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Abstract

We consider datasets consisting of arbitrarily structured en-
tities (e.g., molecules, sequences, graphs, etc) whose sim-
ilarity can be assessed with a reproducing kernel (or a
family thereof). These entities are assumed to additionally
have a set of named attributes (e.g.: number_of_atoms,
stock_price, etc). These attributes can be used to
classify the structured entities in discrete sets (e.g.,
‘number_of_atoms < 3’, ‘stock_price ≤ 100’, etc)
and can effectively serve as Boolean predicates. Our goal is
to use this side-information to provide named kernel-based
anomaly detection. To this end, we propose a method which
is able to find among all possible entity subsets that can be
described as a conjunction of the available predicates either
a) the optimal cluster within the Reproducing Kernel Hilbert
Space, or b) the most anomalous subset within the same
space. Our method employs combinatorial optimisation of an
adaptation of the Maximum-Mean-Discrepancy measure that
captures the above intuition. Additionally, we propose a cri-
terion to select the optimal one out of a family of kernels in
a way that preserves the available side-information. Finally,
we provide several real world datasets that demonstrate the
usefulness of our proposed method.

Introduction
In the setting we consider we are given a dataset of enti-
ties, each of which contains an arbitrary structure that can
be represented in a flexible form and consist of multiple di-
mensions, that can even vary from one entity to the other.
For example, proteins, molecules, graphs, images, time se-
ries, or effectively any out of the large variety of structures
on which a meaningful positive definite kernel can be de-
fined. In addition, we assume that a set of relevant attributes
is available for each of the given entities; as such we con-
sider named properties that describe the entities in a way
that is sensible and useful to a human user. More specifi-
cally, these attributes should (latently, or explicitly) capture
interesting traits of the studied entities by which it is possi-
ble to meaningfully group them.

Our aim is to find, out of all possible subsets of entities
that we can possibly identify by defining conditions on these
attributes, that particular subset whose structure deviates as
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much as possible, either from the rest of the dataset or from
the entirety of it. We express these subsets with deviating
structure as either a clustering (of 2 clusters) in the given re-
producing kernel Hilbert space, or the most anomalous sub-
set within that space. Either way, the result is a named sub-
set of the data that, in addition to the members of the subset
itself, is equipped with a meaningful and easily understand-
able description of this subset.

As an example, consider the active research field of
computer-aided drug discovery, where molecules are scru-
tinised based on their structure and general chemical prop-
erties to find potential drug candidates for a given med-
ical condition. A great amount of information on chemi-
cal properties for molecules is available, or can be inferred
with relative ease via simulations based on the molecule
shape, e.g., electronic density, number of atoms, benzene
rings, etc; importantly, such chemical and structural prop-
erties of molecules can be captured by an appropriate ker-
nel on molecule shapes. However, only a relatively small
set of drug-like substances has been meticulously annotated
with their drug-related properties by lab specialists. These
latter properties could be suggestive traits like toxicity, bio-
availability, affinity to a specific target, etc, which can be
highly indicative of the fitness of a substance for a medical
condition. It would then be of great use to find groups that
stand out with respect to their shape-based properties, but
that at the same time share a common set of drug-related,
revealing traits. In this paradigm, we shift from the discov-
ery of a list of molecules, like paracetamol, ibuprofen, etc,
to a set which, in addition, has an easily accessible descrip-
tion based a set of useful properties, like: ‘painkillers with
high bio-availability and low toxicity’. Aside from the clear
usefulness of this description to a human researcher per se,
the molecules that fulfil this description define a landmark
in the Hilbert Space, whose proximity to non-annotated data
can be assessed with the kernel on molecules.

This paradigm deviates from having one single sug-
gestive trait like toxicity, for which one could fit a
classifier on the suggestive traits or the structure, with
several methods from supervised learning available to
this task. Instead, our goal differs in that there is no
singled-out regression or classification trait. We also seek
for a simple, concise and exact description, which thus
prohibits the use of a linear combination of proper-
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(b) Most anomalous named subset: p1 ∧ ¬p2.

Figure 1: Toy example of points with structure in R2 cap-
tured by a Gaussian kernel, also depicted along the first two
eigenvectors v1, v2 of the Gramian. Using the two sugges-
tive traits p1, p2, we find that the most anomalously struc-
tured subset that can be named using these traits is p1∧¬p2.

ties: instead of −0.3 · toxicity_on_rats + 1.2 ·
tolerance_in_humans+0.6 · . . .we seek a description
like: ¬toxic ∧ tolerance_humans, which is arguably
more accessible to a human than a high-dimensional vector
of coefficients. Consider, for example, the toy dataset of en-
tities in Fig. 1a, for which we assume the structural informa-
tion to be the location of each point in R2. The arrangement
of the points can be captured well by a radial basis function
kernel, as seen when we project them on the space spanned
by the first two eigenvectors of the kernel (Fig.1b); we also
assume the availability of two suggestive traits, Property
1, Property 2. We now seek to find any exact combina-
tion of these properties that results in the named subset that
has the most deviating structural properties, where the latter
is judged by the kernel. This subset can be named using the
logical conjunction p1 ∧ ¬p2, which is an exact description
that is tangible by a human.

It also becomes important to define what those structural
properties are that the kernel should deem relevant for its
similarity assessment. Although we assume to be given sev-
eral attributes for the dataset, these cannot directly function
as a target variable, like in the typical classification or re-
gression scenaria. A clear cut choice for such a single vari-
able does not apply, since we are not limited to one such
parameter. We hence make two key assumptions: that 1) the
selection of the properties themselves are axiomatically rel-
evant to the dataset, by the mere fact that they were selected

to be included in it, and 2) the similarity of two subsets of
entities that arise from a logical combination of these prop-
erties is dictated by the similarity of these two combinations.
We use these assumptions to quantify the degree of fitness
for a kernel that at the same time takes into consideration all
available properties as Boolean functions. We then use this
measure to select a good fit for a kernel, and study schemes
for multiple kernel learning where simpler kernels are lin-
early combined into a more fit one.

Thus, the main contributions of this paper are as follows.
(a) We propose a family of objective functions on subsets of

entities with structure, whose value is high only when the
entity structures in the subset stand out—according to a
positive definite kernel—from those in the dataset.

(b) We provide an upper bound for our objective functions
and use it in an adapted branch-and-bound solver for their
efficient and exact combinatorial optimisation.

(c) We provide methods to tune the hyper-parameter of the
involved kernel, which takes into account all available
properties of the dataset at the same time.

For conciseness, we delegate all proofs and additional in-
formation regarding reproducibility to the online appendix.1

Preliminaries
In this work we study datasets that consist of a set of en-
tities E = {e1, . . . , en}, for each of which a set of at-
tributes is defined. Each entity is accompanied with such
additional information that can be used to evaluate a simi-
larity between these entities through a positive definite ker-
nel κ : E × E → R. The attributes themselves are ac-
cessible to our algorithm through a set of predicates P =
{p1, . . . , pµ} which are derived from the attributes and thus
have an interpretable description. We choose to split the nu-
merical values into 5 ranges (very_low, low, normal,
high, very_high), so that each interval contains roughly
the same number of entities. On categorical and Boolean
attributes we use the one-hot encoding. For instance, we
will later study a dataset that consists of a set of traded
stocks as entities, for each of which there are available
financial attributes (e.g., payed dividends, time listed, in-
dustry sector, etc.); these we discretise to form predicates
like [pays_dividends], [time_listed < 1 year],
[sector = pharmaceutics].

Formally, the predicates are Boolean functions pj : E →
{>,⊥}, for >, ⊥ the true and false conditions, respec-
tively. The extension operation ext : P → 2E uses a pred-
icate as a set characteristic function over E and thereby
partitions the entities E into the set of those which sat-
isfy the predicate ext(p) := {e ∈ E | pj(e) = >}, and
those which do not E \ ext(p). These named predicates can
be further combined into conjunctions, which form more
detailed descriptions; we refer to such a description as a
selector s, and express it as the subset of the involved pred-
icates s ⊆ P . Naturally, the cardinality |s| of a selector
is the number of predicates in its description. We also use
the generalisation of the extension operation on selectors
ext(s) :=

⋂
p∈s ext(p), and define the related operator of

1https://eda.mmci.uni-saarland.de/prj/nuts
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intention int : E → 2P which assigns to each entity all
predicates that it satisfies int(e) := {p ∈ P | e ∈ ext(p)}.

In our example, each of the stocks comes with addi-
tional structure: a time series of its recent daily prices.
Among among all combinations of available financial at-
tributes, we now seek the one that describes the subset
of stocks with the most deviating daily price progression
from that of the entire dataset. We measure this deviation
by a state-of-the-art positive definite kernel on time-series.
Hence, we first define an appropriate kernel-aware measure
of anomaly for entity subsets, and then optimise it over the
language of named entity subsets L := {ext(s) | s ⊆ P}.

Most Outstanding Named Entity Subset
We now formalise our intuition into an optimisation problem
of a kernel-aware measure of anomaly for entity subsets. We
hence focus on the distribution of the structural information
of the entities; we search for the particular subset Q ⊆ E
with the maximally deviating such distribution compared to
either 1) the same distribution over the entire E or 2) within
only the complement Q̄. The first requirement is compati-
ble with the assumption that our dataset comprises the entire
population; therefore any quantity computed on E is deter-
ministic and not affected by the choice ofQ. On the contrary,
if we assume E to be just a sample of the entire population,
then to avoid unnecessary bias we may only compare statis-
tics computed on independent samples; since one is Q, the
other must only contain the entities E \ Q. We hence refer
to the first problem as anomalous discovery and to the latter
as contrastive. The next step is to specify how to employ a
positive definite kernel to measure the distributional distance
between the corresponding two sets.

Maximum Mean Discrepancy (Gretton et al. 2007) Ex-
actly for this task Gretton et al. (2007) provide a spe-
cial case for a known result from real analysis (Dudley
2002, Lemma 9.3.2). This informally states that for any
two (Borell) probability measures p, q, defined over a met-
ric space X , the following holds. Consider a dense enough
space of transformations g : X → R, like the set of all
bounded functions over X ; then it is p = q if and only if
the expectation of every transformation under p and under q
coincides Ex∼p [g(x)] = Ex∼q [g(x)]. In the role of a dense
enough space, Gretton et al. (2007) propose to use the unit
ball in the Hilbert Space of a reproducing kernel. The result-
ing measure between two distributions p, q is the Maximum
Mean Discrepancy (MMD)

MMD(p, q) := ‖µ(p)− µ(q)‖H ,

µ(·) := Ex∼· [φ(x)] , µ̂(P ) =
1

|P |
∑
x∈P

φ(x) (1)

where φ : X → H is the feature map of a given kernel on
X and µ is the mean of all points in H to which φ maps the
elements of X . An empirical mean µ̂ can also be estimated
over a finite subset P ⊂ X that was itself sampled under p.
This gives rise to the more relevant (squared) biased empir-

ical estimator of MMD, which for two sets Q, Q′ is

M̂MD
2
(Q,Q′) =

1

|Q|2
∑
e,e′∈Q

κ(e, e′)−

2

|Q||Q′|
∑
e∈Q,
e′∈Q′

κ(e, e′) +
1

|Q′|2
∑

e,e′∈Q′

κ(e, e′) , (2)

where κ(e, e′) = 〈φ(e), φ(e′)〉H. We hence adopt this mea-
sure to quantify the dissimilarity between Q and its pair.

An Objective for our Task In contrast, however, to the
setting for which the MMD was developed, we need to eval-
uate as candidate sets Q ∈ L all those that result from a
named combination of the dataset attributes. This means that
without proper scaling, selecting just an outlier could trigger
a false discovery. We therefore adapt the M̂MD by multiply-
ing it with a scaling factor a(|Q|), which depends only on the
size of Q and can be interpreted as a size prior. This yields
our objective function

ft(Q;κ, γ) := aγt (|Q|)·M̂MD
2

κ(Q,Q′t) , γ > 0 , (3)

where t = ano and t = con indicate the anomalous and
contrastive assumptions, respectively, for which we define

aano(m) := m Q′ano := E

acon(m) :=
m(n−m)

n
Q′con :=E \Q .

The scalar γ is a tuning parameter that controls the relative
importance between the prior on the subset cardinality and
the deviation component of the objective.

Note that we are not limited to using the given priors
and any reasonable choice will do. The intuition of our own
choice is that larger sets are less prone to be outliers and
are generally more informative; alternatively, from a statisti-
cal perspective, larger sets should lead to stricter confidence
bounds of the M̂MD statistic. In the contrastive case, due to
the symmetry fcon(Q) = fcon(Q̄) we wish for |Q| to be far
from both extremes. When t = ano our simpler choice suf-
fices due to the self-limiting effect of increasing the size of
Q, during which its distribution grows closer to that of E.
Importantly, in this case (and for γ=1) we can write√

fano(Q;κ, γ = 1) ∝ ‖µ̂(Q)− µ(E)‖H
σ/
√
|Q|

,

where µ̂ is as defined in Eq. (1) and σ2 is the variance of
φ. Since we assumed that E is the full population, µ(E) is
the true mean and our score is proportional to the (squared)
z-score of the empirical mean estimator µ̂(Q), after we ap-
ply on it the norm inH to obtain a scalar quantity.

We now reformulate our objective to reveal structure that
is convenient for what follows and to further show that both
problems differ only in the set cardinality prior at(|Q|).
Lemma 0.1. Let mQ := |Q| be the cardinality of any entity
subset. Then we can write our objective of Eq. (3) as

ft(Q;κ, γ) = aγ−2t (mQ)zQ
>KzQ , (4)
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where K ∈ Rn×n is the Gramian Ki,j := κ(ei, ej) and

zQ := cQ −
mQ

n
e ,

for e := (1, . . . , 1) ∈ Rn the vector of all ones and cQ :=
(1{ei ∈ Q})ni=1 the characteristic2 vector of set Q.

We can now formalise our problem as follows.
Problem 1. Given dataset E with attributes yielding the
predicates P and with structure captured by kernel κ, solve

max
Q∈L

ft(Q;κ, γ) .

This is a hard combinatorial problem and can be solved
optimally by a branch-and-bound algorithm that we adapt
to traverse the set L, described in the online appendix and
openly implemented3. We next focus on an appropriate up-
per bound that is necessary to efficiently use this algorithm.

An Upper Bound for our Objective
We now derive an upper bound for Eq. (4) that can be com-
puted in linear time, assuming an one-time sorting operation
with a time complexity of O(n log n).

Formally, we seek a function f̂ : 2E → R that when
evaluated at an entity subset Q ⊆ E computes an up-
per bound of the objective over all subsets of its argument,
f̂(Q) ≥ maxR⊆Q f(R). Such a bound can be computed in
two steps: first we can bound the objective exclusively over
all subsets R ⊆ Q with a fixed cardinality mR, and then
we can compute an upper bound for all subsets as the maxi-
mum of all cardinality-constrained maxima. We hence seek
an upper bound of the sub-problem

f̂t(Q;κ, γ,m) ≥ max
R⊆Q , |R|=m

ft(R;κ, γ) . (5)

Since now the size mQ remains constant, we can derive
a bound for each sub-problem as follows. Let ei denote the
i-th vector of the standard basis, i.e., the vector with a sin-
gle one at the i-th position, and define e:m :=

∑m
i=1 ei.

Let v1, . . . ,vk be the eigenvectors of K with rank k ≤ n
and corresponding eigenvalues λ1 ≥ . . . , λk. Further, de-
note vi↑[Q], vi↓[Q] the vector with those entries of vi for
which the characteristic function of cQ is non-zero, sorted
in increasing and decreasing order, respectively.
Lemma 0.2. Given any integer constant ρ < k, an upper
bound for the problem in Eq. (5) is

f̂t(Q;κ, γ,m) =

aγ−2t (mQ)acon(mQ)

(
ρ∑
i=1

λi min {ui, ~ui}+ λρ+1~uρ+1

)
,

where ~ui := max
{

0, 1−∑i−1
j=1 uj

}
and

ui :=

(
max

{
e:m
>vi↑[Q], e:m

>vi↓[Q]

}
− m

n e
>vi

)2
acon(m)

.

2Here, 1{·} = 1 if the condition · is satisfied and 0 otherwise.
3Available at https://eda.mmci.uni-saarland.de/prj/nuts.

We can now compute a bound f̂t(Q;κ, γ) over all subsets
R ⊆ Q using Lemma 0.2 as follows.

f̂t(Q;κ, γ) = max
m∈{0,...,mQ}

f̂t(Q;κ, γ,m)

≥ max
m∈{0,...,mQ}

max
R⊆Q, |R|=m

ft(R) ≥ ft(Q) .

In the supplementary material we provide an algorithm
that uses this approach to compute an upper bound inO(nρ)
time, which is linear when ρ is considered a small constant.

Hyperparameter Optimisation
Next, we present methods to tune the hyper-parameters of
the kernel that assesses the entity similarity, in a way that
preserves important information for the task of anomaly de-
tection or clustering, as introduced in Sec. .

Since, however, there is no explicitly defined target vari-
able available for classification or regression, it is not pos-
sible to use standard schemes from supervised learning. In-
stead, we are given a set of predicates P , each of which can
be seen as a classification variable. We hence make two key
assumptions: 1) the attributes of the datasets and thereby
the predicates derived from them are relevant to the task for
which the dataset was created, and 2) two subsets whose
predicate description is similar should themselves be simi-
lar. We therefore seek a method which takes into consider-
ation all predicates at the same time without favouring just
a single one or a few of them, and that admits a meaningful
interpretation of predicate conjunctions.

Assessing the Fitness of a Candidate Kernel on E
We now consolidate these assumptions into a method to as-
sess the fitness of a candidate kernel κ : E × E → R.

The first obstacle is that we require to evaluate the perfor-
mance of a kernel over entities, using ground truth over pred-
icates. An straightforward way to induce a similarity over
entities using their predicates is by using the intentions of
each entity as a feature.

κlp(e1, e2) :=
| int(e1) ∩ int(e2)|√
| int(e1)|| int(e2)|

,

This is equivalent to the normalised intersection kernel, or
the linear kernel over the characteristic vectors of the entity
intentions. In addition to the downsides of the linear ker-
nel, this kernel loses discriminating power when the number
of predicates is small, and increases the complexity of the
method to that of |E|, which is typically larger than |P |.

Instead, our method relies on three key steps: first, we
capture the similarity of each predicate to the others using
a Tanimoto kernel (Tanimoto 1958), which operates on the
predicate set P . Then, we 2) use a kernel over sets to com-
pute the candidate kernel, whose domain is the set of entities
E, to define one over P . Finally, 3) we assess the fitness of
the candidate kernel, as the alignment of the previously de-
rived kernel and the Tanimoto kernel. This process yields a
fitness value for any candidate kernel on E, which can sub-
sequently be used as a proxy by a method to either select one
kernel out a family thereof, or to create a composite kernel.
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The Tanimoto kernel (Tanimoto 1958) is the usual name
of the Jaccard Index when used as a kernel, and in its orig-
inal form operates on the power-set of a ground set κTan :
2E × 2E → [0, 1], here on the space consisting of all entity
subsets. We can therefore apply it on the set of predicates P
through the use of the extension operator

κTan(p1, p2) :=
| ext(p1) ∩ ext(p2)|
| ext(p1) ∪ ext(p2)| , p1, p2 ∈ P .

The Tanimoto kernel is known to be positive definite (Gower
1971) and captures the normalised amount of shared struc-
ture between sets. This makes κTan a natural choice for pred-
icate conjunctions, and can therefore measure the similarity
over P . Owing to the assumption of meaningful selection of
predicates, we now treat their similarity as ground truth.

The candidate kernel κ operates on two entities. In order
to compare it with the ground truth we need to transform it
into a kernel that operates on sets of entities. Arguably the
most appropriate choice is the kernel mean map (Muandet
et al. 2017) of κ. This is in turn also a positive definite kernel,
and is based on the same assumptions used in Sec. to derive
the MMD: that each set contains i.i.d. samples of a distribu-
tion, which is mapped in the Hilbert Space to the mean of
the mappings of each element in the set. This is exactly the
kernel that induces the MMD distance4, and therefore fits
naturally to our assumptions. When this kernel is applied on
any two predicates p1, p2 ∈ P it becomes

κmm(p1, p2;κ)=
1

| ext(p1)|| ext(p2)|
∑

e1∈ext(p1)
e2∈ext(p2)

κ(e1, e2) .

We now need to compare the ground truth similarity over
P to the one induced by the candidate kernel κ through the
kernel mean map embedding, again over P . For this we use
an established similarity measure of two kernels, the kernel
alignment (Cristianini et al. 2002)

algn(K1,K2) :=
〈K1,K2〉F√
‖K1‖F · ‖K2‖F

,

whereK1,K2 are the Gramians of the two kernels and 〈·, ·〉F
the Frobenius inner product5. This measure resembles the
cosine similarity of the two Gramians with respect to the
Frobenius inner product, and it is 0 ≤ algn(K1,K2) ≤ 1,
where the lower bound is due to the definiteness of the
Gramians. The upper arises from the Cauchy-Schwarz in-
equality, and therefore algn(K1,K2) = 1 ⇐⇒ K1 ∝ K2.

Combining all the above, we define the kernel fitness of κ

kernfit(κ;P ) := algn
(
KTan(P ),Kmm(P ;κ)

)
, (6)

where P ⊂ 2E is a set of predicates, KTan(P ) is the
Gramian of the Tanimoto kernel over P , and Kmm(P, κ) is
the Gramian of the kernel mean map κmm(p1, p2;κ) for each
p1, p2 ∈ P and with κ the candidate kernel over entities.

4The distance induced by a kernel is d(p1, p2) := κ(p1, p1) +
κ(p2, p2)− 2κ(p1, p2), which can be verified to match Eq. (2).

5It is 〈K1,K2〉F = Tr
[
K1
>K2

]
and ‖K‖2F =

∑
i,j K

2
ij .

We can now use the kernel fitness defined in Eq. (6) to
select the best out of a family of kernels on E, for instance
by an appropriate global optimisation scheme, such as grid-
search or—as in our experiments—Bayesian optimisation.

Multiple Kernel Learning
A special case of measuring kernel fitness arises when the
family of kernels we evaluate is a (positive) linear combina-
tion of a collection of constituent kernels. In this case, there
exists a non-negative vector of coefficients α ∈ Rp+ such that
the candidate kernel can be written as κα :=

∑p
ι=1 αικι;

then the (squared) kernel fitness of Eq. (6) becomes

kernfit2(κα) =
1

‖KTan‖2F
α>vv>α

α>Wα
,

where W ∈ Rp×p with W � 0 and v ∈ Rp, defined as

Wi,j :=〈Kmm(κi),Kmm(κj)〉F
vi :=〈Kmm(κi),KTan〉F

, i, j = 1, . . . , p .

When the components κι are guaranteed to be orthogonal
Cristianini et al. (2002) provides an optimal solution for α,
which amounts to using a vector of coefficients whose ele-
ments are proportional to the alignment of each component.
In practice, however, our candidate kernels can be not only
non-orthogonal, but also highly correlated, which makes the
W matrix badly conditioned or even non-invertible. For
these cases we modify the the solution that is optimal in the
orthogonal case, in what forms the following heuristic.

We keep adding the components, considering them in
decreasing order of their alignment. At each step, the
added components are weighted with coefficients which are
proportional to their fitness, which can be shown to be
kernfit(κι) ∝ (αιvι)

2/Wι,ι. In the end we pick the top-
most coefficients from the beginning until the index that
maximises the kernel fitness. Although, when orthogonal
components are added the resulting alignment can only in-
crease (Cristianini et al. 2002), adding a component that is
correlated with an already added one may lower the result-
ing fitness. Thus, our selection scheme results in a sparse
selection in case of highly correlated components, while it
remains optimal in case of orthogonal ones.

Related Work
From the perspective of the general goal, our method can
be seen as a special case of Subgroup discovery (Herrera
et al. 2011). In this setting, a dataset with tabular attributes
is given alongside a clearly defined target variable. This vari-
able is then maximised using a fitting objective function.
This setting deviates from ours in that we do not have such a
target variable. Further, our method can incorporate a widely
used family of weighted accuracy/impact objectives (Atz-
mueller 2015) by using as a special case the linear kernel.

Perhaps more relevant is the special case of exceptional
model mining (Duivesteijn, Feelders, and Knobbe 2016),
which uses p-values or information-theoretic measures to as-
sess whether the parameters of two models trained on these
target variables are the same: one trained on the subset and

4061



the other on the entire dataset. These models either require a
well defined relation between the target variables (e.g., mea-
suring correlation, using tests, etc), or one target must func-
tion as a classification label, so that a linear model can be
trained over the rest of the variables. These methods, how-
ever, do not admit an optimistic estimate for efficiently exact
optimisation, while they have not studied the use of kernels.

From the optimisation perspective, several methods have
been used, which can be seen as variations of the Branch
and Bound algorithm, or greedy variants like beam search.
We value an exact maximisation with concrete bounds, and
so we focus in the former family of methods, which require
optimistic bounds. The task of computing the optimistic es-
timator of Eq. (5) is an integer optimisation problem for a
fraction of quadratic functions. Due to its resemblance with
the Rayleigh quotient, our problem also becomes relevant
to maximisation and minimisation schemes, by simply in-
verting the fraction. Several methods can solve the uncon-
strained problem (Konno 1980; Li, Sun, and Liu 2012), how-
ever the cardinality constraint makes them non-applicable.
Note that, contrary to continuous optimisation, it is not easy
to first solve for the transformation z and then solve for the x
in the unit box. Indeed, these methods rely on the particular
structure of the 0-1 box, which is violated by the transfor-
mation we require. Note that exactly because of the arbi-
trary scaling function a, generic bounds are not applicable,
even the known naı̈ve ones (Shor 1987). A simple method
could sort the values of the matrix, but our proposed bound
is tighter and more computationally efficient, which makes a
comparison equivalent to creating a strawman to later defeat.

When it comes to hyper-parameter optimisation, several
methods have been proposed for un-supervised tuning pa-
rameters, which can be used for kernel clustering (Langone
et al. 2016), or for general clustering (Meila 2018). These
methods, however, often require multiple clusters instead of
just two, and also ignore the predicate information.

Experiments
We implement and evaluate our method on real world
datasets. Here we demonstrate our results.

Datasets Despite the abundance of structured datasets
(e.g., containing images, graphs, time-series, etc) and simi-
larly many with tabular data, there is a substantial scarcity
of datasets with both such information at the same time.
We thus compile three datasets that come close to practi-
cal tasks from drug discovery, finance, and social sciences,
and demonstrate related aspects from our hyper-parameter
optimisation methods in Sec. . We next quickly outline the
nature of these datasets. Detailed parameters and complete
results are delegated to the extended version of this work.

In Chem we refer to a dataset of drug-like molecules
from the ChEMBL (Gaulton et al. 2012) database, i.e., sub-
stances with potential pharmaceutical usage; their predicates
are derived from suggestive pharmaceutical traits (Malone
et al. 2010) annotated by human specialists, and their struc-
ture is assessed with a pre-computed kernel (Cincilla, Thor-
mann, and Pons 2010). In Stock we describe stocks of
companies listed in the New York Stack Exchange with in-

dicative financial traits of each company, alongside a time-
series of daily prices; these are used to assess stock sim-
ilarity through extracted Rocket features (Dempster, Petit-
jean, and Webb 2020). Finally, Twitter contains Twitter
ego nets (Leskovec and Krevl 2014): small subgraphs of the
interaction network centered around selected individuals.
Their attributes are followed users and used hash-tags. We
compare their graphs using the state-of-the-art Wasserstein-
Weisfeiler-Lehman kernel (Togninalli et al. 2019).

Kernel Hyperparameter Tuning Except for the Chem
dataset, which comes with a pre-computed kernel pro-
vided by the PubChem interface, we need to specify hyper-
parameters for the kernels of our datasets. We therefore
demonstrate here the methods introduced in Sec. , for both
settings of single parameter and multiple kernel learning.

For the Twitter dataset we use the state-of-the-art
WWL (Togninalli et al. 2019) kernel, κwwl, which requires
the specification of a single scalar parameter γwwl. We
choose this parameter by optimising the kernel fitness of
Eq. (6) using Bayesian optimisation with a Gaussian pro-
cess prior (Snoek, Larochelle, and Adams 2012) evaluated at
120 points (Fig. 3). For Stock each of the 1000 extracted
Rocket features (Gaulton et al. 2012) yields a radial basis
kernel whose σ parameters are individually tuned with the
same procedure, resulting in a collection of equally many
candidates for multiple kernel learning, which are highly
correlated. To then combine these features into a single ker-
nel we use the algorithm described in Sec. , which results in
a sparse combination of only 4 sub-kernels (Fig. 4a).

As a measure of fitness for this method we also com-
pare the average recall of the classification of each predicate
as a classification variable, using a kernel with a parameter
trained at each point. We show that the kernels chosen with
kernfit yield significantly higher scores than when maximis-
ing the alignment of the linear predicate kernel in Fig. 3b for
a broad range of γwwl values, and for the optimal multiple
kernel coefficients arising from the two methods in Fig 4b.

Necessity of Constrained Optimisation We further mo-
tivate our method by demonstrating the necessity of con-
strained optimisation. Since unconstrained clustering is
description-unaware it is extremely unlikely to yield a de-
scribable subset in the first place. Finding for it the closest
description may also result in a low-quality subset. In Fig. 5
we show the centroids of the optimal named subset Q, a lo-
cal optimum Qkm found by kernel k-means initialised with
Q, and the closest named QJac in the Jaccard sense to Qkm.
Unsurprisingly Qkm scores the highest in our objective but
has no description, while the naı̈vely found named one has 5
times lower quality than our optimum.

Efficiency of Computation To optimise Problem 1 we use
our branch and bound variant, for which a key factor de-
ciding its efficiency is the ability of the optimistic estima-
tor to prune the search space. That means that a key mea-
sure of this efficiency for a given dataset is the number of
states it visits. Since there are no baseline optimistic estima-
tors for our novel objective, as a comparable measurement
we show (Fig. 6) the percentage of visited states over those
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γ Subset Description |Q| mmd
(0,0.5] [49 ≤ price] ∧ [sector = Energy] ∧ [10 ≤ MarkCap] 0.005 0.2767

(0.5,0.6] [1.9 ≤ lastDiv] ∧ [sector = Energy] ∧ [9.8 ≤ MarkCap] 0.008 0.2315
(0.6,0.9] [sector = Energy] ∧ [activeTrading] ∧ [4.8 ≤ AvgVol] 0.074 0.0548
(0.9,1] [sector = Energy] ∧ [activeTrading] 0.082 0.05

(1,1.25] [10 ≤ price] ∧ [0.52 ≤ beta] ∧ [0.00017 ≤ lastDiv] 0.529 0.0064
(1.25,3.6] [10 ≤ price] ∧ [0.52 ≤ beta] 0.691 0.0045

(3.6,8] [10 ≤ price] 0.834 0.0023
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Figure 2: Selected discovered named subsets from Stock; their metrics [left] and corresponding subsets in kernel space [right].
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(a) Values of γwwl for which κwwl was tested for its alignments.
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(b) Classification recall of predicates using κwwl(·) in a SVM.

Figure 3: Tuning the scalar parameter γwwl for Twitter,
tested at 100 points selected through Bayesian optimisation
[above], and the recall of predicate validities using the kernel
for the given γwwl. Average of 50 splits per predicate.[below].

required by an exhaustive search. Our optimistic estimator
remains practically efficient even for higher rank matrices.
Also, since we can only expressed our objective as an in-
teger quadratic problem (IQP) for a fixed cardinality (see
Eq. (5)), the full problem would require solving O(n) hard
IQP sub-problems. As we show in the extended version of
this work, our method is superior to the IQP approach.

Named Subsets Fig. 2 lists discovered subgroup metrics
and visualises subgroup subsets along the first 2 eigenvec-
tors of the Gramian. Quantitatively, the size of the discov-
ered subsets is controlled by the tuning parameter γ, with a
simultaneous lowering of the measure of dissimilarity inH.

Of special interest is the occurrence of the predicate
[sector = energy] in several top subsets, indicating that
the stock prices in this sector were the most deviating from
the rest. Since we chose the price sequence in the data to
cover the years of the pandemic, they highly overlap the pe-
riod of heavy restrictions imposed in transport, which has
been extensively reported to financially impede this sector.

Summary and Discussion
We provide all key components for a method that is able to
find named anomalous subsets from datasets of entities that
have not only attributes but also such structural information
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(a) Optimal MKL coefficients.
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(b) Classification score.

Figure 4: Multiple kernel learning for Stock: top-ranking
sub-kernels are added until the resulting alignment stops in-
creasing [left], and classification recall of the optimal kernel,
compared against the naı̈ve linear predicate kernel κlp.
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Figure 5: Naming the clusters of kernel k-means yields low
quality subsets. Comparison of our discovered, optimal sub-
setQ [left], the kmeans discovered subset without nameQkm

[middle], and the closest named to the latter QJac [right].
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Figure 6: Efficiency of the optimisation in terms of visited
search states during the branch and bound algorithm, as the
matrix rank k of the Gramian increases.

that can be captured by a reproducing kernel. We motivate
two concrete formulations of our problem which stem from
reasonable statistical assumptions; we justify the selection
of the priors in each formulation and study their parameters.

We show how to practically and efficiently tune the
hyper-parameters respecting the assumptions of our task and
demonstrate them in real world datasets. Finally, we show
our method to be practical and give meaningful results.
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