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Abstract

Model-based diagnosis (MBD) with multiple observations
is complicated and difficult to manage over. In this paper,
we propose two new diagnosis models, namely, the Com-
pacted Model with Multiple Observations (CMMO) and the
Dominated-based Compacted Model with Multiple Observa-
tions (D-CMMO), to solve the problem in which a consid-
erable amount of time is needed when multiple observation-
s are given and more than one fault is injected. Three ideas
are presented in this paper. First, we propose to encode MB-
D with each observation as a subsystem and share as many
system variables as possible to compress the size of encod-
ed clauses. Second, we utilize the notion of gate dominance in
the CMMO approach to compute Top-Level Diagnosis with
Compacted Model (CM-TLD) to reduce the solution space.
Finally, we explore the performance of our model using three
fault models. Experimental results on the ISCAS-85 bench-
marks show that CMMO and D-CMMO perform better than
the state-of-the-art algorithms.

Introduction
Model-based diagnosis (MBD) is an important approach to
analyze complex systems and explain why a system fails,
and this problem has been researched for many years in the
artificial intelligence (AI) field (Reiter 1987; de Kleer and
Williams 1987; Keren, Kalech, and Rokach 2011; Nica et al.
2013). In general, MBD algorithms either use an abductive
model in which all behaviors for each component in the sys-
tem are known and defined (Friedrich, Gottlob, and Nejdl
1990), or a consistent model in which all behaviors for each
component in the system are undefined (Reiter 1987; Feld-
man et al. 2020; Console, Dupré, and Torasso 1991). These
algorithms are widely used in various areas including qual-
itative models (Struss and Price 2004), debugging of we-
b services (Ardissono et al. 2005), discrete event system-
s (Pencolé and Cordier 2005), debugging of relational speci-
fications (Torlak, Chang, and Jackson 2008), hybrid system-
s (Narasimhan and Biswas 2007), and spreadsheet debug-
ging (Jannach and Schmitz 2016), among many others.

In most cases, MBD algorithms compute diagnoses us-
ing a given system model and one or more observations. In
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fact, multiple observations with respect to the diagnosis sys-
tem help promote the efficiency of the diagnosis process as
they may offer more diagnostic system information when
deriving diagnoses (Ignatiev et al. 2019). Furthermore, ob-
taining multiple observations is feasible and inexpensive in
real-world systems. Many diagnoses that take into account
this information have been presented in recent years.

The DiagCombine (DC) algorithm (Lamraoui and Naka-
jima 2014) aims at computing all covering sets of every set
of diagnoses with respect to each observaion. DC* (Lam-
raoui and Nakajima 2016) improves the runtime of the DC
algorithm by reducing the number of redundant diagnoses.
However, both DC and DC* fail to guarantee returning a
minimal diagnosis. Several algorithms propose a conflict-
directed approach, which collects conflicts for all observa-
tions and merges them to derive diagnoses. The implicit Hit-
ting Set Dualization (HSD) algorithm (Ignatiev et al. 2019)
focuses on computing implicit hitting sets with minimal cor-
rection set (MCS) (Marques-Silva et al. 2013; Previti et al.
2018) and maximum satisfiability (MaxSAT) (Narodytska
and Bacchus 2014; Cai and Lei 2020) algorithms between
diagnoses and conflicts, and outperforms DC and DC* when
injecting a single stuck-at fault. Although HSD outperforms
DC and DC* in most instances, it also exhibits poor perfor-
mance when injecting more faults. Its improvement, namely,
the Improved implicit Hitting Set Dualization (IHSD) algo-
rithm (Zhou et al. 2021), first uses the notion of gate dom-
inance when deducing a diagnosis with multiple observa-
tions. The One-SAT algorithm (Kalech, Stern, and Lazeb-
nik 2021) compiles all the observations into a Satisfiability
(SAT) formula (Gu et al. 1999) and derives the health assign-
ment of all components using a SAT solver. This approach
will generate a very large number of clauses when given a
large number of observations.

This paper explores the MBD problem with multiple ob-
servations. The first contribution of this paper involves
the presentation of a novel compacted diagnosis model with
multiple observations. A set of observations consists of a
series of system inputs and the corresponding system
outputs. Taking the first system inputs w.r.t the first ob-
servation as a basis, we analyze the difference between the
other system inputs and the basis. Correspondingly, we
propose a selection strategy and the Compacted Model with
Multiple Observations (CMMO) encodes constraints for se-
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lected system variables. The second contribution of this
paper is the use of the notion of dominated gates in our
new compacted model to compute Top-Level Diagnosis with
Compacted Model (CM-TLD). Note that CMMO can also
be used for computing either cardinality-minimal aggregat-
ed diagnoses or subset-minimal aggregated diagnoses. How-
ever, the Dominated-based Compacted Model with Multiple
Observations (D-CMMO) is only applicable to computing
cardinality-minimal aggregated diagnoses. The third con-
tribution of this paper involves the exploration of the com-
pacted model and its improved version using three fault
models: (1) Stack-At-one (S-A-1), (2) Stack-At-zero (S-
A-0), and (3) flipped. Experimental evaluation building on
the well-known ISCAS-85 benchmark (Brglzz and Fujtwara
1985) shows that CMMO outperforms the state-of-the-art al-
gorithms, namely HSD, IHSD, DC, DC*, and One-SAT. Ad-
ditionally, we conclude that D-CMMO performs better than
CMMO in most instances.

The paper is organized as follows. The next section intro-
duces the notations and definitions used throughout this pa-
per. Furthermore, we discuss two system descriptions for the
MBD problem with multiple observations in recent work. In
Section 3, we state a novel approach to encode MBD into
MaxSAT when addressing multiple observations. In Section
4, we present the experimental results. In the last section, we
present the conclusion of the paper.

Preliminaries
This paper discusses the MBD problem and computes the
diagnosis with multiple observations. More specifically, we
focus on a cardinality-minimal diagnosis in a weak-fault
model (WFM).

In the MBD problem with a single observation, there are
three entities: the diagnosed system description (SD) which
is expressed by a set of first-order sentences; the set (Comps)
of components in the diagnosed system; and the observed
system behavior (Obs) which are a finite set of first-order
sentences.

Assuming that the state of each component c ∈ Comps is
healthy, which is denoted by ¬Ab(c), and observations are
certain, i.e., there are no errors caused by noisy sensors, a
diagnosis problem exists when SD is inconsistent with Obs,
namely:

SD ∧ Obs ∧ {¬Ab(c) | c ∈ Comps} |=⊥ (1)

Most diagnosis algorithms focus on how to compute a set
of possible consistent-based diagnoses which intends to ex-
plain the inconsistency between system description and ob-
servations.

Definition 1 (Diagnosis (Reiter 1987)). Given an MBD
problem, 〈SD,Comps,Obs〉, a diagnosis is defined as a set
of components M⊆ Comps when

SD ∧ Obs ∧ {Ab(c) | c ∈M}
∧ {¬Ab(c) | c ∈ Comps\ M} 2⊥ (2)

A diagnosis M is a subset-minimal diagnosis iff any subset
M′ ⊂ M is not a diagnosis, and M is a cardinality-minimal

diagnosis iff any one of the other diagnoses M′ subjects to
| M′ | > | M |.

When given more than one observation for the MBD
problem, one needs to return an assignment for Comps to ex-
plain all the observations. We use the definition of diagnosis
with multiple observations used in previous work (Ignatiev
et al. 2019).
Definition 2 (Diagnosis with Multiple Observations (Ag-
gregated Diagnosis) (Ignatiev et al. 2019)). Given an MBD
problem with multiple observations, 〈SD,Comps,ObsSet〉,
Assuming that the state of each component c ∈ Comps
is healthy, which is denoted by ¬Ab(c), a diagnosis with
multiple observations is defined as a subset of components
M⊆ Comps when

SD ∧
m∧
i=1

Obsi ∧ {Ab(c) | c ∈M}∧

{¬Ab(c) | c ∈ Comps\ M} 2⊥
(3)

Here ObsSet is a set of observations (Obsi represents the
i-th observation in the ObsSet), SD is the union of all systems
w.r.t. each observation, and Comps is the set of components
in the system.

Essentially, this notion is equivalent to the aggregated di-
agnosis, which is interpreted in (Ignatiev et al. 2019). In
this paper, we consider a diagnosis with multiple observa-
tions to be an aggregated diagnosis. An aggregated diagno-
sis M is subset-minimal iff none of its proper subsets is al-
so an aggregated diagnosis. An aggregated diagnosis M is
cardinality-minimal iff any one of the other diagnoses M′

subjects to | M′ | > | M |.
To illustrate these notions, consider the c17 circuit from

ISCAS-85, as depicted in Figure 1.
Example 1. Shown in Table 1, we have three observa-
tions and corresponding diagnoses with respect to each
observation, and we can obtain aggregated diagnoses
such as {G6}, {G2, G3}, {G4}, {G4, G6}. Obviously,
{G4, G6} is neither subset-minimal aggregated diagnoses
nor cardinality-minimal aggregated diagnoses. {G4} and
{G6} are cardinality-minimal aggregated diagnoses, as well
as subset-minimal aggregated diagnoses. {G2, G3} is a
subset-minimal aggregated diagnosis.

Two System Descriptions for the MBD Problem
with Multiple Observations
Many recent works model MBD with MaxSAT, in which SD
is modelled by a set of hard clauses, Comps is modelled by
a set of unit soft clauses, and Obs is modelled by a set of
unit hard clauses (Marques-Silva et al. 2015; Ignatiev et al.
2019). More details about the notions of clauses have been
provided in (Cai and Lei 2020).

To the best of our knowledge, there are two ways to en-
code system description for an MBD problem with multiple
observations. The first one, as reported in (Ignatiev et al.
2019), derives a set of system descriptions of each single
observation. The diagnosis algorithm is run to obtain a set
of diagnoses and a set of explanations. An aggregated diag-
nosis is a minimal hitting set of the union of all explanations.
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Obs1 : {i1,−i2, i3, i4,−i5, o1, o2} D1 : {{G3} , {G4} , {G6}}
Obs2 : {i1,−i2, i3, i4, i5, o1, o2} D2 : {{G2} , {G4} , {G6}}
Obs3 : {i1,−i2, i3,−i4, i5, o1,−o2} D3 : {{G2} , {G3} , {G4} , {G6}}

Table 1: An example for diagnosis with multiple observations

Figure 1: c17 circuit.

The formulas of the system description SD with respect
to a single observation of the c17 circuit from the ISCAS-85
benchmark (as shown in Figure 1) are listed in Equation 4.
There are seven wires and six components in circuit c17,
where {i1, i2, i3, i4, i5} are the system inputs, {o1, o2}
are the system outputs, {z1, z2, z3, z4} are internal un-
observed system variables and {G1, G2, G3, G4, G5, G6}
are components. Correspondingly, there are six conjuncts in
Equation 4 and each conjunct models a single component.
For example, the subexpression in the first line means that
when component G1 is normal, the wire modeled by vari-
able z1 has its value by the wires modeled by variable i1 and
i3. The whole system description for all observations is ob-
tained by replicating the system description for each obser-
vation. Roughly speaking, all the replicated systems share
system variables, but the assignment of observations is
distinct. This replication was also done in Bounded Mod-
el Checking (BMC), and diagnosis of sequential circuit (Pill
and Quaritsch 2013), and distinguishing tests (Alur, Cour-
coubetis, and Yannakakis 1995).

M =


¬G1 → (z1 ⇔ ¬(i1 ∧ i3)
¬G2 → (z2 ⇔ ¬(i3 ∧ i4)
¬G3 → (z3 ⇔ ¬(i2 ∧ z2)
¬G4 → (z4 ⇔ ¬(i5 ∧ z2)
¬G5 → (o1 ⇔ ¬(z1 ∧ z3)
¬G6 → (o2 ⇔ ¬(z3 ∧ z4)

 (4)

The other method to obtain a system description is to gen-
erate one formula that encodes the system’s knowledge from
all the observations (Kalech, Stern, and Lazebnik 2021).
This approach finds a solution that enables all the obser-
vations to be consistent with the system description by a
MaxSAT solver. In contrast to the indistinguishable repli-
cation used in the last approach, this method reassigns an
integer number for each system variable rather than shares

the integer number for system variables. Furthermore, it
shares the integer number assigned to all components. We
list propositional logic formulas for system description with
multiple observations (as in Equation 5). Each line in Equa-
tion 5 consists of multiple conjuncts. However, in this mod-
el, the number of encoded clauses will be very large when
the number of given observations is very large.

Solving Aggregated Diagnosis
In this paper, we study aggregated diagnosis using a com-
pacted model consisting of a set of subsystems with respec-
t to each observation. The compacted model is a Boolean
formula and we can obtain aggregated diagnosis by call-
ing MaxSAT solver once. The CMMO approach and its im-
provement, namely, the D-CMMO approach, are proposed
to compact the model with multiple observations. The pro-
cess of two approaches is described below.

The CMMO Approach
Let SDi denote the subsystem with respect to Obsi. Ini-
tially, the first subsystem with respect to Obs1 is generat-
ed by Equation 4. The remaining subsystems are obtained
by encoding some components and some wires selectively
instead of replicating the entire system. This paper uses cor-
responding notions about system inputs, system outputs
and system variables used in (Stern and Juba 2019). The
set of system variables is the union of all the components
inputs and outputs. The union of all the components inputs
that are not the output of any component in the system rep-
resents the set of the system inputs, denoted by SysIns.
The values of system inputs are set externally by the us-
er. The system outputs, denoted SysOuts, are the com-
ponents outputs that are not the input of any component in
the system. The following part introduces how to use these
corresponding notions and establish variable mapping when
generating the subsystems.

For a given set of observations {Obs1, Obs2, ..., Obsm},
in this paper, we explore the relation between the first ob-
servation and the remaining observations and identify the
difference between these observations, which is defined as
follows.

Definition 3 (Different Inputs (DI)). The Different Input-
s (SysInsx,SysInsy), denoted DIx,y , is a subset of the
system inputs, and consists of the inputs with opposite val-
ues between SysInsx and SysInsy .

Example 2. Given two system inputs with SysIn1 =
{−i1, i2, i3,−i4, i5}, and SysIn2={−i1, i2,−i3, i4,−i5},
the DI1,2 is {i3, i4, i5}.

A circuit can be considered as a graph in which edges and
nodes are wires and components, respectively.
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M =


(¬G1 → (f1 ⇔ ¬(a1 ∧ b1)))

∧
...

∧
(¬G1 → (fn ⇔ ¬(an ∧ bn)))

∧
...

(¬G2 → (g1 ⇔ ¬(b1 ∧ c1)))
∧

...
∧

(¬G2 → (gn ⇔ ¬(bn ∧ cn)))
∧

...
(¬G3 → (h1 ⇔ ¬(g1 ∧ d1)))

∧
...

∧
(¬G3 → (hn ⇔ ¬(gn ∧ dn)))

∧
...

(¬G4 → (i1 ⇔ ¬(g1 ∧ e1)))
∧

...
∧

(¬G4 → (in ⇔ ¬(gn ∧ en)))
∧

...
(¬G5 → (j1 ⇔ ¬(f1 ∧ h1)))

∧
...

∧
(¬G5 → (jn ⇔ ¬(fn ∧ hn)))

∧
...

(¬G6 → (k1 ⇔ ¬(h1 ∧ i1)))
∧

...
∧

(¬G6 → (kn ⇔ ¬(hn ∧ in)))
∧

...

 (5)

M =


(¬G1 → (f1 ⇔ ¬(a1 ∧ b1)))

∧
...

∧
(¬G1 → (f1 ⇔ ¬(a1 ∧ b1)))

∧
...

(¬G2 → (g1 ⇔ ¬(b1 ∧ c1)))
∧

...
∧

(¬G2 → (gn ⇔ ¬(b1 ∧ cn)))
∧

...
(¬G3 → (h1 ⇔ ¬(g1 ∧ d1)))

∧
...

∧
(¬G3 → (hn ⇔ ¬(gn ∧ d1)))

∧
...

(¬G4 → (i1 ⇔ ¬(g1 ∧ e1)))
∧

...
∧

(¬G4 → (in ⇔ ¬(gn ∧ e1)))
∧

...
(¬G5 → (j1 ⇔ ¬(f1 ∧ h1)))

∧
...

∧
(¬G5 → (jn ⇔ ¬(f1 ∧ hn)))

∧
...

(¬G6 → (k1 ⇔ ¬(h1 ∧ i1)))
∧

...
∧

(¬G6 → (kn ⇔ ¬(hn ∧ in)))
∧

...

 (6)

Figure 2: Explanation for c17 circuit with multiple observations.

Definition 4 (Propagation Edges (P-Edges)). Given a
system input i ∈ SysIns, P -Edges (i) is a subset of
system variables, which are all traversed edges from i
to all reachable system outs. Given a subset of system
inputs, denoted SubSysIns, SubSysIns ⊆ SysIns, P -
Edges (SubSysIns) is a subset of system variables,
which are all traversed edges from i to all reachable system
outs, where i ∈ SubSysIns.
Definition 5 (Propagation Nodes (P-Nodes)). Given a
system input i ∈ SysIns, P-Nodes (i) is a subset
of Comps, which are all traversed nodes from i to al-
l reachable system outs. Given a set of system inputs,
denoted SubSysIns, SubSysIns ⊆ SysIns, P-Nodes
(SubSysIns) is a subset of system variables, which are
all traversed nodes from i to all reachable system outs,
where i ∈ SubSysIns.
Example 3. Considering the system inputs i1 in Figure 1,
P-Edges (i1) is {i1, z1, o1}, and P-Nodes (i1) is {G1, G5}.
Example 4. Considering a subset of system
inputs {i1, i2} in Figure 1, P-Edges ({i1, i2})
is {i1, z1, o1, i2, z3, o2}, and P-Nodes ({i1, i2}) is
{G1, G3, G5, G6}.

The CMMO approach compacts model using definition-
s 3, 4, and 5 when encoding MBD into MaxSAT. Equation
6 lists the propositional logic formulas for system descrip-
tion using the compacted model. As noted in Equation 6, the
variable mapping process, named as VarMapping, works as

follows: For the first observation, we map the components or
wires into a new integer number respectively and build the
first subsystem. For the i-th observation, we retain the map
for components but reassign an integer number for the se-
lected wires. In contrast to Equation 5, we compute the Dif-
ferent Inputs (SysIn1,SysIni), denoted DI1i, and reassign
an integer number for system variables in P-Edges(DI1i).
Iteratively, the subsystems are built by encoding components
in P-Nodes(DI1i).

The difference between Equation 5 and Equation 6 is il-
luminated in Figure 2. The left side of the Figure 2 shows
the mapping of integer numbers for system variables giv-
en the n-th observation using Equation 5 and the right side
of the Figure 2 shows the mapping of integer numbers for
system variables given the n-th observation using Equa-
tion 6. In Figure 2, different variables represent differen-
t integer numbers. Assuming that different input between
SysIn1 and SysInn is {cn}, in the VarMapping process,
system variables in P-Edges (cn) are reassigned integer
numbers. These system variables are represented by red
dotted lines. When encoding the n-th subsystem, only com-
ponents in P-Nodes(cn) and its connections need to be en-
coded, i.e., {G1} and its connections are not contained in
the system description of the n-th subsystem.

After encoding system description, CMMO approach en-
codes all the observations into hard clauses and encodes all
the components into soft clauses.
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Algorithm 1: MaxSAT-based diagnostic algorithm with mul-
tiple observations
Input: SD, the system description
Input: Comps, the system component
Input: Obs1,...,Obsm
Output: ∆.

1: M1 ← Encode(SD, Comps, Obs1);
2: for i ∈ {2, ...,m} do
3: Find P-Nodes(DI1i);
4: Find P-Edges(DI1i);
5: for c ∈ P-Nodes(DI1i) do
6: Mc ←WCNF(c.Fan-in, c.Fan-out, c.GateType).
7: Mi = Mi ∧Mc.
8: end for
9: M = M ∧Mi ∧ HardCls(DI1i).

10: end for
11: if improvement is true then
12: if c ∈ DominatedComps then
13: M = M ∧ HardCls(c);
14: else
15: M = M ∧ SoftCls(c);
16: end if
17: else
18: M = M ∧ SoftCls(c);
19: end if
20: ∆←MaxSAT(M )
21: return ∆

Improvements of the CMMO Approach
The second approach we propose for solving an aggregated
diagnosis can be viewed as the improved version of CMMO.
We call this approach Dominated-based Compacted Mod-
el with Multiple Observations (D-CMMO). Instead of com-
puting a cardinality-minimal diagnosis with multiple obser-
vations, D-CMMO computes a particular aggregated diag-
nosis, Top-Level Diagnosis with Compacted Model (CM-
TLD).
Definition 6 (Top-Level Diagnosis with Compacted Mod-
el (CM-TLD)). A cardinality-minimal diagnosis with multi-
ple observations δ is a Top-Level Diagnosis with Compacted
Model if it does not contain any dominated components.

Early work declares that returning a TLD instead of a di-
agnosis is indeed a timesaving method. More details about
TLD and dominated components are provided in (Metodi
et al. 2014). These details are not reiterated in this paper.

The method used to compute an aggregated diagnosis
with the CMMO and the D-CMMO is summarized in algo-
rithm 1. Let M be the final propositional logic formulas. We
generate the first model M1 by mapping each component
and wire in the system into an integer number and encod-
ing corresponding constants according to Obs1 (to see line
1). Next, for other observations Obsi (i ∈ {2, ...,m}), we
generate other subsystem models (to see line 2-10). Indeed,
using less integer number makes model simpler. It is critical
to know when to map the system variable into a new in-
teger number and when to use the original integer numbers
that the first observation used. In each iteration, algorithm

1 computes different inputs between SysIn1 and SysIni

and propagates the value of DI1i. Correspondingly, we find
P-Edges(DI1i) and P-Nodes(DI1i). Algorithm 1 only en-
codes the components in P-Nodes(DI1i) (see lines 5-8). In
detail, two detailed information about encoded component
need to be considered. The first is the gate type of encod-
ed component(i.e. NAND, XOR, AND,... ). The second is
whether component’s fan-in and fan-out are contained in
P-Edges(DI1i). If so, we use a new integer number with
VarMapping process discussed above. For every system
inputs w.r.t. DI1i, Algorithm 1 encodes a hard clause(see
line 9).

In contrast to CMMO approach, the D-CMMO approach
encodes dominated components into hard clauses and en-
codes remaining components into soft clauses (see lines 12-
16). Finally, Algorithm 1 obtains an aggregated diagnosis by
calling a MaxSAT solver (see line 20).

Denoting the set of components as Comps =
{c1, c2, ..., cn}, the time complexity of generating the
final Boolean formula M is O(m · n) in the best case and
O(m2 · n) in the worst case. HSD and IHSD need many
queries to an NP oracle, by contrast, Algorithm 1 requires
an NP oracle call. In contrast to the One-SAT algorithm,
CMMO and D-CMMO generate fewer clauses, which
benefits fast solving from aggregated diagnosis.

Experimental Evaluation
To evaluate our algorithm for an aggregated diagnosis, we
compare CMMO and its improvement, D-CMMO, with
the state-of-the-art algorithms, namely HSD (Ignatiev et al.
2019), IHSD (Zhou et al. 2021), DC (Lamraoui and Nakaji-
ma 2016), DC* (Ignatiev et al. 2019) and One-SAT (Kalech,
Stern, and Lazebnik 2021). We use RC2 (Ignatiev et al.
2019), a MaxSAT solver, which is also used in the HSD al-
gorithm. In addition, we implement CMMO and D-CMMO
in C++ and compile them by g++. Our experiments were
conducted on Ubuntu 16.04 Linux with Intel Xeon E5-1607
@3.00G Hz, 16GB RAM.

In this paper, we evaluate algorithms when computing
a cardinality-minimal aggregated diagnosis although com-
puting more cardinality-minimal aggregated diagnoses and
computing subset-minimal aggregated diagnoses are also
supported. Computing more cardinality-minimal aggregated
diagnosis is supported by the increased number of iterations
using RC2, and computing subset-minimal diagnosis is sup-
ported by the use of the LBX algorithm (Mencı́a, Previti,
and Marques-Silva 2015) in Line 20 of Algorithm 1.

We use the systems from the ISCAS-85 benchmark
Boolean circuit, which is used in the literature (Ignatiev
et al. 2019; Marques-Silva et al. 2015; Siddiqi 2011; Feld-
man et al. 2010; De Kleer 2009). To the best of our knowl-
edge, there is no standard data sets for MBD problem with
multiple observations. In this paper, test cases are generated
by mimicking a faulty system as noted in (Ignatiev et al.
2019; Kalech, Stern, and Lazebnik 2021). For each circuit,
we evaluate the experiment by establishing three fault mod-
els: the stuck-at-zero (S-A-0), the stuck-at-one (S-A-1), and
flipped fault. For the first observation, we randomly gener-
ate a set of instantiations of system inputs and randomly
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300 instances Flipped
DC DC* HSD IHSD One-SAT CMMO D-CMMO

# solved 0 0 185 209 230 260 274
# HSD wins 185 185 11 81 2 0
# IHSD wins 209 209 197 151 40 6

# One-SAT wins 230 230 150 87 13 6
# CMMO wins 260 260 256 218 253 7

# D-CMMO wins 273 273 272 266 270 269

Table 2: Experimental results on the ISCAS-85 benchmark using flipped model fault model.

300 instances Stack-At-0
DC DC* HSD IHSD One-SAT CMMO D-CMMO

# solved 0 0 203 222 231 273 278
# HSD wins 203 203 12 97 8 1
# IHSD wins 222 222 209 173 47 6

# One-SAT wins 231 231 135 65 4 5
# CMMO wins 273 273 264 225 269 14

# D-CMMO wins 278 278 276 271 274 269

Table 3: Experimental results on the ISCAS-85 benchmark using S-A-0 fault model.
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Figure 3: Runtime for the ISCAS-85 benchmark circuit us-
ing flipped fault model.

set K components faulty, with K ranging from 20 to 50 (the
minimal cardinality of the aggregated diagnosis is often less
than K). System outputs can be obtained by using SAT
to compute a satisfying assignment according to the fault-
ed behavioral model of the circuit. For the remainder of the
observations, we generate the system inputs by flipping
one input of the first observation and generate the system
outputs by using SAT to compute a satisfying assignment
according to the faulted behavioral model of the circuit. In
this experiment, the range of the number of observations is
37-234. To illustrate the main points of the paper, this paper
generates 300 benchmarks for each fault model.

The results are presented in Tables 2, 3 and 4. For each
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Figure 4: Runtime for the ISCAS-85 benchmark circuit us-
ing S-A-0 fault model.

benchmark, we collect the execution runtime within 1000 s.
We list the number of instances which all algorithms solved
in the first row. Note that DC and DC* fail to find a diag-
nosis in almost all instances within 1000 s, so their detailed
results are not reported in the tables. We calculate the av-
eraged percent of instances that all algorithms solved with
three fault models, which are as follows: 64.9% for HS-
D, 72.1% for IHSD, 77.6% for One-SAT, 89.6% for CM-
MO and 92.1% for D-CMMO. As observed, D-CMMO is
able to solve more instances than all CMMO, HSD, IHS-
D, DC, DC* and One-SAT within a given time limit for the
S-A-0, S-A-1 and flipped models. CMMO performs better
than HSD, IHSD, DC and DC*. With three fault models, D-
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300 instances S-A-1
DC DC* HSD IHSD One-SAT CMMO D-CMMO

# solved 0 0 196 218 237 273 277
# HSD wins 196 196 15 102 29 1
# IHSD wins 218 218 202 173 57 12

# One-SAT wins 237 237 135 66 31 9
# CMMO wins 270 270 243 215 247 18

# D-CMMO wins 277 277 275 264 274 264

Table 4: Experimental results on the ISCAS-85 benchmark using S-A-1 fault model.

Circuit #inst. Flipped S-A-0 S-A-1
HSD IHSD One-SAT CMMO D-CMMO HSD IHSD One-SAT CMMO D-CMMO HSD IHSD One-SAT CMMO D-CMMO

c1908 30 6 15 17 30 30 15 19 19 28 30 6 11 12 28 30
c3540 30 1 2 14 14 29 3 6 14 27 30 5 10 17 27 30
c5315 30 24 29 28 30 30 25 29 28 30 30 27 29 30 30 30
c6288 30 0 0 4 5 3 0 0 2 7 7 0 0 7 7 7
c7552 30 4 13 15 30 30 10 15 16 30 30 8 15 20 30 30

Table 5: Comparison on the number of instances solved by all algorithms on large scale circuits.
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Figure 5: Runtime for the ISCAS-85 benchmark circuit us-
ing S-A-1 fault model.

CMMO outperforms HSD, IHSD, One-SAT and CMMO in
the 91.4%, 88.1%, 89.0% and 89.1% of the instances respec-
tively on average and CMMO outperforms HSD, IHSD and
One-SAT in the 84.8%, 73.11%, and 85.4% of the instances
respectively on average.

In detail, Figures 3, 4 and 5 present these experimental
results with different fault models. The y-axis shows the d-
ifferences between the algorithms in runtime which are p-
resented on a logarithmic scale. The x-axis is the number
of instances for the ISCAS-85 suite. D-CMMO exhibits im-
proved performance compared with the CMMO, HSD, IHS-
D, DC, DC* and One-SAT for the solved instances. For al-
most all circuit system, D-CMMO proposed in this paper
outperforms both HSD and IHSD with performance gains
that most often range between 1 and 5 orders of magnitude.

As noted, the improvement proposed in Section 3 enables
the D-CMMO algorithm offer improved performance com-
pared with the CMMO by no more than an order of magni-
tude in almost all instances.

In addition, for all fault models, the runtime for all the al-
gorithms increases as the number of faults increases. When
more faults are injected, almost all the algorithms can not re-
turn a cardinality-minimal aggregated diagnosis within 1000
s for large scale circuit. Except DC and DC*, all algorithms
can solve instances for small scale circuits within 1000 s. We
summarize the experimental results on large scale circuits in
Table 5. In bold we present the best results for each circuit.
With three groups of experiments, most of the instances for
which D-CMMO cannot be solved within a given time frame
are derived from c6288.

Conclusions
In this paper, we address the MBD problem when there are
multiple observations. We propose three ideas for improving
previous approaches. First, we consider diagnosis by build-
ing the subsystem for each observation and compute a diag-
nosis that enables the unions of subsystems to be consistent
with all of the observations. In particular, we compact the
subsystem using a novel variable mapping process named
VarMapping. This approach is not used in previous studies.
Second, we encode dominated components into hard clauses
to compute CM-TLD, which reduces the solution space for
computing a diagnosis. Finally, we explore the aggregated
diagnosis using three fault models. The experimental results
on the ISCAS-85 benchmark show notable gains compared
with the state-of-the-art algorithms, namely DC, DC*, HSD,
IHSD, and One-SAT.

Diagnosis with multiple observations is more challenging
to solve than diagnosis with a single observation. In future
work, we will further improve the approach for diagnosis
with multiple observations.
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