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Abstract

Predicting the diffusion cascades is a critical task to un-
derstand information spread on social networks. Previous
methods usually focus on the order or structure of the in-
fected users in a single cascade, thus ignoring the global
dependencies of users and cascades, limiting the perfor-
mance of prediction. Current strategies to introduce social
networks only learn the social homogeneity among users,
which is not enough to describe their interaction preferences,
let alone the dynamic changes. To address the above is-
sues, we propose a novel information diffusion prediction
model named Memory-enhanced Sequential Hypergraph At-
tention Networks (MS-HGAT). Specifically, to introduce the
global dependencies of users, we not only take advantages
of their friendships, but also consider their interactions at
the cascade level. Furthermore, to dynamically capture users’
preferences, we divide the diffusion hypergraph into several
sub graphs based on timestamps, develop Hypergraph Atten-
tion Networks to learn the sequential hypergraphs, and con-
nect them with gated fusion strategy. In addition, a memory-
enhanced embedding lookup module is proposed to cap-
ture the learned user representations into the cascade-specific
embedding space, thus highlighting the feature interaction
within the cascade. The experimental results over four real-
istic datasets demonstrate that MS-HGAT significantly out-
performs the state-of-the-art diffusion prediction models in
both Hits@K and MAP@k metrics.

Introduction
New online social media allows people to access informa-
tion in a cheap and handy way, thus facilitating rapid infor-
mation sharing. Therefore, the information diffusion predic-
tion technology, which aims to identify the potential users
of information sharing, is urgently needed for addressing
emerging scenarios in online social media, such as fake
news controlling (Vosoughi, Roy, and Aral 2018; Wu et al.
2020b,a), hotspot detection (Yang et al. 2018) and online ad-
vertising (Liu et al. 2021).

Generally, information diffusion prediction methods can
be divided into three categories: feature engineering-based
methods, generative-based methods and representation
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learning-based methods. Among them, feature engineering-
based methods usually extract representative features to pre-
dict the popularity of information propagation at the macro
level (Cheng et al. 2014; Gao, Ma, and Chen 2014). How-
ever, they can hardly model the dependencies between users,
nor can they capture the dynamic evolution of propaga-
tion structures. Probabilistic statistical generative models re-
garded information diffusion as event sequences in a time
domain (Zhao et al. 2015; Bao 2016). However, this kind
of approaches heavily depends on the predefined diffusion
mechanism, while the propagation in real world may not
strictly abide by the rule. In order to provide end-to-end so-
lutions and improve the accuracy of information diffusion
prediction, methods based on representation learning have
been proposed. Prior works always focus on the structure
or sequence of cascades, but ignore social structures that
are not visible in cascades but have a significant impact
on users’ behaviour (Wang et al. 2017a,c; Li et al. 2017a),
leaving them unable to predict the inactive users. Therefore,
FOREST (Yang et al. 2019a) combines GRU and GCN to
jointly learn the cascading contexts and social network. As
the complete network structure is not always available, Inf-
VAE (Sankar et al. 2020) embeds unobserved social connec-
tions by modeling homophily through variational autoen-
coder. Most recently, DyHGCN (Yuan et al. 2020) develops
heterogeneous graphs to capture the users’ interactions and
social relationships jointly.

Although these improvements can partly describe the
temporal influence and social homophily in cascades, they
still suffer from some limitations. First, to introduce global
dependencies of users, most of the existing methods take ad-
vantages of the friendship network, which is insufficient to
describe users’ interactive preferences and may even intro-
duce noise. Second, user’s preference changes dynamically,
however, most of the existing methods ignore the dynamic
connections between users and cascades, limiting their per-
formance on prediction.

To address the above problems, we propose a Memory-
enhanced Sequential Hypergraph Attention Network (MS-
HGAT). Specifically, instead of learning the global depen-
dencies of users from only the friendship network, we also
construct hypergraphs to depict their interaction dependen-
cies. Compared with the traditional GNNs, our proposed
sequential HGATs can depict the dynamic interactions be-
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tween users and cascades through hyperedges and atten-
tion mechanism. Moreover, to capture the cascade level
correlations, we design an extra aggregation operations in
HGAT to preserve the features of cascades. In contrast to
concat operation, the introduced gated fusion strategy con-
trols the retaining rate of two vectors through correlation
calculation, thus facilitating feature filtering. Besides, by
designing memory-enhanced embedding look up and self-
attention modules, MS-HGAT further emphasizes the inter-
actions within the cascade to improve the prediction accu-
racy. The main contributions of this work are as follows:
• Enhance the global dependencies of users in informa-

tion diffusion prediction: we take advantages of both the
friendships and diffusion interactions of users to accu-
rately predict the diffusion of information.
• Capture users’ dynamic preferences for continuously

prediction: we propose a sequential hypergraph atten-
tion network to learn the short-term interactions between
users and cascades. The designed memory-enhanced em-
bedding look up and self-attention module further em-
phasizes the feature evolution within the cascades.
• Experimental results demonstrate the effectiveness and

robustness of MS-HGAT. Compared with the state-
of-the-art diffusion prediction models, our model can
achieve up to 6% improvement in Hits@100 score and
2% improvement in MAP@100 score.

Related Work
Information Diffusion Prediction
Information diffusion prediction amis to predict the future
diffusion process based on the current cascades and rele-
vant knowledge, such as social network structures (Li et al.
2017b). Cheng et al. (Cheng et al. 2014) analyzed diffu-
sion processes from content, user, structural and temporal
aspects, proved that all these features are helpful in predic-
tion. Recently, since the feature engineering-based methods
are not efficient in large-scale networks, and the generative
methods mainly focus on process modeling but lack opti-
mization in prediction, representation learning-based meth-
ods are proposed. Most previous studies learn user represen-
tation from the sequential or structured cascades with ex-
tended RNNs. For example, DeepDiffuse (Islam et al. 2018)
utilized the time information through RNN and attention
mechanism. TopoLSTM (Wang et al. 2017b) extended the
standard LSTM model by allowing multiple inputs to model
the cross dependency of cascades. SNIDSA (Wang, Chen,
and Li 2018) introduced structure attention module and gat-
ing strategy to incorporate structural information into se-
quential information in RNN. However, none of them con-
sider social relationships of users that do not manifest in
cascades, which limit the accuracy of prediction. Therefore,
FOREST (Yang et al. 2019a) and Inf-VAE (Sankar et al.
2020) embeded unobserved social connections to strengthen
the prediction, while the learning based on static social net-
works is still too weak to capture users’ dynamic interaction
preferences. Inspired by Yuan et al.’s (Yuan et al. 2020) idea
of utilizing global diffusion interactions, we innovatively in-
troduce sequential hypergraphs to dynamically model users’

preferences and integrate them with static social relations to
optimize information diffusion prediction task.

Graph Neural Networks
The graph neural networks (GNNs) are widely used to learn
non Euclidean graph structures, and have been proved to be
effective in many tasks. The pioneer GNN (Scarselli et al.
2009) represents a node by exchanging its neighborhood
information recurrently until convergence. Graph Convolu-
tional Networks (GCNs) (Kipf and Welling 2017) generalize
the convolution operation to graph data. Instead of training
the embeddding vectors for each vertex, GraphSage (Hamil-
ton, Ying, and Leskovec 2017) inductively trains a set of
aggregators to accommodate the graph changes. Since the
GNNs assume that all the neighbors of a node share the same
weight during aggregation, it is not able to accurately model
large noisy networks. Therefore, the Graph Attention Net-
work (GAT) (Velickovic et al. 2018) specifies each neighbor
a unique attention coefficient by multi-head attention mech-
anism. As a special graph, hypergraph contains hyperedges
that join an arbitrary number of entities, which can naturally
describe group relations in the real world. Recently, Feng et
al. (Feng et al. 2019) proposed a hypergraph neural network
using a Chebyshev expansion of the simple graph Laplacian.
Ding et al. (Bai, Zhang, and Torr 2021) then introduced at-
tention mechanism to hypergraph. Since group relationships
such as co-authorship and co-participation are ubiquitous in
the real world, hypergraphs have been used to solve prob-
lems in many fields, such as social networks (Yang et al.
2019b), recommendation (Wang et al. 2017b) and natural
language processing (Ding et al. 2020). To the best of our
knowledge, we are the first to apply hypergraph neural net-
works to information diffusion prediction task.

Problem Formulation
Since users’ sharing behavior is always influenced by their
personal interests and the external environment (Yang et al.
2019a), we firstly introduce the friendship graph and dif-
fusion hypergraphs that are used for diffusion prediction in
this paper. The friendship graph is represented as GF =
(U,E), where U is the user set and E is the set of edges
representing friendship. The historical diffusion cascades
C = {c1, c2, ..., cM} , |C| = M are split into T sub-
sets based on timestamps to construct diffusion hypergraphs
GD = {GtD|t = 1, 2, ..., T}, GtD = (U t, Et), where U t
is the user set and Et represents hyperedges. Note that the
node-hyperedge relationship of each hypergraph is distinct,
that is, if ui participates in cm during the t-th time interval,
the connection between ui and em exists only in hypergraph
Et, and is not visible in any other hypergraph.

Based on the above introductions, the information diffu-
sion prediction task can be described as: given a user set
U = {u1, u2, ..., un} , |U | = N , a friendship graphGF , dif-
fusion hypergraphs GD and an observed diffusion sequence
cm = {(umi , tmi )|umi ∈ U} (umi referring the user ui that
activated by informationm, tmi indicates the infection time),
estimate the likelihood ŷuj ,m that the user uj will participate
in cm in the next step, and find out the next infected user by
ranking the infection probabilities of all candidates.

4157



U
se

r

 User Static Dependency Learning 

   ...

Cm
T

Cm
2

Cm
1    

1 0 , 0

0 1 , 0

0 0 , 1

GCNGCNGCN

Interaction & Prediction

1 0 , 1Cm Look-up

XT 
LD

X2
LD

X1
LD   

 ...  

User Memory 

OT
LD

O2
LD

O1
LD    

 ...  

Cascade Memory 

Look-up

Linear 

Softmax 

u8Predicted
Next user

Zm
D’

Gated 
Fusion

Zm

Zm
F’

Friendship graph

 ...  
XF

LF

u1
m

,t1
m

cm

u2
m

,t2
m u3

m
,t3

m

 ...  

 Multi-Head 
Self Attention 

Add & Norm 

Feed Forward 

Add & Norm 

Zm
F

 Multi-Head 
Self Attention 

Add & Norm 

Feed Forward 

Add & Norm 

Zm
D

  Memory-Enhanced Embedding Look-up

Diffusion hypergraph

Gated 
Fusion

 ...  

GCNGCNHGAT GCNGCNHGAT GCNGCNHGAT

Gated 
Fusion

User Dynamic Interaction Learning 

Key

T’
...
2’

1’

Figure 1: Four modules of MS-HGAT: 1) users’ friendships are learned by GCN in user static dependency learning module; 2)
user dynamic interaction learning module obtains interaction-based user and cascade embeddings through sequential HGATs;
3)memory-enhanced embedding look-up refers to finding the corresponding representation vectors in the static user represen-
tation and the dynamic memory block; 4)in interaction & prediction module, self-attention mechanisms are used to efficiently
interact features in cascade, finally, probability of infection of candidates is calculated by Softmax function.

The Proposed Model

In this section, we introduce our Memory-enhanced
Sequential Hypergraph Attention Network (MS-HGAT).
The overall architecture of MS-HGAT is shown in Fig-
ure 1, which has four major components: 1) User static
dependency learning module that learns users’ friendships
through GCN; 2) User dynamic interaction learning mod-
ule, which obtains interaction-based user and cascade em-
beddings through sequential HGATs; 3) Memory-enhanced
embedding look-up module, which captures the user rep-
resentations into cascade-specific embedding space; 4) In-
teraction & prediction module, which learns interactive fea-
tures within cascade and calculates infection probability of
candidates. We introduce each component of our framework
in detail in the following subsections.

User Static Dependency Learning

Users’ static dependency can be expressed through friend-
ship networks. The introduction of friendship network is
conducive to user modeling, and can also alleviate the cold
start problem in prediction, that is, even if a user has not par-
ticipated in any cascade before, we can still learn its prefer-
ence by exploring the characteristics of its neighbors. Con-
sidering that the structure of user friendship network is rel-
atively stable, we assume it does not change in learning,
and apply a multi-layer graph convolutional network (GCN)
(Kipf and Welling 2017) to learn static user representation.
Given friendship graph GF = (U,E), the layer-wise propa-

gation rule of GCN can be defined as:

Xl+1
F = σ

(
D̃F
− 1

2 ÃFD̃F
− 1

2Xl
FWF

)
(1)

where the initial user embeddings X0
F ∈ RN×d is randomly

initialized from normal distribution, d is the dimension of
embedding, σ denotes the ReLU activation function, WF

is the trainable weight matrix, ÃF = AF +I and D̃F are the
adjacent and degree matrix of self-looped GF , respectively.
After being learned by a LF -layer GCN, the static represen-
tation XLF

F of all users is finally obtained.

User Dynamic Interaction Learning
Since the user’s friendships can not accurately reflect their
interaction preferences, we construct sequential hypergraphs
based on the cascades that have occurred before, and pro-
pose sequential hypergraph attention networks to dynami-
cally learn user interactions at the cascade level, as well as
the connections between cascades.

Hypergraph Attention Network (HGAT) At each time
interval, we model the correlations among users through a
hypergraph attention network (HGAT), the process of HGAT
is shown in Figure 2.

Nodes-to-hyperedge aggregation. Given a hypergraph
GtD, the first step of HGAT aims to learn the representation
oj,t of hyperedge etj by aggregating the initial user represen-
taion xi,t of all its connected nodes uti, formally:

ol+1
j,t = σ(

∑
ut
i∈etj

αtijW1x
l
i,t) (2)
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Figure 2: Stages of HGAT: (1) nodes-to-hyperedge aggre-
gation, the root node of each cascade is determined in ad-
vance for attention calculation; (2) hyperedges-to-node ag-
gregation, each hyperedge shares the same weight in this
operation; (3) hyperedge update, the attention coefficient α
is retained from first nodes-to-hyperedge aggregation. The
learned user and the cascade representations are separately
written to the memory module.

where σ is an activation function ReLU, and W1 ∈ Rd×d
is the trainable weight matrix, d is the dimension of embed-
ding. αtij represents the attention coefficient of uti in etj .

Specifically, as we mentioned above, each hypergraph in
our model only contains the user-cascade interaction infor-
mation of the current time interval. This setting is designed
to describe the short-term preference of users, but it will in-
evitably lead to information loss. Therefore, since the root
node can partly reflect the content of the cascade, for each
hypergraph, we preserve the information of roots of all hy-
peredges, and calculate the attention scores of other nodes
by calculating the distance between them and the roots, that
is:

αtij =
exp(− dis(W1x

l
i,t,W1r

l
j))∑

ut
p∈etj

exp(− dis(W1xlp,t,W1rlj))
(3)

where rlj is the representation of root user of etj at layer l,
and dis(·) refers to the Euclidean distance.

Hyperedges-to-node aggregation. After obtaining rep-
resentations of hyperedges, we train another aggregator to
integrate all hyperedges Eti participated by uti to learn the
representation xi,tof ui during the t-th time interval, since
all interactions between nodes and hyperedges occur in the
same time interval, we give the same weight to each hyper-
edge when aggregating, that is:

xl+1
i,t = σ(

∑
etj∈Eti

W2o
l+1
j,t ) (4)

Update of hyperedges. The above two aggregations aim
to learn users’ interactions at the cascade level. In this pro-
cess, hyperedges only play the role of feature transmission
and are not well preserved. In order to further capture the
connections between hyperedges, we design an extra step to
update the hyperedge representation with all the embedding
vectors of users, which can be denoted as:

ol+1′

j,t = σ(
∑
ut
i∈etj

αtijW3x
l+1
i,t ) (5)

Considering the time consumption of updating attention co-
efficients, we retained the coefficients αtij used in the first
Nodes-to-hyperedge aggregation.

Memory Module To leverage the features learned through
HGATs at different time intervals, we construct a memory
module MD that stores not only the users, but also the cas-
cade representation vectors in key-value form.

MD =
{
t′ : (XLD

t , OLD
t )

}
, t = 1, 2, ..., T (6)

where XLD
t ∈ RN×d and OLD

t ∈ RM×d are the user and
cascade representations that learned from hypergraph GtD
through a LD-layer HGAT, t′ corresponds to the maximum
timestamp of interaction that occurs at the t-th time interval,
T is the total number of intervals. The key-value pairs are
stored in chronological order.

Sequential HGATs with Gated Fusion Strategy A sin-
gle HGAT only learns the interactions in a short time inter-
val, which can not accurately describe the dynamic changes
of user preferences and cascade content with the evolution
of diffusion. Therefore, we utilize multiple HGATs to learn
the interactions in different time intervals, and strategically
introduce a gated fusion strategy to connect them in chrono-
logical order, formally:

x0
i,t+1 = gR1

xLD
i,t + (1− gR1

)x0
i,t

gR1 =
exp(WT

Z1
σ(WR1

x
LD
i,t ))

exp(WT
Z1
σ(WR1

x
LD
i,t ))+exp(WT

Z1
σ(WR1

x0
i,t))

(7)

where x0
i,t represents the initial embedding of user uti and

xLD
i,t is the output embedding for uti, which is learned from
GtD through a LD-layer HGAT, WR1 are the transformation
matrix and WT

Z1
is the vector for attention score calculation.

σ(·) denotes the activation function ReLU.
In order to improve the expression ability of HGAT and

realize interactive learning, we use the user static represen-
tation learned from friendship network as the input of HGAT
in the first time interval instead of initializing user represen-
tation from normal distribution, i.e., X0

1 = XLF

F .

Memory-Enhanced Embedding Look-up
In order to emphasize the representation interaction within
the cascade, we further represent the target cascade by read-
ing the embeddings of all its activated users from the static
user representation and the dynamic memory module re-
spectively in embedding look-up module, instead of directly
using the last activated user.

Static representation look up. Given the target cascade
cm = {(umi , tmi )|umi ∈ U} , i = 0, 1, ..., N − 1, we find
the corresponding user embeddings xi in static representa-
tion XLF

F that is learned from friendship network, arrange
them in the original order of the cascade, ignoring the spe-
cific timestamp, thus obtain ZFm = [(xi)] ∈ R|cm|×d, i =
0, 1, ..., N − 1.
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Dynamic representation look up. Given the target cas-
cade cm, we query the corresponding users and cascades
representations before the prediction timestamp from the
memory moduleMD respectively. In order to avoid informa-
tion leakage, we read the user’s representation at the nearest
time interval before he or she participates in cm, that is, sup-
posing user ui share the information m at time tmi , we first
compare the value of tmi with the keys [t′] in memory mod-
ule, if tmi ≥ t′ and tmi < (t + 1)′, ui’s embedding in XLD

t ,
i.e. xi,t, will be read as its representation relative to cas-
cade cm. Hence, from the user perspective, cm can be repre-
sented as qDm = [(xi,t)] ∈ R|cm|×d, i = 0, 1, ..., N − 1, t =
1, 2, ..., T . Similarly, we use the same strategy to read the
dynamic representation of the cascade in the memory mod-
ule and obtain pDm = [(om,t)] ∈ R|cm|×d, t = 1, 2, ..., T .
Then the gated fusion mechanism is applied to integrate the
cascade representation into users:

ZDm = gR2
pDm + (1− gR2

)qDm

gR2
=

exp(WT
Z2
σ(WR2

pD
m)

exp(WT
Z2
σ(WR2

pD
m)+exp(WT

Z2
σ(WR2

qD
m)

(8)

in which WR2
and WT

Z2
is the transformation matrix and

vector for attention, σ(·) denotes activation function tanh.

Feature Interaction & Prediction
Graph-based representation learning captures the co-
occurrence relationship of users at the cascade level, but can-
not further analyze the context interaction within the cas-
cade. Therefore, based on the outstanding performance of
self-attention layer in sequential tasks such as natural lan-
guage processing, we apply two multi-head self-attention
module to efficiently learn the static and dynamic feature in-
teractions within cascades respectively, and obtain the final
representation by post-fusion strategy for prediction.

Self-attention. Given the user static embeddings ZFm =
[(xi)] ∈ R|cm|×d, the sequential representation hFm is calcu-
lated as:

Att(Q,K,V) = softmax
(

QKT

√
d′

+M
)
V

hFi,m = Att
(
ZFmWQ

i ,Z
F
mWK

i ,Z
F
mWV

i

)
hFm =

[
hF1,m;hF2,m; . . . ;hFH,m

]
WO

(9)

in which WQ
i , WK

i , WV
i and WO are learnable trans-

formation matrices, d′ = d/H , d is the dimension of the
embedding and H denotes the number of heads of atten-
tion. To avoid label leakage, we introduce a mask matrix
M ∈ R|cm|×|cm| to block out future information, that is,
Mi,j = −∞ if i>j else Mi,j = 0. Then, we obtain the at-
tentive representaion ZF

′

m through a feed forward network
(two layers fully-connected neural network):

ZF
′

m = ReLU
(
hFmWA1 + b1

)
WA2 + b2 (10)

where WA1 , WA2 are learnable transformation matrices,
b1 and b2 are bias parameters. Similarly, we use another
self-attention module to learn sequence ZDm and obtain ZD

′

m ,
which represents the dynamic cascade context.

Fusion Layer. To incorporate both the static interaction
ZF

′

m and dynamic interaction ZD
′

m of cascades for a more
expressive representation Zm, we introduce a fusion layer:

Zm = gR3
ZD

′

m + (1− gR3
)ZF

′

m

gR3 =
exp(WT

Z3
σ(WR3

ZD′
m )

exp(WT
Z3
σ(WR3

ZD′
m )+exp(WT

Z3
σ(WR3

ZF ′
m )

(11)

where WR3
and WT

Z3
are the transformation matrix and

vector for attention. σ(·) denotes tanh.

Diffusion Prediction Finally, we calculate the diffusion
probabilities ŷ ∈ R|cm|×N of users by:

ŷ = softmax(WpZm +Maskm) (12)
where Wp is a transformation matrix that maps the Zm to
user-specific space, Maskm is used to mask users who have
been activeted before prediction, that is, if the user ui partic-
ipates in cm in step j, (Maskm)j,i1,i = 0, (Maskm)

|cm|,i
j+1,i =

−∞. We adopt the cross entropy loss for training:

J (θ) = −
|cm|∑
j=2

|U |∑
i=1

yji log (ŷji) (13)

in which θ represents all parameters that need to be learned
in the model, if the user ui participate in cascade cm at the
step j, yji = 1, otherwise yji = 0.

Experiments
To demonstrate the effectiveness of our proposed MS-HGAT
model, we conduct extensive experiments on real datasets to
answer the following research questions:
• RQ1. Can the proposed MS-HGAT outperform the state-

of-the-art information diffusion prediction methods?
• RQ2. How do the quantity and quality of training sets

affect the prediction performance of models?
• RQ3. How do the user relations and our learning strate-

gies affect the prediction performance of MS-HGAT?

Experimental Setting
Datasets To explore the generalization of MS-HGAT,
we sample data from both social platforms (Twitter and
Douban) and Q&A websites (Android and Christianity). The
details are listed in Table 1.
• Twitter(Hodas and Lerman 2013) contains tweets and its

spreading paths among users during October 2010. We
take the follow relation of users as friendship on Twitter.
• Douban(Zhong et al. 2012) is collected from a social

website where users share their book or movie read-
ing statuses and follow the statuses of others. The co-
occurrence relation of users (e.g., read the same book)
are taken as their friendship relation.
• Android.(Sankar et al. 2020) is collected from Stack-

Exchanges, a community Q&A websites. Users’ interac-
tion on various channels, such as questioning, answering
constitutes their friendship relation.
• Christianity(Sankar et al. 2020) contains the user friend-

ship network and cascading interactions related to Chris-
tian theme on the Stack-Exchanges.
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Datasets Twitter Douban Android Christ.
# Users 12,627 12,232 9,958 2,897

Frienship
# Links 309,631 396,580 48,573 35,624
Density 24.52 30.21 4.87 12.30

Interaction
# Cascades 3,442 3,475 679 589
Avg. Length 32.60 21.76 33.3 22.9
Density 8.89 6.18 2.27 4.66

Table 1: Statistics of datasets used in our experiments

Evaluation Metrics According to the problem formula-
tion, our prediction task can be regarded as a retrieval prob-
lem. Therefore, following the previous studies(Yang et al.
2019a; Sankar et al. 2020), we use two ranking metrics:
Mean Average Precision on top k(MAP@k) and Hits score
on top K (Hits@k) for model evaluation, k = [10, 50, 100].

Baselines We compare MS-HGAT with the following in-
formation diffusion prediction methods:
• DeepDiffuse(Islam et al. 2018) uses RNN and attention

mechanism to model the previously influenced users of
cascades sequentially.
• Topo-LSTM(Wang et al. 2017b) extends the standard

LSTM model to learn a dynamic directed acyclic graph,
which contains structured diffusion information.
• NDM(Yang et al. 2021) models cascades through self-

attention mechanism and CNNs, makes relaxed indepen-
dence assumptions to alleviate long-term dependency.
• SNIDSA(Wang, Chen, and Li 2018) computes structural

attention from diffusion path and learns sequential infor-
mation of cascades through RNN.
• FOREST(Yang et al. 2019a) employs graph neural net-

works to learn users’ social relationships and utilizes
RNN to explore cascades context for prediction.
• Inf-VAE(Sankar et al. 2020) embeds social homophily

through GNNs and designs a co-attentive fusion network
to integrate the social and temporal variables.
• DyHGCN(Yuan et al. 2020) builds heterogeneous

graphs which contain the social and diffusion relations
of users, then learns user representation through GCN.

Parameter Settings Our experiments are conducted on a
12 GB GeForce GTX 2080Ti (GPU). For each dataset, we
randomly choose 80% of the cascades for training, 10% are
used for validation, and the remaining 10% are for test. The
maximum cascade length is 200. For baselines, we preserve
the settings as provided in original papers. For MS-HGAT,
we implement it in PyTorch and adopt Adam as the opti-
mizer, with a learning rate of 0.001. The dropout rate is 0.3,
the batch size is 64, and the dimension of embedding is 64.
We use a 2 layer GCN for friendship learning, and utilize
a single layer HGAT for interaction learning since the de-
signed three-step aggregation strategy is sufficient to capture
higher-order interactions in a single hypergraph (compari-
son experiments are omitted due to space constraints). The
number of subhypergraphs and self-attention heads is cho-
sen from [2− 16], and set to be 8 and 14 after comparison.

Performance Comparison (RQ1)
We compare MS-HGAT with the baselines on four public
datasets, the results are shown in Table 2 and 3. Specifically,
we make the following observations:

First, MS-HGAT consistently achieves the best perfor-
mances on all datasets. Compared to the second best model
DyHGCN, MS-HGAT constructs a series of hypergraphs
to dynamically describe the interactions between users and
cascades, and uses memory and gating mechanism to store
and fuse features effectively, thus reaching up to 6% im-
provement in Hits@100 score and 2% in MAP@100 score
than DyHGCN. Second, the methods that exploit user so-
cial relations (SNIDSA, FOREST, Inf-VAE, DyHGCN and
MS-HGAT) generally perform better than cascades-based
approaches (DeepDiffuse, Topo-LSTM and NDM). Specif-
ically, they achieve an average improvement of 13.98% and
5.43% on Hits and MAP indicators for all data sets, prov-
ing the validity of social relationship for prediction. Third,
MS-HGAT and DyHGCN consider the global interaction re-
lations of users and finally achieve the best results, which
comfirms our assumption that users’ interaction preferences
can be learned from their historical behavior.

Impact of Training Set Proportion and Cascade
Length (RQ2)
The performance of prediction may be affected by the qual-
ity of training sets. Therefore, we carry out comparative ex-
periments on Twitter and Android dataset under different
training proportion and cascade length to further prove the
stability and validity of our model. Referring to Figure 3,
we observe that our model can use only 60% of the data to
achieve the performance of other models trained with 90%,
which demonstrates the comprehensiveness of combining
multiple relationships of users. Besides, Figure 4 shows that
MS-HGAT achieves best performance under any length of
cascade, proving the effectiveness of dynamically learning.
The reason for the unstable performance on Android may be
that both friendships and interactions of users in Android are
relatively sparse (4.88 and 2.27, respectively), which is not
enough to support the prediction of long cascades.

Ablation Study (RQ3)
We conduct ablation studies over the different parts of MS-
HGAT on Twitter and Android datasets to investigate the
contribution of submodules. The variants are designed as:
w/o FG removes social graph, i.e, Zm = ZD

′

m in Eq. 11.
w/o DH removes diffusion graphs, i.e, Zm = ZF

′

m in Eq. 11.
w/o UM ignores user memory, i.e, ZDm = pDm in Eq. 8.
w/o CM ignores cascade memory, i.e, ZDm = qDm in Eq. 8.
w/o ATTH ignores attention mechanism in HGATs, i.e,
ol+1
j,t = σ(

∑
ut
i∈etj

W1x
l
i,t) in Eq. 2.

w/o GF replaces all gated fusions with concatenations.
As shown in Table 4, MS-HGAT achieves the best per-

formance compared to any of its variants, indicating the ra-
tionality of its design. Specifically, we observe that: First,
model shows a significant decline after removing the so-
cial graph or diffusion hypergraphs, which proves the va-
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Models Twitter Douban Android Christianity

@10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100
DeepDiffuse 5.79 10.80 18.39 9.02 14.93 19.13 4.13 10.58 17.21 10.27 21.83 30.74
Topo-LSTM 8.45 15.80 25.42 8.57 16.53 21.47 4.56 12.63 16.53 12.28 22.63 31.52
NDM 15.21 28.23 32.30 10.00 21.13 30.14 4.85 14.24 18.97 15.41 31.36 45.86
SNIDSA 25.37 36.64 42.89 16.23 27.24 35.59 5.63 15.22 20.93 17.74 34.58 48.76
FOREST 28.67 42.07 49.75 19.50 32.03 39.08 9.68 17.73 24.08 24.85 42.01 51.28
Inf-VAE 14.85 32.72 45.72 8.94 22.02 35.72 5.98 14.70 20.91 18.38 38.50 51.05
DyHGCN 31.88 45.05 52.19 18.71 32.33 39.71 9.10 16.38 23.09 26.62 42.80 52.47
MS-HGAT (ours) 33.50 49.59 58.91 21.33 35.25 42.75 10.41 20.31 27.55 28.80 47.14 55.62

Table 2: Experimental results on 4 dataset (%) (Hits@k scores for K = 10, 50, 100), scores are the higher the better.

Models Twitter Douban Android Christianity

@10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100
DeepDiffuse 5.87 6.80 6.39 6.02 6.93 7.13 2.30 2.53 2.56 7.27 7.83 7.84
Topo-LSTM 8.51 12.68 13.68 6.57 7.53 7.78 3.60 4.05 4.06 7.93 8.67 9.86
NDM 12.41 13.23 14.30 8.24 8.73 9.14 2.01 2.22 2.93 7.41 7.68 7.86
SNIDSA 15.34 16.64 16.89 10.02 11.24 11.59 2.98 3.24 3.97 8.69 8.94 9.72
FOREST 19.60 20.21 21.75 11.26 11.84 11.94 5.83 6.17 6.26 14.64 15.45 15.58
Inf-VAE 19.80 20.66 21.32 11.02 11.28 12.28 4.82 4.86 5.27 9.25 11.96 12.45
DyHGCN 20.87 21.48 21.58 10.61 11.26 11.36 6.09 6.40 6.50 15.64 16.30 16.44
MS-HGAT (ours) 22.49 23.17 23.30 11.72 12.52 12.60 6.39 6.87 6.96 17.44 18.27 18.40

Table 3: Experimental results on 4 dataset (%) (MAP@k scores for K = 10, 50, 100), scores are the higher the better.
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Figure 3: Impact of training proportion.
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Figure 4: Impact of maximum cascade lengths.

Models Twitter Android

Hits@100 MAP@100 Hits@100 MAP@100
MS-HGAT 58.91 23.30 27.55 6.96
w/o FG 57.20 21.38 26.32 6.86
w/o DH 57.41 22.24 26.74 6.78
w/o UM 58.63 22.74 26.40 6.83
w/o CM 58.32 21.96 27.09 6.77
w/o ATTH 58.95 22.76 27.03 6.75
w/o GF 57.93 22.19 27.26 6.89

Table 4: Ablation study of MS-HGAT.

lidity of introducing these two types of global dependen-
cies. Second, the memory module retains the dynamic inter-
actions of user-user and cascade-cascade, respectively. To-
gether with the lookup operation, it helps to improve the
performance of prediction by capturing the learned inter-
actions into cascade-specific space. Third, the gated fusion
and attention strategy determines the importance of vec-
tors through correlation calculation, thus facilitating feature
filtering for prediction. It is noted that even though atten-
tion mechanism improves the model’s performance in most
cases, MS-HGAT without attention has a slightly higher
Hits@100 value on Twitter. The reason may be that the learn-
ing of users’ intimate relationships in Twitter can effectively
describe their behavior (each user has an average of 24.52
friends and 8.89 participation cascades, compared with 4.88
and 2.27 for Android), in this case, the introduction of dis-
tant root dependencies may not help much. According to the
improvements shown on Android, we conclude that atten-
tion mechanism is more conducive to cold start scenario.

Conclusion
In this work, we propose a novel memory-enhanced sequen-
tial hypergraph attention network (MS-HGAT) for informa-
tion diffusion prediction, which jointly learns users’ social
and diffusion relationships. Through the learning of GCN,
sequential HGATs and self-attention module, our model
fully and dynamically captures the interactions from the as-
pects of user-user, cascade-cascade and user-cascade. The
experimental results demonstrate the effectiveness of MS-
HGAT. In the future, we consider using hypergraph to de-
scribe the tree-shaped cascades, not just the sequences, and
combine the information content to improve the prediction.
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