of HLBB. These results further verify that Tex-
tHoaxer has the capacity of generating adversarial examples
with high semantic similarity and low perturbation rate in
the tight-budget setting.

The reasons why TextHoaxer outperforms existing black-
box methods in the tight-budget hard-label setting are as fol-
lows. First, for the soft-label methods, they need to replace
all the synonyms for the attacked word one by one to find
out the best substitute, which will cost lots of query budgets,
and in the hard-label setting it is hard for them to distin-

(a) IMDB (Sim) (b) IMDB (Pert)

Figure 2: Performance comparison w.r.t. different budget
limits between HLBB and TextHoaxer against WordLSTM.

guish the semantic difference between synonyms when they
do not know the prediction probability distribution for dif-
ferent categories. As for hard-label methods such as HLBB,
they need to maintain an adversarial example group and se-
lect the best one among them as the output. Thus, they have
to spend some query budgets repeatedly on the same oper-
ation for different individuals, which is disadvantageous in
the tight-budget setting. As for TextHoaxer, its optimization
direction is guided by the gradients w.r.t perturbation matrix
in the word embedding space, which avoids the trouble of
trying all synonyms and maintaining an candidate group.

Human Evaluation and Case Study Additionally, we
conduct a human evaluation experiment and ask participants
to evaluate the semantic similarity of adversarial examples
generated by the different methods. In this experiment, from
MR, AG, Yelp and IMDB we randomly select 5 original
samples in each of them to set up the evaluation samples.
In each set question we randomize the order of adversarial
examples output by different methods and ask the human
evaluators to rank the semantic similarity of 6 correspond-
ing adversarial examples generated by baselines and Tex-
tHoaxer after reading the original text sample, and they are
allowed to have tied ranks for different samples. Given their
results, we then calculate the mean rank and standard devia-
tion (SD) of all samples by each method. As Table 3 shows,
the adversarial examples generated by the proposed method
and HLBB are ranked the top w.r.t. semantic similarity eval-
uated by humans. Thus, the human evaluation results further
validate that the adversarial examples crafted by TextHoaxer
retain important semantic information of original text sam-
ples. In Table 4, we also show some adversarial examples

3882

Adversarial Example Change of Prediction
MR: An intense (ponderous) and effective film about loneliness and the chilly anonymity Positive→ Negativeof the environments where so many of us spend so much of our time
AG: Arctic team (grouping) finds ship remains. A team retracing the route of a group Science→Worldof victorian arctic explorers (colonist) have found parts of their 172 year old ship.

Yahoo: What is 13 as a fraction (percentage)? 13 Science & Mathematics
→ Business & Finance

Yelp: Very (rather) nice staff, I’m going to miss it as I move a little further away however I Positive→ Negativeuse the online ordering and it’s great (noteworthy) to wish other stores did this

Table 4: Adversarial examples generated by TextHoaxer in different datasets against the WordLSTM model. The substitute
words for each sample are ndicated by parentheses.

generated by TextHoaxer in different datasets. We can ob-
serve that TextHoaxer has the ability of substituting original
words with semantically similar synonyms and fooling the
victim models successfully. For instance, when people read
the adversarial example generated in the Yelp dataset which
replaces “very” to “rather” and “great” to “noteworthy”, they
usually will not think they have much semantic difference.

Related Work
Text adversarial attack begins to receive attention after
DNNs such as BERT (Devlin et al. 2019) have achieved
state-of-the-art performance in NLP tasks, and researchers
also find that text DNNs can also be easily fooled by text
adversarial examples. It is inspired by the observation in im-
ages that DNNs are so sensitive that their predictions can be
easily changed to incorrect labels when the adversarial im-
age with the human-imperceptible perturbation is put into
the DNNs (Carlini and Wagner 2017; Kurakin, Goodfellow,
and Bengio 2017; Chen et al. 2017; Brendel, Rauber, and
Bethge 2018), and adversarial examples are usually used
to improve the robustness of DNNs (Goodfellow, Shlens,
and Szegedy 2015; Zhu et al. 2020; Zhou et al. 2021c).
For instance, (Jia and Liang 2017) proposes the ADDSENT
method which successfully fools the reading comprehension
systems in a four-step procedure. Text adversarial attacks
can be categorized into white-box (Ebrahimi et al. 2018;
Zhou et al. 2021a) and black-box (Li et al. 2019; Jin et al.
2020; Ren et al. 2019; Maheshwary, Maheshwary, and Pudi
2021; Gao et al. 2018; Zhou et al. 2021b) settings, where the
latter cannot use parameter gradients.

This paper focuses on a more realistic hard-label black-
box adversarial attack setting. To illustrate, early-stage
black-box adversarial attack methods are proposed in the
soft-label setting, which rely on the probability distribution
of all categories to craft adversarial examples. For instance,
to generate adversarial examples, (Li et al. 2019) uses the
predicted probability changes after the word is removed and
after the word is substituted to determine the order of words
being attacked and the substitute of attacked word, respec-
tively. The latter hard-label setting is more challenging be-
cause the attackers could only know the predicted label in
adversarial example generation, and it has not received great
attention yet. To the best of our knowledge, (Maheshwary,
Maheshwary, and Pudi 2021) is one of the few successful
initial explorations in this setting, which generates an ini-

tial adversarial example by random initialization first and
later moving the adversarial example close to the decision
boundary by the genetic algorithm. One problem of exist-
ing work is that they are not proposed for a realistic setting
where query budget are limited. In this tight-budget setting,
HLBB (Maheshwary, Maheshwary, and Pudi 2021) can have
an inefficiency problem because the used genetic algorithm
spends numerous queries on an adversarial example group
to move adversarial examples near to the decision boundary.
As for TextHoaxer, it alleviates the inefficiency problem in
the tight-budget hard-label setting by formulating this prob-
lem as a gradient-based optimization problem for perturba-
tion matrix in the word embedding space, which can reduce
the consumption of queries by optimizing merely a single
adversarial candidate.

There have been research works (Chen, Jordan, and Wain-
wright 2020; Cheng et al. 2019) in using gradient-based
methods to conduct hard-label adversarial attacks on im-
ages. Compared to the methods on images, our work further
considers the mapping from gradients to discrete words and
includes two constraints for finding replacements.

Conclusion
Hard-label text adversarial attack with a tight budget is a
more realistic and challenging problem for revealing the ro-
bustness of text DNNs. Previous soft-label-based methods
cannot be directly applied in this scenario, and existing tech-
niques proposed for the hard-label setting suffer from the
inefficiency problem in a tight-budget setting for repeated
query consumption. To bridge such a methodological gap,
we propose a perturbation matrix optimization framework
named TextHoaxer based on a given word embedding space,
and harness the gradients of objective function w.r.t. pertur-
bation matrix to improve the efficiency of adversarial attacks
in the tight-budget hard-label setting. Additionally, the ob-
jective function consists of semantic similarity term, pair-
wise perturbation and sparsity constraints constructed from
the perturbation matrix, which are able to improve the se-
mantic similarity and reduce the perturbation rate of initial-
ized adversarial examples, and it is solved in an alternat-
ing optimization fashion. As for its performance, quantita-
tive and qualitative experiment results demonstrate that Tex-
tHoaxer is capable of generating high-quality adversarial ex-
amples with higher semantic similarity and lower perturba-
tion rate in the tight-budget setting.

3883

Acknowledgements
Wang is partially supported by the National Science Foun-
dation under Grant No. 1951729, 1953813 and 1953893.

References
Bowman, S. R.; Angeli, G.; Potts, C.; and Manning, C. D.
2015. A large annotated corpus for learning natural language
inference. In EMNLP, 632–642. The Association for Com-
putational Linguistics.
Brendel, W.; Rauber, J.; and Bethge, M. 2018. Decision-
Based Adversarial Attacks: Reliable Attacks Against Black-
Box Machine Learning Models. In ICLR. OpenReview.net.
Carlini, N.; and Wagner, D. A. 2017. Towards Evaluating
the Robustness of Neural Networks. In S&P, 39–57. IEEE
Computer Society.
Cer, D.; Yang, Y.; Kong, S.-y.; Hua, N.; Limtiaco, N.; John,
R. S.; Constant, N.; Guajardo-Céspedes, M.; Yuan, S.; Tar,
C.; et al. 2018. Universal sentence encoder.
Chen, J.; Jordan, M. I.; and Wainwright, M. J. 2020. Hop-
SkipJumpAttack: A Query-Efficient Decision-Based Attack.
In S&P, 1277–1294. IEEE.
Chen, P.; Zhang, H.; Sharma, Y.; Yi, J.; and Hsieh, C. 2017.
ZOO: Zeroth Order Optimization Based Black-box Attacks
to Deep Neural Networks without Training Substitute Mod-
els. In AISec@CCS, 15–26. ACM.
Cheng, M.; Le, T.; Chen, P.; Zhang, H.; Yi, J.; and Hsieh,
C. 2019. Query-Efficient Hard-label Black-box Attack: An
Optimization-based Approach. In ICLR. OpenReview.net.
Devlin, J.; Chang, M.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In NAACL-HLT, 4171–4186. As-
sociation for Computational Linguistics.
Ebrahimi, J.; Rao, A.; Lowd, D.; and Dou, D. 2018. HotFlip:
White-Box Adversarial Examples for Text Classification. In
ACL, 31–36. Association for Computational Linguistics.
Gao, J.; Lanchantin, J.; Soffa, M. L.; and Qi, Y. 2018. Black-
Box Generation of Adversarial Text Sequences to Evade
Deep Learning Classifiers. In S&P Workshops, 50–56. IEEE
Computer Society.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2015. Explain-
ing and Harnessing Adversarial Examples. In ICLR.
Gorban, A. N.; and Tyukin, I. Y. 2018. Blessing of dimen-
sionality: mathematical foundations of the statistical physics
of data. Philosophical Transactions of the Royal Soci-
ety A: Mathematical, Physical and Engineering Sciences,
376(2118): 20170237.
Hochreiter, S.; and Schmidhuber, J. 1997. Long Short-Term
Memory. Neural Comput., 9(8): 1735–1780.
Jia, R.; and Liang, P. 2017. Adversarial Examples for Evalu-
ating Reading Comprehension Systems. In EMNLP, 2021–
2031. Association for Computational Linguistics.
Jin, D.; Jin, Z.; Zhou, J. T.; and Szolovits, P. 2020. Is BERT
Really Robust? A Strong Baseline for Natural Language At-
tack on Text Classification and Entailment. In AAAI, 8018–
8025. AAAI Press.

Kim, Y. 2014. Convolutional Neural Networks for Sentence
Classification. In EMNLP, 1746–1751. ACL.
Kurakin, A.; Goodfellow, I. J.; and Bengio, S. 2017. Ad-
versarial examples in the physical world. In ICLR. OpenRe-
view.net.
Li, J.; Ji, S.; Du, T.; Li, B.; and Wang, T. 2019. TextBug-
ger: Generating Adversarial Text Against Real-world Appli-
cations. In NDSS. The Internet Society.
Maas, A. L.; Daly, R. E.; Pham, P. T.; Huang, D.; Ng, A. Y.;
and Potts, C. 2011. Learning Word Vectors for Sentiment
Analysis. In ACL, 142–150. The Association for Computer
Linguistics.
Maheshwary, R.; Maheshwary, S.; and Pudi, V. 2021. Gener-
ating Natural Language Attacks in a Hard Label Black Box
Setting. In AAAI, 13525–13533. AAAI Press.
Mrksic, N.; Séaghdha, D. Ó.; Thomson, B.; Gasic, M.;
Rojas-Barahona, L. M.; Su, P.; Vandyke, D.; Wen, T.; and
Young, S. J. 2016. Counter-fitting Word Vectors to Linguis-
tic Constraints. In Knight, K.; Nenkova, A.; and Rambow,
O., eds., NAACL-HLT, 142–148. The Association for Com-
putational Linguistics.
Pang, B.; and Lee, L. 2005. Seeing Stars: Exploiting Class
Relationships for Sentiment Categorization with Respect to
Rating Scales. In ACL, 115–124. The Association for Com-
puter Linguistics.
Pennington, J.; Socher, R.; and Manning, C. D. 2014. Glove:
Global Vectors for Word Representation. In EMNLP, 1532–
1543. ACL.
Ren, S.; Deng, Y.; He, K.; and Che, W. 2019. Generating
Natural Language Adversarial Examples through Probabil-
ity Weighted Word Saliency. In ACL, 1085–1097. Associa-
tion for Computational Linguistics.
Williams, A.; Nangia, N.; and Bowman, S. R. 2018. A
Broad-Coverage Challenge Corpus for Sentence Under-
standing through Inference. In NAACL-HLT, 1112–1122.
Association for Computational Linguistics.
Zhang, X.; Zhao, J. J.; and LeCun, Y. 2015. Character-level
Convolutional Networks for Text Classification. In NeurIPS,
649–657.
Zhou, Y.; Wang, H.; He, J.; and Wang, H. 2021a. From In-
trinsic to Counterfactual: On the Explainability of Contex-
tualized Recommender Systems. arXiv:2110.14844.
Zhou, Y.; Wu, J.; Wang, H.; and He, J. 2021b. Adversarial
Robustness through Bias Variance Decomposition: A New
Perspective for Federated Learning. arXiv:2009.09026.
Zhou, Y.; Xu, J.; Wu, J.; Nasrabadi, Z. T.; Körpeoglu, E.;
Achan, K.; and He, J. 2021c. PURE: Positive-Unlabeled
Recommendation with Generative Adversarial Network. In
KDD, 2409–2419. ACM.
Zhu, C.; Cheng, Y.; Gan, Z.; Sun, S.; Goldstein, T.; and Liu,
J. 2020. FreeLB: Enhanced Adversarial Training for Natural
Language Understanding. In ICLR. OpenReview.net.

3884

