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Abstract

Retrosynthetic planning plays an important role in the field
of organic chemistry, which could generate a synthetic route
for the target product. The synthetic route is a series of re-
actions which are started from the available molecules. The
most challenging problem in the generation of the synthetic
route is the large search space of the candidate reactions. Esti-
mating the cost of candidate reactions has been proved effec-
tively to prune the search space, which could achieve a higher
accuracy with the same search iteration. And the estimation
of one reaction is comprised of the estimations of all its re-
actants. So, how to estimate the cost of these reactants will
directly influence the quality of results. To get a better perfor-
mance, we propose a new framework, named GNN-Retro, for
retrosynthetic planning problem by combining graph neural
networks (GNN) and the latest search algorithm. The struc-
ture of GNN in our framework could incorporate the infor-
mation of neighboring molecules, which will improve the es-
timation accuracy of our framework. The experiments on the
USPTO dataset show that our framework could outperform
the state-of-the-art methods with a large margin under the
same settings.

Introduction
Retrosynthetic planning (Schreck, Coley, and Bishop 2019;
Segler and Waller 2017; Zheng et al. 2020; Li et al. 2020;
Schwaller et al. 2020; Mao et al. 2021; Yan et al. 2020) plays
an important role in the filed of chemical applications (Wang
et al. 2021), which could generate a synthetic route for the
target molecule. The synthetic route is a series of reactions
which are based on available molecules. The example in
Fig. 1 shows the components of one synthetic route, where
one target molecule or intermediate molecule is obtained by
one reaction and one reaction contains multiple molecules.
The most challenging problem in the generation of the syn-
thetic route is the huge numbers of candidate reactions for
the target product and intermediate products. Because larger
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Figure 1: Schematic diagram of one synthetic route

numbers of the candidate reactions will bring exponential
growth for the search space.

Estimating the cost of candidate reactions has been proved
effectively (Chen et al. 2020) to prune the search space,
which could achieve a higher success rate with the same
search iteration. And the estimation of one reaction is com-
prised of the estimations of all its reactants. So, how to es-
timate the cost of these reactants will directly influence the
quality of results. The difficulty of the estimation is that the
data space of all molecules is extremely large and the exist-
ing training dataset can only cover a small part of it.

Graph neural network (GNN) (Kipf and Welling 2017;
Yang et al. 2021) is popular recently, for its high perfor-
mance in the task of semi-supervision. The main difference
between the computation of GNN and the computation of
traditional neural networks is that, GNN will directly and ex-
plicitly incorporate the information of neighbors in the train-
ing and testing process. The computation of GNN could re-
duce the data sparsity problem when the connection between
samples is relevant to their labels.
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In order to make GNN applicable in our task to reduce
the sparsity problem of training dataset, we have to solve
two problems firstly. How to construct the graph for the
GNN under the environment of our task is the most impor-
tant problem. Because the graph in GNN, which determines
the relationship between samples, will influence the perfor-
mance directly. The other problem is that, we cannot get all
molecules to construct the global graph before the training
process. And all intermediate molecules in the evaluation
and test process are unavailable before we expand the search
route.

The construction of graph for GNN should be highly re-
lated to the aim of the application. The goal of the estima-
tion is to predict the synthetic cost of the given molecules.
So connected molecules in the constructed graph are bet-
ter to have similar synthetic cost. The synthetic cost of one
molecule is mainly determined by its composed atoms and
structure. To describe the atoms and structures of given
molecule, Morgan fingerprint (Rogers and Hahn 2010) is
proposed as the representation of the molecule. So, we as-
sume that molecules with similar fingerprints have similar
synthetic cost. Under our assumption, cosine similarity of
the fingerprints is used as the metric to describe the relation-
ship between molecules. However, these similarities cannot
be directly used as the weights of the graph. Because this
will make the graph too dense, which will incur much more
noise than meaningful information. To fix this, we construct
the graph with a hand-crafted threshold, which is tuneable
and can filter most of noise. Then, only molecules with sim-
ilarities larger than the threshold could be connected in the
graph and the weight is set as the corresponding similarity.
However, the mentioned graph only considers the informa-
tion of fingerprint which cannot directly reflect the relation-
ship of synthetic cost between molecules. To make the graph
able to directly reflect the relationship of synthetic cost and
contain the information of fingerprint, we propose an alter-
native way to construct it by embedding method.

The other challenge tampers the utilization of GNN is that
we cannot build the graph for all molecules. The main rea-
son is that the data space of all molecules is extremely large,
so we cannot build a global graph before the training pro-
cess. Moreover, even we only want to construct graphs for
all molecules used in the training, evaluation and testing pro-
cess, we cannot achieve it. Because the search process is
dynamic and is related to the estimation function itself. So
we cannot get all intermediate molecules which are needed
to be estimated in the evaluation and testing process before
we expand the search route in the corresponding process.
To overcome this, we provide a semi-dynamic way of graph
construction for the task of retrosynthetic planning. Before
the training process, only molecules in the training set are
connected to construct the graph for training the GNN pa-
rameters. For every intermediate molecule in the evaluation
and testing process, we only connect it with molecules in the
training set. With this strategy, we could apply GNN for our
task in the training, evaluation and testing process. More-
over, only connecting molecules with labeled samples could
incur less noise.

To evaluate the estimation performance of our method, we

compare it with many state-of-the-art baselines. From the re-
sults on the USPTO dataset with same settings, we can ob-
serve that our method outperform others with a large margin,
which could verify our assumption and the performance of
our framework. Moreover, we give the ablation experiments
and parameter analysis with different values, which could
show the effect of different components in our method.

The contributions of our work could be summarized as
follows:

• We propose a new method by GNN to estimate the cost
of molecules in the task of retrosynthetic planning.

• We propose two ways to define the similarities between
molecules based on their fingerprints and the predicted
targets.

• We propose a semi-dynamic way for constructing graph,
which makes GNN applicable in our task.

• Our framework outperforms all other state-of-the-art
methods with a large margin on the benchmark USPTO.

Related Work
The problem of retrosynthesis could be classified into two
categories. One type is that it only predicts the reactants of
the target molecule within one step where some of the reac-
tants may be unavailable molecules. The other will predict
the reactants of the target molecule for multiple steps where
all basic reactants are available molecules.

One-step Retrosynthesis
One-step retrosynthesis is aimed to predict the reactants of
a target molecule within one step. In (Coley et al. 2017),
they use a similarity model to predict the category of the re-
action, where three types of similarities are applied in their
method. Rule-based method is applied in (Segler and Waller
2017) and neural networks are used in their framework as a
classifier to choose the reaction rule. Sequence-to-sequence
model is exploited in (Liu et al. 2017; Karpov, Godin, and
Tetko 2019), which could directly generate the reactants of
the target molecule with this end-to-end model. In (Dai et al.
2019), they propose a maximum log-likelihood estimation
and use GNN to generate the molecule embedding. The way
they utilize GNN only considers the inner relationship be-
tween atoms in one molecule, which cannot reduce the spar-
sity problem like us.

However, for many target molecules, the reactants of one-
step retrosynthesis may be unavailable, which should be
synthesized by other available molecules.

Retrosynthetic Planning
Instead of just predicting one step reaction, retrosynthetic
planning is proposed to predict the whole reaction route,
where all molecules used to synthesize the target molecule
are available. In DFPN-E(Kishimoto et al. 2019), authors
solve this problem by deep first proof number search, and the
heuristic edge initialization is used in their method. Monte
Carlo Tree Search (MCTS) is exploited in (Segler, Preuss,
and Waller 2018) to solve this task, in which they apply three
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neural networks to tackle the expanding, selection and esti-
mation tasks respectively. To make the success rate higher,
Retro*(Chen et al. 2020) is proposed to tackle the task of
retrosynthetic plan. Same as the A* search method, they use
a neural network to estimate the cost from current state to
the goal which is equal to the cost of synthesizing the corre-
sponding intermediate molecules in the expanding route.

From the results of Retro*, we could see that the cost
estimation of intermediate molecules influences the perfor-
mance significantly. To make a more accurate estimation of
molecule cost, we propose a new method by considering the
relationships between molecules.

Preliminary
In this section, we will give the definition of basic elements
and the aim of retrosynthetic planning.

Notification

We use Tu to denote the set of all unavailable molecules and
Ta to denote the set of all available molecules. In the pro-
cess of retrosynthetic planning, for an unavailable molecule
m ∈ Tu, we use B(m) = {Ri,Si, c(Ri)}ki=1 to denote the
set of k possible one-step reactions which could synthesize
m, where Ri is the denotation of i-th reaction, Si is the set
of all reactants in Ri and c(Ri) is the cost of Ri. If Ri is in
the route with minimal cost, for unavailable molecules in Si,
retrosynthetic planning will continue to expand them with
corresponding one-step reactions. Given a target molecule,
the aim of retrosynthetic planning is to find a series of reac-
tions, where all needed reactants are available and it has a
minimal cost.

Motivation

The motivation of our work is to have a better cost estimation
of the intermediate molecules. Existing works (Chen et al.
2020) have proved the effectiveness of the cost estimation,
which could improve the success rate in the task of retrosyn-
thetic planning. The exact answer of what and how influ-
ences the cost of synthesizing one molecule is uncertain. So
using learning methods with labeled data to estimate the cost
is a feasible way. However, the main challenge of applying
learning method is that the data space of all molecules is ex-
tremely large, where labeled molecules only are a small part
of it.

Graph for Retrosynthetic Planning
Retrosynthetic planning is usually modeled as a searching
problem, where how to generate possible states and how to
select the next action are the main challenges for it. How
to generate possible states in retrosynthetic planning is sim-
ilar as one-step retrosynthesis, and could be solved by the
method of one-step retrosynthesis. How to select the next
action is the specific problem for retrosynthetic planning,
where the key point is to estimate the cost for the intermedi-
ate molecules in the searching process.

GNN for Sparsity
To conquer the data sparsity problem, we propose a new
method for the cost estimation of molecules by utilizing
graph neural networks. GNN method is firstly proposed to
solve the semi-supervised problem, and now is popular in
many types of applications (Han et al. 2019; Hu et al. 2020;
Gidaris and Komodakis 2019; Zhou et al. 2019; Xu et al.
2019; Lamb et al. 2020; Wang et al. 2019). The main dif-
ference between the computation of GNN and the computa-
tion of traditional neural networks is that, GNN will directly
and explicitly incorporate the information of neighbours in
the training and testing process. The computation of GNN
could reduce the data sparsity problem when the relation-
ship between samples is relevant to their labels. Given the
representation Xn of all samples in n-th layer, the (n + 1)-
th representation Xn+1 for all samples are computed as fol-
lows:

Xn+1 = Relu(AXnWn +Bn) (1)
where A is the Laplacian matrix of the graph, Wn and Bn

are the learnable weights for the n-th layer in GNN.
To make GNN applicable for our task to reduce the spar-

sity problem of training dataset, we need to solve the most
important problem firstly, which is how to construct the
graph of the GNN for our task. Because the graph in GNN,
which determines the relationship between samples, will in-
fluence the performance directly. In this section, we propose
two ways to define the similarities between molecules.

Graph with Threshold
The construction of graph for GNN should be highly related
to the aim of the application. The goal of the estimation
is to predict the synthetic cost of the given molecules. So
it’s better to connect molecules with similar synthetic cost
to constructed graph. The synthetic cost of one molecule is
mainly determined by its composed atoms and structure. To
describe the atoms and structures of given molecule, Morgan
fingerprint (Rogers and Hahn 2010) is proposed as the rep-
resentation of the molecule. So, we assume that molecules
with similar fingerprints have similar synthetic cost. Under
our assumption, cosine similarity of the fingerprints is used
as the metric to describe the relationship between molecules.
Given the FingerPrints fi and fj of molecules mi and mj ,
we define the similarity Si,j between them as

Si,j = cos(fi, fj) =
fifj
‖fi‖‖fj‖

. (2)

However, these similarities cannot be directly used as the
weights of the graph. Because this will make the graph too
dense, which will incur noise rather than meaningful infor-
mation. To fix this, we construct the graph with a hand-
crafted threshold, which can filter most of noise. Then,
only the molecules with similarities larger than the thresh-
old could be connected with similarities as weights. For
molecules mi and mj , we define the connection weight
G(mi,mj) between them as:

G(mi,mj) =

{
Si,j , if Si,j > τ and i 6= j

0, otherwise.
(3)
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where τ is the threshold to filter the connections with small
similarities.

Learned-based Graph
However, the graph in Eq. (3) only considers the information
of fingerprint, that cannot directly reflect the relationship of
synthetic cost between molecules. To make the graph able
to reflect the relationship of synthetic cost and contain the
information of fingerprint, we propose an alternative way to
construct it, where embedding representation is learned to
exploit the mentioned information. Given the fingerprint fi
of molecule mi, we could generate the corresponding em-
bedding ei with an embedding network as follows:

ei = fiWe +Be. (4)

Under this way, the embeddings of molecules could contain
the information of fingerprint. Before we show how to ex-
ploit the information of synthetic cost, we firstly construct
the similarities between molecules with their correspond-
ing embeddings. Cosine distance is utilized in our method to
generate the similarity, which will make the molecules with
similar embeddings have high similarity. Given the embed-
dings ei and ej of molecules mi and mj , we generate the
similarity Si,j between them as:

Si,j = cos(ei, ej) =
eiej
‖ei‖‖ej‖

. (5)

How to design the loss function to train the embeddings
network will directly influence the performance of retrosyn-
thetic planning. Because the graph constructed by the sim-
ilarity with the embedding will be exploited in the GNN to
estimate the synthetic cost. The operation of GNN is to in-
cur the representations of neighbors for all samples. Then,
we try to make the molecules with high similarities will
have similar synthetic cost. Given the training set Tr and
a molecule mi, we use S+

mi
⊆ Tr to denote the positive

set that contains molecules with similar synthetic cost as
molecule mi. And we use S−mi

= Tr \ S+
mi

to denote the
negative set that contains the molecules with different syn-
thetic cost from molecule mi. To make the molecules with
similar synthetic cost have similar embeddings, we use the
pair-wise loss function to define our loss function L as fol-
lows:

L =
∑

mi∈Tr,mj∈S+
mi

,mk∈S−mi

I(Si,j > Si,k)

‖Tr‖‖S+
mi‖‖S−mi‖

(6)

where I is the indicator function that equals one if the con-
dition satisfies, otherwise it will be zero. However, the size
of training set Tr is large, which makes the training process
time-consuming. To overcome this problem, we use a sam-
pling method to select negative molecules. So, in the train-
ing process, for every pair (mi,mj) with mj ∈ S+

mi
, we

randomly select one mk ∈ S−mi
instead of using all negative

molecules for this pair.
Once we have finished the training process of embedding

network, we could get embeddings for all molecules and
construct the corresponding similarities. However, the sim-
ilarity matrix will be dense, as every entry is larger than 0.

This will increase the calculation amount of GNN. To solve
this, we construct the K-NN graph G as follows:

G(mi,mj) =

{
Si,j , if mj ∈ N(mi)

0, otherwise.
(7)

where N(mi) is the K-NN similarity set of molecule mi.

Our Framework
In this section, we will introduce the main framework of our
work. To apply GNN on our problem, we propose a semi-
dynamic strategy to utilize the graph which could solve the
problem of graph construction in testing process. And the
estimated cost is predicted by the GNN embedding with re-
gression method. The whole process of our framework could
be found in Fig. 2.

Semi-Dynamic Graph
Although we have defined the way to connect molecules, we
cannot build the graph for all molecules. The main reason is
that the data space of all molecules is extremely large, so
we cannot build a global graph before the training process.
Moreover, even we only want to construct a graph for all
molecules used in the training, evaluation and testing pro-
cess, we cannot achieve it. Because the search process is
dynamic and is related to the estimation function itself. So
we cannot get all molecules which are needed to be esti-
mated in the evaluation and testing process before we ex-
pand the search route in the corresponding process. To over-
come this, we provide a semi-dynamic way of graph con-
struction for the task of retrosynthetic planning. With our
strategy, only molecules in the training set are connected to
construct the graph before the training process. The interme-
diate molecules in the validation and testing process will be
connected to the molecules in the training set dynamically.

Given the training set Tr with cardinality Ntr, we could
construct its graph GT ∈ RNtr×Ntr with element GT

i,j =

G(mi,mj). As the weight in GT is constructed with as-
sumption, it can not perfectly reflect the similarity of syn-
thetic cost between corresponding molecule pairs. To make
the influence of the neighbours adjustable, we define the
weighted Laplacian matrixAT of graphGT with a weight α
as

AT = I + αNorm(GT ), (8)

where Norm(G) = D−
1
2GD−

1
2 is the normalization op-

eration for the matrix G in which D is a dialogue matrix
with element Di,i =

∑
j Gi,j . Then, given fingerprints F of

all molecules in training set, we could get the representation
XTr of them under the computation of GNN as

XTr = ATFWg +Bg, (9)

where Wg and Bg are learnable parameters for GNN. Once
we get the representation of all molecules in training dataset,
we use a multiple layer perception (MLP) and log function
to generate the cost estimation V of them as

V = log(1 + eX
TrWm+Bm), (10)
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Figure 2: Framework of our method

where Wm and Bm are learnable parameters for MLP. And
we use Vmi

to denote the cost estimation of molecule mi.
For molecules in the evaluation and testing process, we

only connect them with molecules in the training set Tr.
With this strategy, we could apply GNN for our task in the
evaluation and testing process. Moreover, only connecting
molecules with labeled samples could incur less noise un-
der our assumption. Then, once we have an intermediate
molecule mi which needs the cost estimation, we firstly get
the set of its connected neighbors N t(mi) as follows

N t(mi) = {mj |mj ∈ Tr and G(mi,mj) > 0}. (11)

Cost Estimation
Once we have the set of connected molecules of molecule
mi, we could get its GNN embedding xi as

xi = (fi+α

∑
mj∈Nt(mi)

(G(mi,mj)fj)

Z
)Wg+Bg, (12)

where Z =
∑

mj∈Nt(mi)
G(mi,mj)

2and α is the weight to
control the influence of the neighbors with the same value
as Equation 8. Under this way, the information of molecules
in the training set could be imposed to refine the process of
estimation by reducing the underfitting problem.

Regression is used to construct the relationship between
the GNN embedding and estimated cost for every molecule.
Then we could get the cost estimation Vmi for the interme-
diate molecule mi as:

Vmi = log(1 + exiWm+Bm), (13)
where Wm and Bm are learnable parameters for the cost
estimation.

Optimization and Search
In this section, we will introduce the optimization of our
model and search process for retrosynthetic planning.

Loss Function
The loss function we use to optimize our model is composed
of two main components. The first part is the regression loss
LR which is designed as

LR =
1

NTr

∑
mi∈Tr

‖Vmi − V ′mi
‖2, (14)

where V ′mi
is the actual synthetic cost for molecule mi. By

minimizing this loss function, we could make sure that the
estimated synthetic cost will be approximately equal to the
actual one.

The other component is the partial ordering loss which
is proposed to keep the partial ordering relation between the
optimal one-step reaction and the others. Given the molecule
mi and its possible reactionsB(mi) = {Rj ,Sj , c(Rj)}kj=1,
we assume that the optimal reaction is R∗i . For any Rj 6=
R∗i , we define its partial loss as:

L(mi, Rj) = max{0, Vmi
+ε−c(Rj)−

∑
m′∈Sj

Vm′}, (15)

where ε is the slack variable to make estimated cost of the
optimal reaction smaller than the estimated cost of others
with a large margin. After this, we could get the partial or-
dering loss LP of all molecules by averaging as follows:

LP =
1

NTr

∑
mi∈Tr

1

‖B(mi)‖ − 1

∑
Rj∈B(mi)\{R∗i }

L(mi, Rj).

(16)
By minimizing this loss function, we could keep the partial
order between the optimal reactions and others, which will
help us find the optimal route within less steps in the process
of retrosynthetic planning.

By combining these two losses, we could get the final loss
function L as:

L = LR + λLP , (17)
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where λ is the weight to control the influence of partial or-
dering loss. Adam (Kingma and Ba 2015) is utilized as the
optimizer to minimize the loss L with learning rate 0.001.

Route Search
To make a fair comparison, we apply our estimation method
with the A* search method to generate the final result, which
is the same as Retro* (Chen et al. 2020) method. For the tar-
get molecule and every intermediate molecule, a MLP tem-
plate (Segler and Waller 2017) is applied to generate k pos-
sible one-step reactions, where k = 50 in our framework.
The search process is initialized from the target molecule.
For every step, we will expand one intermediate molecule
which has the minimal route cost. The route cost is the sum
of current cost and estimated cost. After every expansion, we
will update the current cost of all relevant molecules which
are in the same route as the expanded molecule. These pro-
cesses will run iteratively until there is one route for which
all basic molecules are available or that reach the maximal
iteration.

Experiment
In this section, we will give the experiment settings and re-
sults with the comparison of state-of-the-art methods. More-
over, we will give the parameter analysis and ablation ex-
periments which could show the effectiveness of different
components in our framework.

Dataset
The public reaction dataset United States Patent Office
(USPTO) is used in our method with the same preprocessing
as (Chen et al. 2020). There are about 1.3 million reactions
after the deduplication and filtration, which are randomly
separated into training/validation/testing sets with propor-
tion 80%/10%/10% respectively. Synthesis routes are gen-
erated from these reactions for test set. After all process,
there are 299,202 and 65,274 one-step reactions for train-
ing and validating the estimation method, and 190 retrosyn-
thetic routes in the testing set for the evaluation of whole
framework.

Experiment Setting
For every target molecule, we at most run the one-step re-
actions 500 times, which is the same as (Chen et al. 2020).
The embedding of the molecule is fixed as 128. We set the
weight λ of partial ordering loss as 1. The slack variable ε
is set as 7. For the threshold τ , we select it from the range
[0 : 0.1 : 1.0]. The weight α is also selected from the range
[0 : 0.1 : 1.0].

Baselines
We use GNN-Retro (Threshold) to denote our method with
graph in Eq. (3) and GNN-Retro (Embedding) to denote
our method with graph in Eq. (7). And We compare our
method with 5 baselines, and the details of these methods
are summarized as follows:

Method Success Rate #Route
Greedy DFS 22.64% 43

MCTS 33.68% 64
DFPN-E 55.26% 105
Retro*-0 79.47% 151
Retro* 86.84% 165

GNN-Retro (Threshold) 91.05% 173
GNN-Retro (Embedding) 87.37% 166

Table 1: Results

• Retro* (Chen et al. 2020): Based on the A* search
method, they use a neural network to estimate the cost
from current state to the goal.

• Retro*-0: This is a simplified version of Retro*, which
only use the current cost to select the next molecule.

• DPFN-E (Kishimoto et al. 2019): Deep first proof num-
ber search is applied in this method with the heuristic
edge initialization.

• MCTS (Segler, Preuss, and Waller 2018): Monte Carlo
Tree Search (MCTS) is exploited here to solve this task.

• Greedy DFS: A naive baseline which is implemented by
greedy depth first search algorithm.

Results
The results of all methods could be found in the Table 1. As
all experiment settings are same as (Chen et al. 2020), we
use their reported results. From our experiment results, we
could make some observations as follows:
• Our method outperforms Greedy DFS, MCTS, DFPN-

E, Retro*-0 and Retro* with a ratio 302.2%, 170.3%,
64.8%, 14.6% and 4.8% respectively, which could verify
the effectiveness of our framework in improving perfor-
mance of retrosynthetic planning.

• From the comparison between GNN-Retro and Retro*-0,
we could see that using the cost estimation of molecules
will improve the success rate significantly. This conclu-
sion could also be obtained by the comparison between
Retro* and Retro*-0.

• From the comparison between GNN-Retro and Retro*,
we could verify that the way we estimate the synthetic
cost of molecules is better than that in Retro*. Because
we utilize GNN to conquer the problem of data sparsity
by incurring the information of labeled neighbors.

• From the comparison between GNN-Retro (Threshold)
and GNN-Retro (Embedding), we could find that the way
we construct graph will influence the final performance.
However, both of them outperform all other state-of-the-
art methods, which could verify the superiority of our
method.

Ablation Experiments
In this section, we will give the ablation experiments for
GNN-Retro by deleting some components in GNN-Retro.
The way we construct the ablation experiments are summa-
rized as follows:
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Method Success Rate #Route
GNN-Retro/GNN 86.84% 165
GNN-Retro/Partial 80.53% 153

GNN-Retro 91.05% 173

Table 2: Ablation Experiments

• GNN-Retro/GNN: In this method, we delete the compo-
nent of GNN, in which we only use the original embed-
ding of molecule as the input for the regression compo-
nent.

• GNN-Retro/Partial: To show the effectiveness of the par-
tial ordering loss (Equ. 16), we only keep the regres-
sion loss (Equ. 14) as the objective function to train our
model.

The results of the ablation experiments could be found in
Table. 2. And we give the analysis of these results as:

• The result of GNN-Retro/GNN gives the clear image that
applying GNN could improve the success rate signifi-
cantly. The structure of GNN could incur the informa-
tion of neighbors in the training and inference process.
And the construction of graph for GNN is the key point
to make the incurred neighbors contain the similar syn-
thetic cost as the target one. Our strategy of graph con-
struction for GNN could reduce the data sparsity problem
and achieve a higher success rate.

• The comparison between GNN-Retro/Partial and GNN-
Retro shows that the partial order plays an important
role in the task of retrosynthetic planning. Because in
the search process, how to choose the next expanded
molecule depends on the partial order instead of the ab-
solute synthetic cost. So, making the synthetic cost of op-
timal reaction smaller than the synthetic costs of others
will influence the success rate of retrosynthetic plaining
explicitly and directly.

Parameter Analysis
To evaluate our strategy of constructing graph for GNN, we
give the experiment results for the threshold τ and weight α
in Fig. 3(a) and Fig. 3(b).

From Fig. 3(a), we could find that we could achieve
the best performance when τ = 0.9. When τ = 1.0,
the molecule will only be connected to itself, which is the
same as MLP. Comparing the results between τ = 0.9 and
τ = 1.0, we could verify that applying GNN by incurring
information of labeled neighbors will increase the success
rate of retrosynthetic planning. It also prove the correctness
of our assumption that molecules with similar fingerprint
will have similar synthetic cost. Comparing the results be-
tween τ = 0.9 and other τs with value less than 0.9, it
could prove that our strategy of filtering molecules for the
graph will improve the performance. Because the similar-
ity is hand-crafted, and it may incur many noises where the
relationship between molecule with low similarities is un-
certain. Filtering molecules with low similarities will reduce
the percentages of irrelevant connected molecules.
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(a) Results of parameter τ
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(b) Results of parameter α

Figure 3: Results of different parameters

The results in Fig. 3(b) gives a clear image that differ-
ent α will lead to various performances. This phenomenon
verifies that the construction of graph influences the success
rate of retrosynthetic planning significantly. When α = 1.0,
we could see that the performance of GNN-Retro is even
lower than Retro*-0, which means applying cost estimation
is worse than the version without cost estimation. The rea-
son why this scenario happens is that the similarity cannot
reflect the relationship of synthetic cost perfectly. So using a
tunable parameter α to control the influence of neighbors is
indispensable for GNN with hand-crafted graph. Moreover,
comparing the results between α = 0.1 and α = 0.0, we
could once again verify that applying GNN by incurring in-
formation of labeled neighbors will improve the success rate
of retrosynthetic planning.

Conclusion
In this work, we propose a new method for the synthetic cost
estimation of molecules in the task of retrosynthetic plan-
ning. To overcome the data sparsity problem, we apply GNN
to incur the information of neighbors. To construct the graph
of GNN, we assume that molecules with similar fingerprint
will have similar synthetic cost. A graph with threshold is
constructed to filter the incurred noise. Moreover, a semi-
dynamic graph is proposed to apply the GNN on molecules
in the test process. A* search method is applied as the search
algorithm for the route generation. The results on the bench-
mark USPTO show that our algorithm outperforms all state-
of-the-art methods with a large margin.
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