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Abstract

Modeling complex hierarchical and grouped feature inter-
action in the multivariate time series data is indispensable
to comprehending the data dynamics and predicting the fu-
ture condition. The implicit feature interaction and high-
dimensional data make multivariate forecasting very chal-
lenging. Many existing works did not put more emphasis
on exploring explicit correlation among multiple time-series
data, and complicated models are designed to capture long-
and short-range patterns with the aid of attention mecha-
nisms. In this work, we think that a pre-defined graph or a
general learning method is difficult due to its irregular struc-
ture. Hence, we present CATN, an end-to-end model of Cross
Attentive Tree-aware Network to jointly capture the inter-
series correlation and intra-series temporal patterns. We first
construct a tree structure to learn hierarchical and grouped
correlation and design an embedding approach that can pass
a dynamic message to generalize implicit but interpretable
cross features among multiple time series. Next in the tem-
poral aspect, we propose a multi-level dependency learning
mechanism including global&local learning and cross atten-
tion mechanism, which can combine long-range dependen-
cies, short-range dependencies as well as cross dependencies
at different time steps. The extensive experiments on different
datasets from real-world show the effectiveness and robust-
ness of the method we proposed when compared with exist-
ing state-of-the-art methods.

Introduction
Time series forecasting is an essential component in count-
less domains including medical monitoring, e-learning, en-
ergy and smart grid management, economics and finance,
sensor network analysis and epidemic propagation (Falout-
sos et al. 2019; Wan and Niu 2020). Of all the time-series
data mining tasks, it is one of the most tremendous ap-
plications of data-driven methods and arguably the most
challenging one. In the above scenarios, the prevailing ap-
proaches into the application today have been developed
in the background of extremely substantial time-series data
on historical behavior to forecast with complicated models
structured and adjusted by domain experts. However, with
the increasing dimensions of online, time-stamped activities
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Figure 1: Intuitive example: in left part, we select four sen-
sors with their index 3, 15 (green marker), 17 and 12 (blue
marker) from real-world dataset on Google Map. The right
half shows the traffic flow of these four sensors in the raw
data from 1:15 A.M. to 10:15 A.M..

strain the prediction capacity to measure collective behavior
of important evolutions (Boroujeni et al. 2018; Salinas et al.
2019; Gao, Duru, and Yuen 2021).

Existing forecasting models are designed focusing on ex-
ploring intra-series temporal patterns, some short sequences
of consecutive characters with blocks occurring in the same
time interval or varying time delays, in hundreds or thou-
sands of related time series (Zhuang, Li, and Wong 2014;
Huang et al. 2019; Wu et al. 2020; Sen, Yu, and Dhillon
2019; Yang et al. 2020; Cao et al. 2020). However, many
high-dimension and real-world collections of time series ex-
hibit complex hierarchical and grouped correlation (Man-
cuso, Piccialli, and Sudoso 2020; Rangapuram et al. 2021).
As an intuitive example, the occupancy rates of national
roads can be disaggregated into different provincial roads,
and the occupancy rates of provincial roads can be separated
into county roads. As shown in Figure 1, sensor 12 and sen-
sor 17 are in similar branches and their traffic flow trends are
also similar (solid ellipse). Sensor 15 is located in the main
road and sensor 3 is located in the branch of sensor 15, so the
traffic flow of sensor 15 is mostly higher than that of sensor
3 (dotted ellipse). Hence, implicit or rare feature interaction
of inter-series data needs to be modeled explicitly.

There are some prior works on improving the latent spa-
tial correlation between variables. Graph neural networks
(GNNs) have obtained great achievements in multivariate
time series forecasting viewed from a graph perspective to
capture inter-series correlation. However, the limit of these
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graph models strongly depends on the predefined graph
structure to extract spatio-temporal features (Yu, Yin, and
Zhu 2018). Instead of a predefined graph structure, graph
learning module is designed to extract the uni-directed rela-
tions among variables, where the nodes in a graph are out-
of-order, which makes it difficult to learn the topological re-
lationship in the graph (Wu et al. 2020; Bai et al. 2020).

Hence, the major challenge for exploring the hierarchical
and grouped correlation between multiple variables is en-
hancing the multi-step prediction capacity to meet the in-
creasing dimension demand, which requires (a) extraordi-
nary modeling ability to extract dynamic correlation of inter-
series data and (b) efficient balance ability to capture global
and local dependency of intra-series data. Motivated by (Lyu
et al. 2020; Wang et al. 2018b; Cheng et al. 2018), we em-
ploy an ordered hierarchical tree structure where both struc-
ture and content information can be preserved to discover
hierarchical feature interaction between inter-series data at
different time steps to address the issue (a). We dynamically
update node and edge representation after each prediction
to enhance node/edge characteristics. Meanwhile, we pro-
pose a novel multiple-level dependency learning mechanism
including global&local learning and cross attention mecha-
nism to enhance the intra-series feature discriminability for
requirement (b). Our contributions are summarized as:
•We propose CATN that can capture the intra-series tem-

poral dependency and dynamic inter-series correlation si-
multaneously. To our knowledge, this is the first work to
introduce a tree-based neural network into multivariate time-
series forecasting.
• We introduce a tree structure to dynamically reason

the hierarchical and grouped interaction and design an em-
bedding method to generate implicit but interpretable inter-
series features from the structure’s perspective.
•We design a multiple-level dependency learning mech-

anism including global&local learning approach that con-
siders both long- and short-term dependency and cross at-
tention mechanism that integrates intra-series dependency at
crossed time steps, which enhance the feature discriminabil-
ity largely of different nodes at the same level.
• We carry out extensive experiments on our end-to-end

model and obtain state-of-the-art performance on various
time series forecasting baselines, which proves its effective-
ness and robustness.

Related Work
Correlated Time Series Forecasting
Traditional methods cannot model complex patterns or de-
pendencies lying in real-world data, although they are sim-
ple and interpretable. In recent years, a lot of works in
time series forecasting based on deep learning methods have
gained popularity. A majority of such studies (Sen, Yu, and
Dhillon 2019; Du et al. 2021; Zhuang et al. 2020; Li et al.
2018) rely on recurrent neural network (RNN). Moreover,
temporal convolutions have been used for time-series fore-
casting to extract local features. A combination of 2D convo-
lution to capture short-term patterns and recurrent structures
to capture long-term patterns between multiple time-series

have been leveraged (Lai et al. 2018). However, scaling this
model beyond a few thousand time series is difficult because
of the growing size of the input layer. Shih et al. designed an
LSTM-based model where hidden states were fed into a set
of CNN filters to model frequency information and then cal-
culated weights by a scoring function to select related time
series, and finally create the forecasting values (Shih, Sun,
and Lee 2019). Xu et al. utilized a tensorized LSTM with
adaptive shared memory to learn global features and a mul-
titask 1dCNN to learn local features (Xu et al. 2020).

However, the combination of capturing local dependen-
cies by CNNs and maintaining long-term dependencies by
RNNs based on intra-series data ignores the inter-series
dependencies among multiple variables. The Conv-LSTM
structure can not meet the requirement (a) (given in Intro-
duction). Bai et al. studied node-specific patterns instead of a
pre-defined graph and then used a learnable node embedding
dictionaries to infer spatial dependencies between different
series (Bai et al. 2020). However, learning general graphs is
difficult due to their erratic structures (Lyu et al. 2020). The
Tree is an ordered graph with a distinct hierarchical struc-
ture. Tree structures have been used in image classification
(Lyu et al. 2020), text classification (Cheng et al. 2018), ex-
plainable recommendation (Wang et al. 2018b) et al.

Cross Attention Mechanism
Cross attention mechanism has been applied for few-shot
classification (Hou et al. 2019), object detection (Lin et al.
2021) and video-text matching (Lee et al. 2021) or text-text
matching (Hao et al. 2017), and recommendation (Hu et al.
2018; Wang et al. 2018a; Zhu et al. 2021). Lin et al. modeled
the bidirectional correspondences between target and query
image based on transformer. This architecture exploited the
similarity between two streams (query-to-target and target-
to-query) (Hou et al. 2019). Lin et al. proposed a cross at-
tention module including two sub-modules: language guide
vision and vision guide language for referring expression
comprehension (Lin et al. 2021). Hao et al. extracted i vi-
tal entities from answers and constructed four bidirectional
streams (answer-entityi-to-question attention and question-
to-answer-entityi attention) (Hao et al. 2017). Lee et al. de-
vised a cross-correlation to generate both of audio and vi-
sual features attended by each other (Lee et al. 2021). The
most similar to our cross attention mechanism is the cross at-
tention module of (Hou et al. 2019), which computes cross
attention between feature maps of two images (support and
query). However, our cross attention mechanism is proposed
for multivariate time series forecasting. Owing to the easy-
to-interpret cross attentive tree-aware network, the overall
prediction process is fully transparent and self-explainable.

Preliminaries
A time series xi = {xi

1, x
i
2, ..., x

i
T } records the observed

values of variate i at time stamp T . A multivariate time se-
ries is denoted as X = {x1, x2, ..., xdx | xT ∈ Rdx}. dx de-
scribes the variate dimension and the time interval between
two consecutive observation values is fixed.

Problem Statement Given the fixed input time win-
dow Tx, we have the input X = {x1, x2, ..., xdx | xdx ∈
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RTx}, where dx represents the number of univariate time
series. The output is the corresponding sequence Y =
{y1, y2, ..., ydy | ydy ∈ RTy}. For implementing the
rolling forecasting, we aim at predicting YT+h based on
X . h ∈ R+ is the envisaged time horizon later than
the current time stamp. Ty is the output window whose
length may differ from Tx. We formulate that for the fore-
casting target YT+h ∈ Rdy , the input matrix is X =
{x1, x2, ..., xTx | xTx ∈ Rdx}.

Hierarchical Clustering (HC) Given a set of n univari-
ate time series V = {v1, v2, ..., vn |vi ∈ R} = X T . The goal
of HC is to find a tree T that contains them as leaves. The
non-leaf nodes of T correspond to the clusters of variables at
different levels. Therefore, we call the non-leaf nodes of T
as clusters, while also refering to them as sets of all variables
in their subtrees. A matrix S ∈ Rn×n includes the pairwise
similarities between the variables. The nodes and the pair-
wise similarities are represented by a tree T = (V, S).

Methodology
The architecture of CATN is shown in Figure 2 and more
details are described in the following sections.

Tree Construction
We believe that there is a potential hierarchical and grouped
correlation between multiple variables. Agglomerative hier-
archical clustering performs clustering in a greedy manner,
that is, initially, there are n clusters, each consisting of a
single feature point, each step needs to merge two clusters
that are the most similar. The distance measure affects the
final clustering results, and high dimensional variables re-
quire relatively large time consumption. There is a trade-off
between distance measure accuracy and time complexity.

The representations of different clusters depend on the re-
sults of similarity measure or the distance function. Inspired
by (Maxim et al. 2020), we use the weights of data in dif-
ferent dimensions wi = zi/(

1
n

∑n
i=1 zi). The w-weighted

euclidean distance is defined as distance measures for fea-
ture vectors: d(z, p) := w ∥z− p∥22. The points that have
a minimal dissimilarity are merged into a single cluster
according to the w-weighted euclidean distance criterion.
For inter-cluster distance, single/complete-linkage cluster-
ing computes the distance between two clusters by comput-
ing the distance between their closest/farthest data points:

s/c− L(Z,P ) = min/max{d(zi, pj) |zi ∈ Z, pj ∈ P}

where Z = {zi}|Z|
i=1 and P = {pi}|P |

i=1 are two clusters.
However, the closest or the farthest pairwise distance

cannot sufficiently represent their clusters. All-pairs link-
age clustering computes the distance between the means
of clusters, but this method is sensitive to clustering of
non-convex shapes. Average-linkage criterion considers the
average of the inter-cluster dissimilarity a − Lα,β =∑

zi∈Z

∑
pj∈P

d(zi,pj)
|Z||P | . Average-linkage has the highest

time complexity, i.e., O(n3), among these algorithms.
Inspired by (Emmendorfer and de Paula Canuto 2021), we

propose a median linkage criterion to compute the distance

of two clusters Z and P by selected pairs of points as below:

m− Lα,β(Z,P ) =
1

|Sα(N),β(N)|
∑

(z,p)∈Sα(N),β(N)

d(z, p)

where Sα(N),β(N) is a subset of all possible pairs (z, p), z ∈
Z, p ∈ P . We define Sα(N),β(N) as:

Sα(N),β(N) ={(z, p), z ∈ Z, p ∈ P |r(α(N)) ≤
d(z, p) ≤ r(β(N))}

(1)

Here, m(1) ≤ m(2) ≤ ... ≤ m(N) is a rank-ordered set M
of the distances d(z, p) between all N = |Z||P | possible
pairs (z, p), z ∈ Z, p ∈ P . The element m(1) and m(N)

correspond to the pair with the minimum distance and the
maximum distance respectively. To obtain the median m̃ of
M , the parameters α(N) and β(N) are set as 1 and N

2 .
We construct a tree T which contains variables as leaves

to build hierarchical relationships between variables. Mea-
suring the quality of a tree T that represents the hierarchical
correlation between features is achieved by evaluating the
performance of label prediction tasks. The representation of
T will be introduced in the next subsection.

Tree Embedding
We believe that there is a hierarchical and grouped corre-
lation between multiple variables - as we shown in the in-
troduction. The strength of tree-based methods lies in their
effective structure and interpretability. Assume that the em-
beddings of the univariable i are the leaf nodes at the very
bottom layer in T . A subset of multiple variates that have
potentially relevant is grouped together via one parent node,
where the parent node is the embedding of the correspond-
ing group. For the data matrix X ∈ RT×n, we have obtained
a projection function f : X → T {V,E}, where V repre-
sents the set of nodes, E represents the set of edges. The
function is aimed to transfer matrix to tree space (Lyu et al.
2020). The node set V can be partitioned into two subsets,
the non-leaf nodes VI and leaf nodes VL, V = VI ∪ VL.
The edge set E can be divided into two categories: el ∈ EL

and er ∈ ER. Tree T can be regarded as an effective tool to
deliver high-order cross features from the original features.

Node Embedding To further encode high-order features,
we map every leaf node vl ∈ VL into a updatable dense
embedding tensor u ∈ Rd where d is the dimensionality.

Time Embedding In order to capture the time de-
pendence between sequences, hierarchical timestamps (day,
week, month, year) and agnostic (A.M. and P.M., holidays)
are needed to be considered. Time stamps can be used as
part of a sequence to participate in prediction. We extract
t hierarchical time stamps as Et ∈ Rr×t and then map to
Rr×t×dt , where r represents the total of hierarchical time
stamps and dt represents the dimension of time embedding.
After concatenating, the final node representation is [u : Et].

Edge Embedding For ease of notation, we use one-hot
encoding to represent left edge and right edge initially. To
facilitate embedding edge into the whole network for gradi-
ent backward, we finally project each edge into a learnable
dense embedding vector el and er.
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Figure 2: Architecture for the CATN designed for multivariate time-series forecasting. For the sake of simplicity, only a set of
cross processes (red and green) are shown.

Non-leaf nodes vi ∈ VI could be represented initially as :
vi = φ(ul) · el + φ(ur) · er (2)

where φ(X) is an operation that fills in all missing values
from X . The vi depicts all latent representations of high-
order features and will be used for prediction.

Updating Non-leaf Nodes Hierarchical correlation
learning can explore dependency between parent nodes and
children nodes. To make weight coefficients comparable, we
perform a normalization on the left-child node and right-
child node,

Θ(lr) =
exp(vi)∑

j=l,r exp(ej)
(3)

Then we update the non-leaf nodes vi with the θ(lr), re-
sulting in viup = θ(lr) · vi. The output of each node in inter-
action layer we selected is a tensor Ed ∈ Rw×d and will be
delivered in the next subsection.

Global&Local Learning
We use a combination of convolutional and recurrent com-
ponent to mining local and global information.

Convolutional Component At the kth level of the tree,
we search up Ed ∈ Rw×d of each node, which is randomly
initialized and learned during training. Here, w means the
window of time series. Local temporal convolution can cap-
ture local temporal patterns in the time dimension. Moti-
vated by (Chang et al. 2018; Lai et al. 2018; Shih, Sun,
and Lee 2019; Zhang et al. 2021; Shi et al. 2021), the first
layer of global&local learning is a convolutional layer with-
out pooling. We use nc filters of width wc and length lc,
where lc is equal to d. All filters sweep through the output
of tree module Ed ∈ Rw×d and produce:

oc =
1

nc

nc∑
k=1

RELU(Wk ∗ Ed + bk) (4)

where ∗ represents the convolution operation and the vec-
tor oc is the output. After zero-padding, each vector oc with

length d is put on the left of Ed and then generates the output
of this component with size w × 1.

Recurrent Component Similarly, we get Ed ∈ Rw×d

and then the embeddings of kn nodes are fed into kn
LSTMs. LSTM is a recurrent neural network and has been
proven to be effective in many time series forecasting tasks
such as (Du et al. 2020). For considering the information of
before and after current moment, we employ bidirectional
LSTM, which consists of both forward and backward net-
works. Thus we could obtain two hidden state sequences,
one from the forward one (

−→
h1
i ,
−→
h2
i , ...,

−→
hu
i ) and the other from

the backward one (
←−
h1
i ,
←−
h2
i , ...,

←−
hu
i ). After concatenating, we

obtained {
−→
hi ;
←−
hi : hi = σ(oi) · tanh(ci)}, where the hidden

unit u of forward and backward LSTM is d
2 . We denote the

hidden state of multiple LSTMs as {h1, h2, ..., hkn}, where
kn denotes the number of nodes of the kth layer. To be fur-
ther enhanced with the local information, the output is con-
catenated with oc and then fed into cross attention module.

Cross Attention Mechanism
For calculating efficiently, we construct the contrast set C =
{ha}kna=1 and the query set Q = {hb}knb=a+1 inspired by
(Hou et al. 2019). We match arbitrary two non-leaf nodes at
the kth level of the tree from C andQ as S = {(ha, hb)| a ∈
[1, kn], b ∈ (a, kn]}, crad(S) = C2

kn, where hi ∈ Rw×d

denotes the hidden state of the ith LSTM. The cross atten-
tion measures the extent of attention by the relatedness be-
tween ha and hb, help to re-read the vital information of the
target and enhance the feature discriminability.

Inspired by (Hou et al. 2019; Hao et al. 2017), different
from existing methods which extract the contrast and query
features independently, we present a cross attention module
that considers the dynamic relevance between C and Q in
time pattern. We get the input ha ∈ Rw×d and hb ∈ Rw×d

from C and Q, respectively, where ha = [c1, c2, ..., cd] and
hb = [q1, q2, ..., qd]. Then we design a correlation layer to
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calculate a correlation map between ci and qj at staggered
moments. The semantic relevance between ci and qj is com-
puted by cosine distance in the correlation layer to get the
correlation map R ∈ Rd×d as:

Rij = (
ci
∥ci∥2

)T (
qj
∥qj∥2

), i, j ∈ [1, d] (5)

Moreover, two correlation maps based on R are defined:
ha correlation map Rc = [rc1, r

c
2, ..., r

c
d] and hb correlation

map Rq = [rq1, r
q
2, ..., r

q
d], where rci ∈ Rd represents the

correlation between local vector ha at a certain time ci and
global vectors {qi}di=1, and rqi ∈ Rd represents the correla-
tion between local vector of hb at a certain time qi and global
vectors {ci}di=1. By this means, Rc and Rq capture all local
correlations within a time window between input ha and hb.

To obtain the contrast and query attention maps, we use a
fusion layer. We take the contrast attention map as an exam-
ple. We refer to the contrast correlation map Rc as input of
the fusion layer. W ∈ Rd×1 is an intermediate matrix and
b is the offset. For expressing each local correlation vector
{rci } of Rc into an attention scalar, we use f(·) to normalize
the attention scalar. The contrast attention at the ith position:

αc
i =

exp(ωc
i )∑d

j=1 exp(ω
c
j)

(6)

ωc
i = f(WT rci + b) (7)

where αc
i ∈ R1×d and αc ∈ Rw×d. The function f(·) aggre-

gates the correlations between the local class feature ci and
all local query features {qj}dj=1 at the i-th position.

Furthermore, we get the query attention map αq ∈ Rd×d.
we reshape αc and αq into R1×d. Then we elementwisely
weight the initial feature maps ha and hb into 1 + αc and
1 + αq via a residual attention mechanism. We finally form
more discriminative feature map pairs S̄ = {(h̄a, h̄b)| a ∈
[1, kn], b ∈ (a, kn]}. ō calculates an average outputs based
on attention again to mitigate the impact of mapping by:

ō =
1

crad(S)

kn∑
a=1

exp(ωha
)∑kn

b=a exp(ωhb
)
h̄a (8)

here, crad(S) denotes the size of S , the calculation of ωha

and ωhb
is similar to Eq.(7).

Learning Objective
We choose the MSE loss function and optimize the loss for
multi-step forecasting together, and the loss is propagated
back from the LSTM′outputs across the entire model.

LCATN =
1

Ty

Ty∑
i=1

(Y [:, τ ]− Ŷ [:, τ ])2 (9)

where τ = ti + 1 : ti + h.

Experiments
Datasets, Metrics and Baselines
We employ four real-world datasets , including:
Traffic 1 Data is collected from the California Department

1https://archive.ics.uci.edu/ml/datasets/PEMS-SF

of Transportation and describes the occupancy rate of dif-
ferent lanes on San Francisco highway from January, 1st,
2008 until to March, 30st, 2009. This dataset contains 963
time-series and 10560 time-points, where each observation
is between 0 and 1. The sampling interval is 10 minutes.
Electricity 2 The dataset consists of 370 time-series and
25968 time-points from electricity consumption of 370
clients. All values are recorded in kW every 15 minutes.
PeMSD7(M) 3 PeMSD7(M) dataset is organized from Cal-
trans Performance Measurement System (PeMS) and de-
scribes the detectors spanning the freeway system across all
major metropolitan areas of California. It contains 228 time-
series and 11232 time-points at 5 minutes interval.
METR-LA 4 It includes traffic information from 207 sen-
sors in the highway of Los Angeles County. It contains 207
time series and 34272 time-points at 5 minutes interval.

We employ five typical metrics, i.e., mean absolute error
(MAE), root mean square error (RMSE), mean absolute per-
centage error (MAPE), symmetric mean absolute percent-
age error (SMAPE) and weighted absolute percentage error
(WAPE), for time series forecasting evaluation.

We select eight methods as baselines, including: 1)
Vector Auto-Regression (VAR): is an advanced statistical
method that captures the linear correlation; 2) LSTNet (Lai
et al. 2018): is often used to discover the short-term lo-
cal dependency patterns and the long-term pattern. 3) TPA-
LSTM (Shih, Sun, and Lee 2019): selects relevant time se-
ries using attention mechanism and transforms “time domain
information” into “frequency domain information”; 4) MT-
Net (Chang et al. 2018): is a memory time-series neural net-
work consists of a large memory component that can capture
long-term dependencies while incorporating multiple vari-
able dimension; 5) DSANet (Huang et al. 2019): captures
complicated nonlinear dependencies between time steps and
between multiple time series; 6) MTGNN (Wu et al. 2020):
as a graph neural network model, is often used to learn
the spatial and temporal dependencies among time series;
7) DeepGLO (Sen, Yu, and Dhillon 2019): combines local
and global features into temporal convolution network; 8)
Informer (Zhou et al. 2021): addresses long sequence fore-
casting problem based on Transformer.

Overall Comparison
In Table 1, the overall prediction performances measured
by three widely use indicators MAE, RMSE and MAPE,
where horizon are {3, 6, 9, 12} against other benchmarks re-
spectively. We can observe that CATN does better than the
baselines based on convolution and recurrent operation with
different self-attention mechanism, as it is aided by both
global&local and cross factors. Traditional VAR is not good
at dealing with the long sequence time-series forecasting
problem. LSTNet performs better on the electricity dataset
with horizon 3 and horizon 6, but CATN shows a more stable

2https://archive.ics.uci.edu/ml/datasets/
ElectricityLoadDiagrams20112014

3https://dot.ca.gov/programs/traffic-operations/mpr/pems-
source

4http://ceur-ws.org/Vol-2750/paper9.pdf
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Models Metrics traffic electricity Improvements3 6 9 12 3 6 9 12

VAR MAE 0.0252 0.0481 0.0642 0.102 0.081 0.0872 0.0963 0.111
RMSE 0.0374 0.0679 0.0982 0.1939 0.2408 0.2557 0.2766 0.2787
MAPE 0.5658 1.302 2.2563 2.5818 0.3285 0.4521 0.5252 0.5496

LSTNet MAE 0.0193 0.0198 0.0225 0.0229 0.0755 0.0841 0.0868 0.0839
RMSE 0.0847 0.0481 0.0509 0.0517 0.2351 0.2445 0.2629 0.2695
MAPE 0.1831 0.1897 0.237 0.2455 0.3239 0.3668 0.3753 0.4006 *

TPA-LSTM MAE 0.0187 0.0192 0.0223 0.0237 0.0617 0.0678 0.0743 0.0739 *
RMSE 0.031 0.0315 0.0398 0.0498 0.2481 0.2683 0.2761 0.2718 *
MAPE 0.4681 0.7099 0.4813 0.5671 0.2696 0.3172 0.3236 0.3488

MTNet MAE 0.3086 0.3108 0.3071 0.3128 0.0834 0.0835 0.093 0.084
RMSE 0.412 0.4154 0.4112 0.4225 0.2723 0.2724 0.2843 0.273
MAPE 1.6268 1.6544 1.7265 1.5982 3.4273 3.4374 3.7312 3.4838

DSANet MAE 0.0227 0.0203 0.0235 0.0252 0.068 0.0655 0.0707 0.0711
RMSE 0.0322 0.0341 0.0412 0.0475 0.247 0.266 0.292 0.268
MAPE 0.181 0.164 0.191 0.191 0.22 0.264 0.263 0.246

MTGNN MAE 0.0242 0.0467 0.0289 0.03 0.0646 0.0824 0.0872 0.0767
RMSE 0.0523 0.0789 0.0587 0.0605 0.295 0.317 0.3229 0.3128
MAPE 0.2307 0.6161 0.2891 0.3231 0.2423 0.3318 0.3778 0.3409

CATN MAE 0.018 0.0183 0.0193 0.0178 0.061 0.0613 0.061 0.0626 11.7%
RMSE 0.0309 0.0312 0.0319 0.0308 0.2601 0.2605 0.2621 0.2649 3.62%
MAPE 0.156 0.1589 0.1682 0.155 0.1907 0.1921 0.1931 0.2017 39.03%

Models Datasets WAPE / MAPE / SMAPE
3 6 9 12

DeepGLO PeMSD7(M) 0.0818 / 0.1024 / 0.0988 0.1378 / 0.1635 / 0.1651 0.0554 / 0.063 / 0.0592 0.102 / 0.1506 / 0.1245
METR-LA 0.1506 / 0.2157 / 0.196 0.0806 / 0.068 / 0.07 0.0917 / 0.0755 / 0.0697 0.091 / 0.0749 / 0.0695

Informer PeMSD7(M) 0.1371 / 0.1808 / 0.1543 0.1404 / 0.191 / 0.1587 0.1685 / 0.2208 / 0.186 0.1421 / 0.1972 / 0.1606
METR-LA 0.137 / 0.2794 / 0.1693 0.1333 / 0.2682 / 0.165 0.1488 / 0.2798 / 0.1796 0.148 / 0.2877 / 0.1795

MTGNN PeMSD7(M) 0.1771 / 0.2891 / 0.2542 0.0654 / 0.0782 / 0.0698 0.0801 / 0.0988 / 0.0836 0.0886 / 0.1129 / 0.0927
METR-LA 0.0972 / 0.1028 / 0.1109 0.1012 / 0.1231 / 0.1276 0.1304 / 0.1465 / 0.1478 0.1504 / 0.191 / 0.1681

CATN PeMSD7(M) 0.0444 / 0.0486 / 0.0462 0.0439 / 0.0481 / 0.0457 0.0439 / 0.048 / 0.0457 0.0458 / 0.05 / 0.0476
METR-LA 0.0516 / 0.0626 / 0.0556 0.0527 / 0.0639 / 0.0568 0.053 / 0.0641 / 0.057 0.054 / 0.0604 / 0.0576

Table 1: Prediction results of different methods on the traffic and electricity dataset, where bold values are the best performance
(smaller value means better performance). Below the main table, the WAPE/MAPE/SMAPE comparison with three baselines
are reported, on the PeMSD7(M) and METR-LA dataset.

prediction ability. CATN brings 11.7%/3.62%/39.03% im-
provements on MAE/RMSE/MAPE to the existing best re-
sults (* in Table 1) for three datasets. CATN balances short-
and long-term prediction well and achieves the best perfor-
mance for almost all horizons. Specially, we find CATN per-
form better than the model based on GCN (MTGNN). Al-
though MTGNN models multivariate time series data with-
out a pre-defined graph, out-of-order graph learning is hard.
CATN can learn the dynamic hierarchical and grouped cor-
relation although there is no spatial relationship embedded
from the real world. Below the main table, the comparison
with two baselines are reported on PeMSD7(M) and METR-
LA with the other three metrics WAPE/MAPE/SMAPE for
traffic flow forecasting. We see that CATN performs best
on all metrics with >30% improvements. Figure 3 further
shows the different-window forecasting performance at each
horizon on the electricity dataset. CATN uses fewer histori-
cal data but shows better performance.

Parameter Sensitivity
We perform the sensitivity analysis of the proposed CATN
model on electricity dataset. Input Window: In Figure 3,
when obtaining short input sequences such as 1 hour , CATN
shows the best performance of all the baselines. When the
input window is set as 2.5 hours, MTGNN can achieve a
lower MAE value. Because longer historical data contains
more information to learn more accurate topological rela-
tionships between nodes. Embedding Dimension: In order
to better align the aggregated node and edge information, we
set their dimensions to the same. The embedding dimension
is a key parameter in CATN because it influences the qual-
ity of the learned tree. We select three values as {16, 32, 64}
and the results are shown as Figure 4(a). We can see that
excessively small or large embedding dimensions will re-
duce the performance. The larger embedding dimension will
contain more hierarchical and grouped information, but at
the same time, it will bring burdens to the upward aggrega-
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Figure 3: Prediction performance comparison of different
windows at each horizon.
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Figure 4: The parameter’s sensitivity of CATN.

tion of the message. When the embedding dimension is set
as 32, our model achieves the best performance. Interac-
tion Layer: Figure 4(b) shows that selecting all nodes of the
third interaction layer and inputting them into GLL gives
worse results. It is possible because the node information
is too centralized and loses the original information distri-
bution. Over-smoothing problem in information aggregation
makes the poor performance of the third interaction layer.
The fourth and the fifth interaction layer show similar re-
sults. It is noted that a deep interaction layer can lead to the
doubling of GLL parameters.

Ablation Study

To better evaluate the tree construction and embedding
(TEC), global&local learning (GLL) and cross attention
mechanism (CAM), we also implement additional experi-
ments on electricity with ablation consideration. We select
setting as batch size = 64, input window = 12, horizon = 3 in
all ablation experiments. Table 2 shows the results obtained
on electricity dataset. The results demonstrate the effective-
ness of key components that contribute to the improved out-
comes of our CATN model. In w/o TEC, we input data into
GLL+CAM directly and output module projects the hidden
features to the original dimension to get the final results. As
shown in Table 2, the RMSE of w/o TEC is significantly
improved (+18.03%). As verified by w/o TEC, mining hi-
erarchical and grouped correlations between different series
can lead to better performance. In w/o GLL, we use a pure
recurrent module ignoring local information learning instead
of GLL. We prove that capturing global and local temporal
patterns jointly based on intra-series data can bring bene-
fits. Moreover, w/o CAM indicates weak improvements on
all metrics. When using the CAM, our model is able to em-
phasize relevant information and extract more discriminative
features compared to extracting independently.

Metrics CATN w/o TEC w/o GLL w/o CAM

MAE 0.061 0.0649 0.0613 0.0615
RMSE 0.2601 0.3173 0.2603 0.2603
MAPE 0.1907 0.216 0.191 0.1934

SMAPE 0.174 0.1966 0.1755 0.1767

Table 2: Results of ablation study on the electricity dataset

3 14

15 2821

… …
… …

143
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28

21

…

Sensor 3

Figure 5: Visualization of computed correlation matrix in
TEC on the METR-LA dataset

Analysis
To investigate the validity of hierarchical clustering in our
tree construction, we execute a case study in the traffic fore-
casting scenarios. We select 5 sensors from METR-LA (Li
et al. 2018) on Google Map and show their corresponding
position in the tree (the upper left part in Figure 5). Sensor
3 and sensor 4 belong to the same parent node. Sensor 21,
15 and 28 are at the same level of the tree but belong to
different parent nodes. Furthermore, the correlation matrix
learned from the training data in a window is shown clearly
(the right part of Figure 5). Each column represents a sensor
in the real world. Column i denotes the correlation of sensor
i and other sensors and self-correlation are set as 1 by ex-
perience. As shown in the figure, the values of sensor 3 and
sensor 14 are high and it indicates they are closely related.
This is attributable that sensor 14 is located on the road of
101, while sensor 3 is located at the intersection near sensor
14. Hence, our model has both excellent prediction perfor-
mance and reasonable interpretability.

Conclusion
In this paper, we studied the hierarchical and grouped cor-
relation mining problem of multivariate time-series data and
proposed CATN for multi-step forecasting. To the best of our
knowledge, this is the first work to learn inter-series hierar-
chical and grouped correlation via a tree-based deep learning
approach. We designed a multi-level learning mechanism to
capture long-, short-range and cross temporal patterns for
intra-series data. Our CATN demonstrates extraordinary per-
formance on four datasets from real world and applies to
time-series data without a predefined topology. It is noted
that CATN is applicable for many real-world collections, es-
pecially for those with explicit hierarchical and grouped cor-
relation, e.g., including but not limited to stock, solar, covid-
19, weather, etc.
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