
Unsupervised Anomaly Detection by Robust Density Estimation

Boyang Liu, Pang-Ning Tan, Jiayu Zhou
Department of Computer Science and Engineering, Michigan State University

liuboya2, ptan, jiayuz@msu.edu

Abstract

Density estimation is a widely used method for unsupervised
anomaly detection. However, the presence of anomalies in
training data may severely impact the density estimation pro-
cess, thereby hampering the use of more sophisticated den-
sity estimation methods such as those based on deep neu-
ral networks. In this work, we propose RobustRealNVP, a
robust deep density estimation framework for unsupervised
anomaly detection. Our approach differs from existing flow-
based models from two perspectives. First, RobustRealNVP
discards data points with low estimated densities during opti-
mization to prevent them from corrupting the density estima-
tion process. Furthermore, it imposes Lipschitz regularization
to ensure smoothness in the estimated density function. We
demonstrate the robustness of our algorithm against anoma-
lies in training data from both theoretical and empirical per-
spectives. The results show that our algorithm outperforms
state-of-the-art unsupervised anomaly detection methods.

Introduction
Anomaly detection (AD) is the task of finding unusual ob-
servations, whose characteristics are considerably different
from the majority of the data. Applications of AD can be
found in diverse domains, including cybersecurity, finance,
and healthcare. While there have been extensive methods de-
veloped for AD, density-based methods such as kernel den-
sity estimation, local outlier factor (LOF), and their variants
have found success due to their simplicity, ease of use, and
ability to detect diverse types of anomalies under various set-
tings (Breunig et al. 2000). However, despite their success,
current density-based methods are mostly designed to oper-
ate in the original feature space, which hampers their appli-
cability to high-dimensional data, as density estimation has
high sample complexity and computational costs with in-
creasing number of dimensions (Tsybakov 2008). Moreover,
if the data lies in some low-dimensional, nonlinear manifold,
performing density estimation and anomaly detection in the
original feature space may lead to inferior performance.

With the emergence of deep learning, deep generative
models have been widely used to perform density estima-
tion in complex, high-dimensional datasets. For example,
flow-based models (Dinh, Sohl-Dickstein, and Bengio 2016;

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Effect of anomalies on density estimation for flow-
based models. The upper left figure represents clean data
while the lower left figure represents data contaminated by
anomalies (red points). The right column shows the density
functions estimated by Real NVP. Observe that Real NVP
assigns large density values to the clustered anomalies.

Dinh, Krueger, and Bengio 2014) learn an invertible func-
tion to facilitate exact inference and sampling of data points
for density estimation. By carefully designing the network
structure, it can successfully learn the underlying data distri-
bution. Unlike other deep generative models such as genera-
tive adversarial networks (Goodfellow et al. 2014) and varia-
tional autoencoders (Kingma and Welling 2013), flow-based
models explicitly learn the density function, which makes it
a powerful tool for inferring out-of-distribution data.

However, due to the high capacity of the DNNs, the den-
sity function estimated by the flow-based model can be cor-
rupted by anomalies. To illustrate this, Figure 1 shows a toy
example in which the normal data lies in a two-moon mani-
fold. When the training data is clean, the flow-based model
accurately captures the true density function, as shown in the
upper right figure. However, when training data is contami-
nated with anomalies, the flow-based model will attempt to
learn the density of the anomalies as well, as shown in the
lower right figure. Thus, a more robust approach is needed
to estimate the density function in order to enhance the per-
formance of flow-based models in unsupervised AD tasks.

This paper presents a deep unsupervised AD method
called RobustRealNVP. Unlike Real NVP (Dinh, Sohl-
Dickstein, and Bengio 2016), which is a popular flow-based

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

4101

model, our framework ignores low-density points when
learning the density function. We provide theoretical anal-
ysis to show that the robustness of RobustRealNVP depends
on smoothness of its estimated density function. This result
is significant as the original Real NVP formulation has no
performance guarantees on contaminated data. We use Lip-
schitz regularization to enforce smoothness of the estimated
density function. To the best of our best knowledge, none of
the previous works have employed Lipschitz regularization
in flow-based models or for density estimation.

In summary, our major contributions are as follows:
• We propose a robust flow-based deep density estimation

method for unsupervised anomaly detection.
• We present theoretical analysis to demonstrate its robust-

ness to contaminated training data. Specifically, we show
its convergence to an ε-approximated stationary point of
Real NVP trained on clean (anomaly-free) data.

• We perform extensive experiments to show that our
framework outperforms various state-of-the-art methods.

Related Work
Density-based methods are widely used in unsupervised
AD (Chandola, Banerjee, and Kumar 2009). They typically
employ non-parametric methods such as k-nearest-neighbor
and kernel density estimation (Tsybakov 2008) to estimate
the density function but are susceptible to anomalies. (Hum-
bert et al. 2020) proposed an approach that provides robust-
ness guarantees of kernel density estimation by using the
median of the means to replace the empirical mean of kernel
sums. Another approach is to replace the `2-loss of the es-
timation with a Huber loss (Kim and Scott 2012). However,
these approaches are not scalable to high-dimensional data.

The success of deep learning has inspired the develop-
ment of deep models such as generative adversarial net-
works (GAN) (Goodfellow et al. 2014), variational autoen-
coders (VAE) (Kingma and Welling 2013), and flow-based
models (Dinh, Krueger, and Bengio 2014) for density esti-
mation. Unlike GAN and VAE, flow-based models explicitly
learn the density function and directly optimize the likeli-
hood function using the change of variable formula. Many
methods are proposed to improve the efficiency and expres-
sive power of flow-based models (Chen et al. 2019; Kingma
and Dhariwal 2018). While these methods can be applied to
detect out-of-distribution data (Zisselman and Tamar 2020),
they mostly assume the availability of clean training data.

Robust optimization aims to optimize an objective func-
tion assuming a small fraction of the data is corrupted (Hu-
ber 1992). However, previous works mostly focused on lin-
ear models (Bhatia, Jain, and Kar 2015; Bhatia et al. 2017;
Shen and Sanghavi 2019) or are limited to convex optimiza-
tion problems (Prasad et al. 2018). SEVER (Diakonikolas
et al. 2019) is a highly generalizable optimization algorithm
with agnostic corruption guarantees. However, it cannot be
efficiently applied to DNNs due to its high space complexity.

Lipschitz regularization can be used to optimize a loss
function to ensure that the learned function is Lipschitz con-
tinuous (smooth). It has been used to regularize the discrim-
inator in GAN (Gulrajani et al. 2017; Miyato et al. 2018;

Qin, Mitra, and Wonka 2020) and to defend against attacks
in adversarial learning (Hein and Andriushchenko 2017).
One way to constrain a function to be Lipschitz continu-
ous is to penalize its gradient norm (Gulrajani et al. 2017).
An alternative method is to use adversarial training for Lip-
schitz regularization (Terjék 2019), but the method is inef-
ficient since it requires finding adversarial samples for ev-
ery data point. Another approach, specifically designed for
neural networks, is spectral normalization, which constrains
the Lipschitz constant in a layer-wise fashion (Miyato et al.
2018) in order to make the function smooth.

Preliminaries
We first review the flow-based model before introducing our
proposed framework. Given n samples {xi ∈ Rd}ni=1, the
flow-based model aims to learn an invertible mapping from a
simple distribution such as Gaussian to a more complex tar-
get distribution by maximizing the likelihood function of the
observed data, maxθ pθ(X), where θ is the network parame-
tesr. Let p(z) be some simple density function and z = f(x),
where f is a bijective transformation function. According to
the change of variable formula:

pX(x) = pZ(f(x))

∣∣∣∣det

(
∂f(x)

∂xT

)∣∣∣∣ ,
where

∣∣∣det
(
∂f(x)
∂xT

)∣∣∣ is the determinant of the Jacobian ma-

trix of f at x. By defining g = f−1, we have the following
sample generation process. First, we generate z from p(z)
and use the sample to generate x = g(z). This requires
a network architecture that satisfies the following two cri-
teria. First, it must be easy to calculate the determinant to
ensure backpropagation can be applied to optimize the net-
work. Second, f must be invertible, so that f−1 can be used
to generate the data x. One such transformation is the affine
coupling transformation proposed in Real NVP (Dinh, Sohl-
Dickstein, and Bengio 2016). Given a D-dimensional input
x and d < D, the output y is defined as:

y1:d = x1:d

yd+1:D = xd+1:D � exp [s (x1:d)] + t (x1:d) , (1)
where s and t are functions that map RD → RD−d and
can be implemented using DNNs. The transformation is in-
vertible and its Jacobian is a triangular matrix, whose deter-
minant can be easily computed by multiplying the diagonal
elements of the matrix. Let N be the set of normal observa-
tions. The goal is to maximize the following objective:

max
f

log

(∏
x∈N

pZ(f(x))

∣∣∣∣det

(
∂f(x)

∂xT

)∣∣∣∣)
= max

f

∑
x∈N

log(pZ(f(x)) + log

∣∣∣∣det

(
∂f(x)

∂xT

)∣∣∣∣ ,
which is equivalent to minimizing the following loss:

min
f
−
[∑

x∈N
log(pZ(f(x)) + log

∣∣∣∣det

(
∂f(x)

∂xT

)∣∣∣∣].
After learning f , the density of x can be inferred as follows:

p̃(x) = pZ (f(x))

∣∣∣∣det

(
∂f(x)

∂xT

)∣∣∣∣ .
4102

Methodology
Our goal is to develop a robust density-based unsupervised
AD approach amenable to training data that may contain
anomalies. In this setting, our objective function is:

−min
f

∑
x∈N∪A

log(pZ(f(x)) + log

(∣∣∣∣det

(
∂f(x)

∂xT

)∣∣∣∣),
(2)

whereA is the set of anomalies. Optimizing (2) directly may
lead to poor results due to the adverse impact of anomalies.

Robustness for Density Estimation
Let ε ∈ [0, 0.5] be the anomaly ratio, i.e., proportion of
anomalies in training data. Given a set of normal instances
N from a density function p and a set of anomalies A
from an arbitrary density function, our goal is to learn Ψ :
N ∪ A → p̂, such that the gradient norm of the negative
log-likelihood for N is minimized. If p̂ is parameterized by
θ, then the learning objective is:

min
θ

∥∥∥−∑
x∈N
∇θ log p̂θ(x)

∥∥∥ .
Optimizing the objective function is challenging as we have
no prior knowledge which instances belong to N or A.

We propose a robust gradient estimation approach to ad-
dress this problem. Consider a gradient descent approach
for minimizing the negative log-likelihood function. Given
a data point, xi, its corresponding gradient is given by

gi = −∇θ log p̂θ(xi) = − 1

p̂θ(xi)

∂p̂(xi)

∂θ
.

Given n data points, let G = [gT1 , g
T
2 ...g

T
n] ∈ Rn×d be the

contaminated gradient matrix and Γ : Rn×d → Rd be an
aggregation function. The model parameters can be updated
using gradient descent as follows:

θ(t+1) = θ(t) − η(t)Γ(G).

If Γ(·) is the empirical mean, then the update formula re-
duces to standard gradient descent. However, since G con-
tains gradients from both normal data and anomalies, Γ(G)
cannot be guaranteed to be close to the gradient of the clean
data. Thus, our goal here is to design a robust function Γ
that optimizes the following objective to ensure that the es-
timated density is not corrupted by anomalies:

minΓ ‖Γ(G)− µ‖2,

where µ = 1
|N |
∑
i∈N gi is the gradient of clean data.

The question is: If there exists a small constant ζ such
that the gradient difference is upper bounded by ζ in every
gradient descent step, i.e., ∀t : ‖Γ(G)(t) − µ(t)‖2 ≤ ζ, can
we guarantee that the stationary point will have a bounded
gradient norm? The following proposition gives such a guar-
antee on the bounded gradient norm upon convergence.

Proposition 1 (Convergence of Biased SGD) Let φ be the
objective function and θ be the variable to be optimized. Un-
der mild Lipschitz assumptions (Diakonikolas et al. 2019;

Algorithm 1: Robust Gradient for Density Estimation
Input: corrupted gradient matrix G ∈ Rn×d, where n = |A|+|N |,
anomaly ratio ε, current parameter estimate, θ(t)

Output: Estimated mean of clean gradient, µ̂(t) ∈ Rd
1. For each row gi in G, calculate its predicted density, p̂θ(t)(xi)
2. Choose the ε-fraction rows in G with smallest p̂θ(t)(xi)
3. Remove the selected rows from G
4. Return the empirical mean of the remaining rows as µ̂(t).

Ajalloeian and Stich 2020), denote ζ as the maximum l2
norm of the difference between the clean mini-batch gra-
dient µ and corrupted mini-batch gradient, Γ(G): ‖µ −
Γ(G)‖ ≤ ζ. By using the biased gradient estimation Γ(G),
SGD converges to the ζ-approximated stationary points:
E (|∇φ(θt)|) = O(ζ).

Proposition 1 comes from a series of previous work (Fan
et al. 2020; Ajalloeian and Stich 2020; Bernstein et al. 2018;
Hu et al. 2020; Diakonikolas et al. 2019), and has been
widely studied in optimization community. For the sake
of completeness, we include the above proposition here to
show that it is enough to design a robust mean estimation
method to guarantee that the final solution will have small
gradient norm in terms of its clean (anomaly-free) objective.
The proof of this proposition can be found in the Appendix.

Robust Gradient Method for Density Estimation
Our robust aggregation function for Γ(G) works as follows.
Given a mini-batch B of sizem, we sort the individual losses
of instances in B and discard the instances with the top-k
largest loss. We will show that this strategy ensures robust-
ness guarantee of our algorithm. Before going into details,
we first introduce the following Lipschitz assumption.

Assumption 1 The density function learned by the DNN,
p̂(x), is L̂-smooth respect to its parameter θ, i.e., ∀θ1, θ2,x :

‖p̂θ1(x)− p̂θ2(x)‖ ≤ L̂‖θ1 − θ2‖.

The above assumption ensures that the gradient norm is
upper bound by L̂. By applying the L̂-smooth assumption
on p̂, we can bound the individual gradient norm as follows:

‖gi‖ = ‖−∇θ log p̂θ(xi)‖ =
1

p̂θ(xi)

∥∥∥∥∂p̂θ(xi)∂θ

∥∥∥∥ ≤ L̂

p̂θ(xi)
.

Since the loss − log p̂θ(x) monotonically decreases with in-

creasing
1

p̂θ(x)
, thus, at each iteration, our algorithm sim-

ply needs to sort the current estimated density p̂θ(t)(x) of
each data point and discards the ones with low densities.
The mean gradient, µ̂(t), is then computed from the remain-
ing data points, which will be used to perform the gradient
descent update: θ(t+1) = θ(t)−η(t)µ̂(t). This is summarized
by the pseudocode given in Algorithm 1.

We will first show that Algorithm 1 has robustness guar-
antee by using the following lemma:

Lemma 1 (Mean Gradient Estimation Error) Let g(t)
i be

the gradient of the ith datum at iteration t, N be the clean

4103

data, and µ̂(t) be the output of Algorithm 1 at iteration t. The
following guarantee holds on the gradient estimation error:∥∥∥∥ 1

|N |
∑
N
g

(t)
i − µ̂

(t)

∥∥∥∥2

= O(ε)L̂.

For brevity, we only provide a sketch of the proof for the
lemma. A more detailed proof is given in the Appendix.

Suppose |g|i∈N ≤
1

p̂i
L̂, and let maxi∈N

1

p̂i
= C. Since

we discard an ε-fraction of the data with small p̂i, there are
two possibilities: either all the training anomalies are dis-
carded or some training anomalies still remain as their |gi|
values are less than CL̂. In both cases, our approach is to
apply empirical mean estimation to the remaining gradient
vectors, which has limited magnitude (i.e., bounded byCL̂).
When L̂ is small, since the magnitude of the remaining gra-
dients (which may include anomalies) are limited, the im-
pact of each remaining anomaly on the mean gradient esti-
mation is limited as well, not exceeding CL̂. In the worst
case, if no anomalies are discarded, this will introduce O(ε)
error. Putting them together, we obtain the above error rate
of O(ε)L̂, assuming C is a constant.

The above lemma suggests that the gradient estimation er-
ror is controlled by the Lipschitz constant when ε is small.
Combined with Proposition 1, if we can control the Lips-
chitz constant to be small (i.e. having a smooth loss surface),
then the presence of anomalies in training data will not sig-
nificantly alter the density estimation of clean data.

The preceding analysis suggests that the following two as-
sumptions must hold for the gradient estimation to be robust.
First, p̂i∈N must be large enough to ensure C is small. This
is a reasonable assumption as the data contain mostly normal
observations. Second, the predicted density function should
be smooth enough to avoid the ill-effects of anomalies. If the
anomalies are sparse, i.e., not clustered, then including them
in the training data has little effect on the estimated den-
sity since the density of the anomalies is small. However,
clustered anomalies can systematically bias the density es-
timation as they have relatively high densities. To avoid the
effects of such concentrated anomalies, we propose a spec-
tral normalization approach to smooth the learned density.

Spectral Normalization
The spectral normalization (SN) method (Miyato et al. 2018)
is motivated by the following inequality ‖g1 ◦ g2‖Lip ≤
‖g1‖Lip ·‖g2‖Lip , where ‖.‖Lip represents the Lipschitz con-
stant. A neural network can be treated as a composition of
a series of linear transformation and activation functions.
Since most activation functions are Lipschitz continuous
(e.g., the Lipschitz constant of RELU function is 1), if the
Lipschitz constant at every linear layer is bounded, then it is
also bounded for the entire network.

For a linear function φ : h → Wh, where W is a lin-
ear transformation matrix, its Lipschitz constant is upper
bounded by the operator norm of the matrix W, i.e., ‖W‖op.
As a result, the Lispchitz function for the entire network is
upper bounded by

∏v
i=1 ‖Wi‖op, where v is the number of

layers (for RELU networks). In the original paper of SN,

each layer is normalized as follows: WSN =
W

‖W‖op
to en-

sure that the function is 1-Lipschitz. However, a 1-Lipschitz
may over-smooth the function and lead to underfitting of the
density function. In this work, we propose the following SN

to satisfy the k-Lipschitz constraint: WSN =
W

(‖W‖op/k)
.

Similar to (Miyato et al. 2018), we approximate the operator
norm using power iterations in our experiments.

Lipschitz Regularization for Flow-based Model
SN assumes that a DNN can be decomposed into a series
of linear transformation and activation functions. However,
for flow-based models, the network is no longer a simple
decomposition of linear transformation and activation func-
tion. While SN can be used to guarantee the learned func-
tions s and t in Equation (1) are k-smooth, there has yet been
any proof showing the entire transformation is k-smooth. In
this section, we show that constraining s and t is sufficient
to achieve the k-smoothness. Our rationale for this is based
on the following two lemmas on spectral normalization:
Lemma 2 If f : Rn → Rn is a differentiable function ev-
erywhere with a Jacobian matrix J, then ‖J‖op ≤ L if and
only if f is L-smooth.

Lemma 3 ‖[A,B]‖op ≤ ‖A‖op + ‖B‖op, where [·, ·] de-
notes matrix concatenation.

We analyze the applicability of SN to the transformation
given in Equation (1) by using the preceding two lemmas.
The Jacobian of the transformation is as follows:

J =
∂y

∂xT
=

[
Id 0

∂yd+1:D

∂xT
1:d

diag (exp [s (x1:d)])

]
.

The matrix can be further decomposed into the sum of a
diagonal and an off-diagonal matrix. Thus

|J|op ≤
∣∣∣∣[Id 0

0 diag (exp [s (x1:d)])

]∣∣∣∣
op

+

∣∣∣∣∣∣
 0 0

∂yd+1:D

∂xT
1:d

0

∣∣∣∣∣∣
op

= max(1, max
i∈[1,2,...,D−d]

exp[s(x1:d)]i) +

∣∣∣∣∣ ∂yd+1:D

∂xT
1:d

∣∣∣∣∣
op

.

Note that the first term is well bounded if the output of
function s is well bounded. In our experiments, we use the
tanh function as the last layer of function s. Thus, the first
term will be bounded by exp(1). For the second term, ac-
cording to Equation (1), we have

|xd+1:D � exp (s (x1:d)) + t (x1:d)|Lip

≤ |xd+1:D � exp (s (x1:d))|Lip + |t (x1:d)|Lip .

Since s and t are bounded by a Lipschitz constant us-
ing SN, assuming ‖x‖ is bounded by B and the last layer
of s is a tanh function, then, according to the inequality
‖g1 ◦ g2‖Lip ≤ ‖g1‖Lip · ‖g2‖Lip , it is easy to see that the
transformation yd+1:D = xd+1:D� exp (s (x1:d)) + t (x1:d)
has a bounded Lipschitz constant B ∗ exp(1) ∗ |s|Lip + |t|Lip.

Thus the operator norm
∣∣∣∂yd+1:D

∂xT
1:d

∣∣∣
op

is also bounded. Finally,

4104

Figure 2: Effect of uniform anomalies (red points) on den-
sity estimation. The plots show the true data distribution,
followed by the estimated density functions of Real NVP,
TrimRealNVP, and RobustRealNVP (from left to right).

Figure 3: Effect of clustered anomalies (red points) on den-
sity estimation. The plots show the true data distribution,
followed by the estimated density functions of Real NVP,
TrimRealNVP, and RobustRealNVP (from left to right).

by Lemma 2, we conclude that application of SN to the func-
tions s and t will guarantee that the flow model is Lipschitz
regularized, which in turn, guarantees that the learned den-
sity function are not affected by clustered anomalies.

Anomaly Detection from Trained Network
By discarding data points with low estimated densities dur-
ing training and adding spectral normalization to the flow-
based model, a robust density estimation function can be
trained. During testing, the density for each test point can
be inferred by applying the trained network. The anomaly
score for each test point is given by its estimated density, in
which the higher the density, the lower is its anomaly score.

Experimental Evaluation
This section presents the empirical studies to validate the
effectiveness of our proposed approach.

Experiments on Synthetic Data
Lemma 1 suggests that the robustness of the estimated den-
sity function is influenced by smoothness of the prediction
function, which depends on the distribution of anomalies. If

the anomalies are uniformly distributed, then spectral nor-
malization (SN) is not necessary. However, if the anoma-
lies are clustered, then SN is needed to provide robustness
guarantees. To validate this, we generate a synthetic data,
where the normal observations form a two-moon manifold
structure, while the anomalies are generated under the fol-
lowing two settings: (1) Uniform, where the anomalies are
randomly generated from a uniform distribution. The Lip-
schitz constant for the density function of anomalies is 0.
(2) Clustered, where the anomalies are generated from a
Gaussian distribution. The Lipschitz constant of the density
function for anomalies is large. In both settings, we set the
anomaly ratio ε = 0.05. We compared the performance of
our algorithm, RobustRealNVP, against Real NVP (Dinh,
Sohl-Dickstein, and Bengio 2016). We also investigated a
variation of our framework without Lipschitz regularization
via SN and termed this approach as TrimRealNVP. We ex-
pect the performance of Real NVP to be severely hampered
by the presence of anomalies in both settings. For anomalies
that are uniformly distributed, we expect both TrimRealNVP
and RobustRealNVP to perform equally well since they are
both designed to alleviate the effect of anomalies during den-
sity estimation. For clustered anomalies, we expect Robus-
tRealNVP to perform the best since TrimRealNVP does not
guarantee smoothness of the predicted density function.

The results shown in Figure 2 are consistent with our ex-
pectation. While TrimRealNVP successfully alleviates the
effect of uniform anomalies, it is largely affected by clus-
tered anomalies. The estimated density functions of Real
NVP are also impacted by both types of anomalies. Robus-
tRealNVP can effectively handle both types of anomalies
since it uses SN to increase smoothness of its loss landscape,
which in turn, makes the gradient estimation more robust.

Experiments on Real-World Data

Datasets We perform experiments on two benchmark
datasets: (1) Stony Brook ODDS library (Rayana 2016),
which contains 16 benchmark outlier detection data. (2) CI-
FAR10, which is an image dataset with high-dimensional
features. Since the results on CIFAR10 depend on the fea-
ture extraction step, for a fair comparison, we first apply the
VGG19 network pre-trained on ImageNet and use the output
before its final layer as the extracted features. We then apply
PCA to reduce its dimensionality from 4096 to 128.

Baseline Methods We compare RobustRealNVP against
the following baseline methods: (1) AE (autoencoder) and
VAE (variational autoencoder). (2) Deep-SVDD (Ruff et al.
2018), a deep 1-class SVM method. (3) SO-GAAL (Liu
et al. 2019), a GAN-based anomaly detection approach. (4)
OCSVM (Chen, Zhou, and Huang 2001), a shallow 1-
class SVM method. (5) LOF (Breunig et al. 2000), a lo-
cal density-based AD method. (6) IF (Liu, Ting, and Zhou
2008) (isolation forest), an ensemble tree-based method.

Experiment Settings For ODDS dataset, we use 60% of
the data for training and 40% for testing. For CIFAR10
dataset, 80% of the data are reserved for training while the
remaining 20% for testing. CIFAR10 contains images from

4105

RobustRealNVP Real NVP AE VAE SO-GAAL Deep-SVDD OCSVM LOF IF
vowels 0.959±0.010 0.889±0.038 0.879±0.020 0.503±0.045 0.637±0.197 0.206±0.035 0.765±0.036 0.947±0.014 0.776±0.017
pima 0.678±0.024 0.652±0.031 0.669±0.013 0.648±0.015 0.613±0.049 0.395±0.034 0.594±0.026 0.610±0.034 0.661±0.020
letter 0.930±0.020 0.915±0.017 0.829±0.031 0.521±0.042 0.601±0.060 0.465±0.039 0.557±0.038 0.845±0.026 0.621±0.030
cardio 0.737±0.028 0.712±0.039 0.867±0.020 0.944±0.006 0.473±0.075 0.505±0.056 0.936±0.002 0.684±0.027 0.925±0.009
arrhythmia 0.786±0.039 0.780±0.038 0.802±0.044 0.811±0.034 0.538±0.042 0.635±0.063 0.782±0.028 0.777±0.026 0.799±0.023
musk 0.991±0.011 0.794±0.074 0.998±0.003 0.994±0.002 0.234±0.193 0.829±0.048 1.000±0.000 0.353±0.054 0.997±0.003
mnist 0.818±0.009 0.820±0.015 0.802±0.009 0.778±0.009 0.795±0.025 0.538±0.048 0.835±0.012 0.698±0.013 0.805±0.007
satimage-2 0.943±0.014 0.915±0.021 0.818±0.069 0.966±0.008 0.789±0.177 0.739±0.088 0.998±0.003 0.428±0.109 0.996±0.005
satellite 0.709±0.010 0.690±0.007 0.575±0.068 0.538±0.016 0.640±0.070 0.631±0.016 0.650±0.014 0.570±0.005 0.706±0.026
mammo 0.841±0.018 0.855±0.013 0.853±0.015 0.864±0.014 0.204±0.026 0.272±0.009 0.881±0.015 0.768±0.024 0.873±0.019
thyroid 0.961±0.011 0.956±0.005 0.928±0.020 0.839±0.011 0.984±0.005 0.704±0.027 0.960±0.006 0.898±0.017 0.979±0.006
annthyroid 0.880±0.025 0.864±0.024 0.675±0.022 0.589±0.021 0.679±0.022 0.591±0.014 0.599±0.013 0.711±0.022 0.829±0.015
ionosphere 0.900±0.020 0.914±0.015 0.821±0.010 0.763±0.015 0.783±0.080 0.735±0.053 0.812±0.039 0.879±0.022 0.842±0.021
pendigits 0.748±0.023 0.730±0.024 0.685±0.073 0.931±0.006 0.257±0.053 0.613±0.071 0.935±0.003 0.472±0.029 0.943±0.013
shuttle 0.995±0.003 0.825±0.032 0.921±0.013 0.987±0.001 0.571±0.316 0.531±0.290 0.985±0.001 0.529±0.017 0.997±0.001
glass 0.786±0.039 0.747±0.056 0.570±0.152 0.626±0.134 0.420±0.112 0.756±0.114 0.522±0.207 0.756±0.141 0.706±0.058
Avg rank 2.937 4.375 5 5.5 7.4375 8.34375 4.3125 6.6525 3.0625

Table 1: Average and standard deviation of AUC scores for the ODDS datasets (across 5 different random seeds). The last row
corresponds to average rank of each method.

RobustRealNVP RealNVP AE VAE SO-GAAL Deep-SVDD OCSVM LOF IF
airplane-u 0.786±0.012 0.784±0.012 0.582±0.010 0.583±0.012 0.534±0.036 0.554±0.031 0.582±0.007 0.743±0.008 0.582±0.010
auto-u 0.818±0.028 0.782±0.022 0.486±0.010 0.505±0.010 0.490±0.072 0.569±0.011 0.486±0.008 0.750±0.008 0.502±0.008
bird-u 0.694±0.070 0.691±0.062 0.556±0.007 0.562±0.005 0.484±0.015 0.512±0.118 0.565±0.010 0.633±0.015 0.552±0.016
cat-u 0.772±0.077 0.726±0.076 0.484±0.009 0.499±0.015 0.526±0.021 0.581±0.023 0.517±0.008 0.582±0.005 0.503±0.010
deer-u 0.801±0.006 0.781±0.033 0.604±0.010 0.612±0.010 0.431±0.072 0.619±0.023 0.611±0.007 0.723±0.009 0.597±0.013
dog-u 0.760±0.044 0.704±0.050 0.444±0.003 0.450±0.006 0.535±0.065 0.624±0.035 0.490±0.017 0.587±0.008 0.441±0.010
frog-u 0.807±0.022 0.797±0.007 0.599±0.016 0.592±0.015 0.532±0.061 0.523±0.034 0.607±0.008 0.821±0.006 0.587±0.007
horse-u 0.786±0.013 0.769±0.057 0.504±0.014 0.503±0.011 0.510±0.052 0.545±0.009 0.534±0.008 0.670±0.018 0.511±0.017
truck-u 0.770±0.033 0.838±0.027 0.597±0.010 0.598±0.011 0.477±0.110 0.633±0.031 0.605±0.018 0.778±0.006 0.603±0.008
ship-u 0.798±0.006 0.802±0.009 0.493±0.016 0.489±0.006 0.410±0.055 0.658±0.041 0.505±0.006 0.738±0.009 0.506±0.016
airplane-c 0.752±0.018 0.748±0.023 0.611±0.013 0.619±0.010 0.512±0.035 0.464±0.116 0.616±0.008 0.687±0.009 0.619±0.021
auto-c 0.850±0.020 0.843±0.014 0.469±0.016 0.466±0.007 0.447±0.054 0.496±0.113 0.448±0.012 0.748±0.017 0.469±0.017
bird-c 0.640±0.025 0.639±0.030 0.580±0.010 0.561±0.016 0.485±0.035 0.517±0.058 0.581±0.017 0.644±0.006 0.579±0.008
cat-c 0.462±0.017 0.451±0.027 0.427±0.008 0.417±0.005 0.545±0.072 0.489±0.059 0.449±0.004 0.450±0.005 0.426±0.015
deer-c 0.825±0.019 0.808±0.009 0.676±0.008 0.669±0.001 0.456±0.056 0.544±0.111 0.643±0.010 0.761±0.005 0.656±0.012
dog-c 0.500±0.021 0.487±0.023 0.410±0.012 0.404±0.005 0.585±0.085 0.481±0.055 0.429±0.006 0.416±0.017 0.418±0.016
frog-c 0.826±0.015 0.788±0.020 0.593±0.008 0.599±0.016 0.436±0.070 0.507±0.102 0.614±0.009 0.814±0.005 0.588±0.013
horse-c 0.575±0.023 0.550±0.025 0.462±0.005 0.460±0.003 0.512±0.114 0.451±0.090 0.490±0.002 0.558±0.013 0.475±0.022
truck-c 0.657±0.030 0.664±0.013 0.623±0.015 0.622±0.006 0.503±0.047 0.518±0.102 0.622±0.012 0.650±0.011 0.627±0.011
ship-c 0.671±0.025 0.653±0.023 0.450±0.012 0.446±0.013 0.492±0.064 0.515±0.132 0.464±0.002 0.598±0.005 0.472±0.003

Table 2: Average and standard deviation of AUC scores for the CIFAR10 dataset (across 5 different random seeds). The first
column shows the category chosen as normal class. ’class’-c means the training anomalies are clustered whereas ‘class’-u
means the anomalies are uniformly sampled from other classes.

10 classes. We select one class as the normal class (with
5000 samples) and then create anomalies from the remain-
ing classes in two ways: i) Anomalies are randomly sampled
from other classes. ii) Anomalies are selected from one spe-
cific class. The training anomaly ratio is set to be 0.1. All the
models are evaluated on a balanced CIFAR10 test set, con-
taining 1000 samples for each class. All experiments are re-
peated with 5 different random seeds. For unsupervised AD,
hyperparameter tuning is trickier as there is no clean valida-
tion data available. Instead, we fixed the network structure
for all the methods to ensure a fair comparison. Details of
the hyperparameters used are given in the Appendix. Results
are reported using AUC score as our evaluation metric.

Results for ODDS data Table 1 shows the AUC scores for
various methods on the ODDS datasets. While no method
consistently outperforms all others given the diversity of
the datasets, RobustRealNVP has the highest average rank
compared to other baselines. IF also achieves highly com-
petitive results. The baseline deep learning methods (i.e.
SO-GAAL, Deep-SVDD) yield relatively poor results since
most of them are designed for clean training data, which is
unavailable in an unsupervised AD setting.

Results for CIFAR10 Table 2 shows the AUC scores for
various methods when different categories of images are
chosen as normal class. RobustRealNVP outperforms all the
baseline methods in 15 out of 20 experiments. Similar to the

4106

Figure 4: Ablation study comparing RobustRealNVP to
TrimRealNVP, its variant without spectral normalization.

Figure 5: Sensitivity analysis when varying ε for uniform
anomalies. Red line is RobustRealNVP, blue is Real NVP.

Figure 6: Sensitivity analysis when varying estimated ε from
0.05 to 0.2. The ground truth ε is 0.1.

ODDS results, the deep learning baselines do not perform
well when trained on contaminated data. For Deep-SVDD,
the AUC scores reported in Table 2 are slightly lower than
the values reported in the original paper (Ruff et al. 2018) as
our experiments were performed on contaminated instead of
clean training data. Nevertheless, even if we use the results
reported in the Deep-SVDD paper, which uses clean training
data, RobustRealNVP still outperforms Deep-SVDD on all
10 CIFAR10 datasets with uniform anomalies. Furthermore,
Deep-SVDD also performs poorly on data with concentrated

anomalies.

Ablation Study for Spectral Normalization We perform
ablation study using the ODDS dataset to show the effective-
ness of spectral normalization (SN). In Figure 4, we see that
RobustRealNVP outperforms TrimRealNVP in 8 out of the
16 datasets and tied in at least 4 of the remaining datasets.
These results along with the synthetic experiment results
demonstrated the effectiveness of SN in our framework.

Sensitivity Analysis In practice, the anomaly ratio ε is of-
ten unknown, which makes it hard to determine the num-
ber of data points to be discarded. To investigate the robust-
ness of RobustRealNVP when ε is over- or underestimated,
we perform sensitivity analysis on the CIFAR10 datasets by
varying the estimated contamination ratio from 0.05 to 0.2
(note that the true anomaly ratio is 0.1). The results shown in
Figure 6 suggest that our method remains stable under most
settings even though the anomaly ratio was overestimated or
underestimated by as high as 15%. In addition, we also per-
form sensitivity analysis on the CIFAR10 datasets when the
true anomaly ratio is varied from 0.1 to 0.4. The results for
Real NVP and RobustRealNVP shown in Figure 5 suggest
that RobustRealNVP performs consistently better than the
Real NVP in most settings.

Conclusions
This paper presents RobustRealNVP, a deep, density-based
unsupervised anomaly detection method that is robust
against training contamination. We demonstrate the effec-
tiveness of our framework from both theoretical and empir-
ical perspectives. For future work, we will investigate the
applicability of the framework to other flow-based models.

Acknowledgments
This research was supported in part by the grant National
Science Foundation IIS-1939368, IIS-1749940, Office of
Naval Research N00014-20-1-2382, National Institute on
Aging RF1AG072449. Any use of trade, firm or product
names is for descriptive purposes only and does not imply
endorsement by the U.S. Government.

References
Ajalloeian, A.; and Stich, S. U. 2020. Analysis of
SGD with Biased Gradient Estimators. arXiv preprint
arXiv:2008.00051.
Bernstein, J.; Wang, Y.-X.; Azizzadenesheli, K.; and Anand-
kumar, A. 2018. signSGD: Compressed optimisation for
non-convex problems. arXiv preprint arXiv:1802.04434.
Bhatia, K.; Jain, P.; Kamalaruban, P.; and Kar, P. 2017. Con-
sistent robust regression. In Advances in Neural Information
Processing Systems, 2110–2119.
Bhatia, K.; Jain, P.; and Kar, P. 2015. Robust regression
via hard thresholding. In Advances in Neural Information
Processing Systems, 721–729.
Breunig, M. M.; Kriegel, H.-P.; Ng, R. T.; and Sander, J.
2000. LOF: identifying density-based local outliers. In Pro-
ceedings of the 2000 ACM SIGMOD international confer-
ence on Management of data, 93–104.

4107

Chandola, V.; Banerjee, A.; and Kumar, V. 2009. Anomaly
detection: A survey. ACM computing surveys (CSUR),
41(3): 1–58.
Chen, R. T.; Behrmann, J.; Duvenaud, D.; and Jacobsen, J.-
H. 2019. Residual flows for invertible generative modeling.
arXiv preprint arXiv:1906.02735.
Chen, Y.; Zhou, X. S.; and Huang, T. S. 2001. One-class
SVM for learning in image retrieval. In Proceedings 2001
International Conference on Image Processing (Cat. No.
01CH37205), volume 1, 34–37. IEEE.
Diakonikolas, I.; Kamath, G.; Kane, D.; Li, J.; Steinhardt,
J.; and Stewart, A. 2019. Sever: A robust meta-algorithm
for stochastic optimization. In International Conference on
Machine Learning, 1596–1606.
Dinh, L.; Krueger, D.; and Bengio, Y. 2014. Nice: Non-
linear independent components estimation. arXiv preprint
arXiv:1410.8516.
Dinh, L.; Sohl-Dickstein, J.; and Bengio, S. 2016. Density
estimation using real nvp. arXiv preprint arXiv:1605.08803.
Fan, J.; Zhang, Q.; Zhu, J.; Zhang, M.; Yang, Z.; and Cao, H.
2020. Robust deep auto-encoding Gaussian process regres-
sion for unsupervised anomaly detection. Neurocomputing,
376: 180–190.
Goodfellow, I. J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial networks. arXiv preprint
arXiv:1406.2661.
Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; and
Courville, A. 2017. Improved training of wasserstein gans.
arXiv preprint arXiv:1704.00028.
Hein, M.; and Andriushchenko, M. 2017. Formal guarantees
on the robustness of a classifier against adversarial manipu-
lation. arXiv preprint arXiv:1705.08475.
Hu, Y.; Zhang, S.; Chen, X.; and He, N. 2020. Biased
Stochastic Gradient Descent for Conditional Stochastic Op-
timization. arXiv preprint arXiv:2002.10790.
Huber, P. J. 1992. Robust estimation of a location parameter.
In Breakthroughs in statistics, 492–518. Springer.
Humbert, P.; Bars, B. L.; Minvielle, L.; and Vayatis, N. 2020.
Robust Kernel Density Estimation with Median-of-Means
principle. arXiv preprint arXiv:2006.16590.
Kim, J.; and Scott, C. D. 2012. Robust kernel density esti-
mation. The Journal of Machine Learning Research, 13(1):
2529–2565.
Kingma, D. P.; and Dhariwal, P. 2018. Glow: Genera-
tive flow with invertible 1x1 convolutions. arXiv preprint
arXiv:1807.03039.
Kingma, D. P.; and Welling, M. 2013. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114.
Liu, F. T.; Ting, K. M.; and Zhou, Z.-H. 2008. Isolation
forest. In 2008 Eighth IEEE International Conference on
Data Mining, 413–422. IEEE.
Liu, Y.; Li, Z.; Zhou, C.; Jiang, Y.; Sun, J.; Wang, M.; and
He, X. 2019. Generative adversarial active learning for un-
supervised outlier detection. IEEE Transactions on Knowl-
edge and Data Engineering.

Miyato, T.; Kataoka, T.; Koyama, M.; and Yoshida, Y. 2018.
Spectral normalization for generative adversarial networks.
arXiv preprint arXiv:1802.05957.
Prasad, A.; Suggala, A. S.; Balakrishnan, S.; and Ravikumar,
P. 2018. Robust estimation via robust gradient estimation.
arXiv preprint arXiv:1802.06485.
Qin, Y.; Mitra, N.; and Wonka, P. 2020. How does lipschitz
regularization influence GAN training? In European Con-
ference on Computer Vision, 310–326. Springer.
Rayana, S. 2016. ODDS Library. Stony Brook Uni-
versity, Department of Computer Sciences, http://odds.cs.
stonybrook.edu.
Ruff, L.; Vandermeulen, R.; Goernitz, N.; Deecke, L.; Sid-
diqui, S. A.; Binder, A.; Müller, E.; and Kloft, M. 2018.
Deep one-class classification. In International conference
on machine learning, 4393–4402.
Shen, Y.; and Sanghavi, S. 2019. Learning with bad train-
ing data via iterative trimmed loss minimization. In In-
ternational Conference on Machine Learning, 5739–5748.
PMLR.
Terjék, D. 2019. Adversarial Lipschitz Regularization. In
International Conference on Learning Representations.
Tsybakov, A. B. 2008. Introduction to nonparametric esti-
mation. Springer Science & Business Media.
Zisselman, E.; and Tamar, A. 2020. Deep residual flow
for out of distribution detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 13994–14003.

4108

