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Abstract

Geospatio-temporal data are pervasive across numerous ap-
plication domains. These rich datasets can be harnessed to
predict extreme events such as disease outbreaks, flooding,
crime spikes, etc. However, since the extreme events are rare,
predicting them is a hard problem. Statistical methods based
on extreme value theory provide a systematic way for mod-
eling the distribution of extreme values. In particular, the
generalized Pareto distribution (GPD) is useful for modeling
the distribution of excess values above a certain threshold.
However, applying such methods to large-scale geospatio-
temporal data is a challenge due to the difficulty in captur-
ing the complex spatial relationships between extreme events
at multiple locations. This paper presents a deep learning
framework for long-term prediction of the distribution of ex-
treme values at different locations. We highlight its compu-
tational challenges and present a novel framework that com-
bines convolutional neural networks with deep set and GPD.
We demonstrate the effectiveness of our approach on a real-
world dataset for modeling extreme climate events.

Introduction
Extreme geospatio-temporal events such as flooding, heat
waves, and droughts are destructive natural forces with the
potential to cause devastating losses in property and human
lives. According to NOAA’s National Center for Environ-
mental Information, as of July 2021, there were 8 billion
dollar weather/climate disaster events in 2021 alone, incur-
ring close to $30 billion in total losses. Given the severity
of their impact, accurate modeling of extreme events are
therefore critical to provide timely information to the pub-
lic threatened by such hazards and to minimize the risk for
human casualties and property destruction.

Numerous methods have been developed in the past for
modeling extremes. This includes outlier detection methods
(Cheng et al. 2009, 2008b,a; Boriah et al. 2008), where the
goal is not to predict future extreme events but to detect
them retrospectively from observation data after they have
occurred. Statistical approaches based on extreme value the-
ory (Katz, Parlange, and Naveau 2002; Kharin and Zwiers
2005; López and Francés 2013) are also commonly used to
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infer the statistical distribution of the extreme values. An-
other approach is to cast the prediction of extreme events
as a supervised learning problem (Nayak and Ghosh 2013;
Laptev et al. 2017), which is the approach used in this paper.
Specifically, we are interested in predicting the conditional
distribution of excesses over a threshold (e.g., monthly pre-
cipitation or temperature that exceeds their 95th percentile)
at various spatial locations. However, predicting the condi-
tional distribution of such excesses is a challenging prob-
lem due to their rare frequency of occurrence. In addition,
the predictive model must consider the complex spatial re-
lationships between events at multiple locations. Identifying
such complex and potentially nonlinear interactions among
the predictors is a challenge that must be addressed.

In recent years, there have been growing interest in de-
veloping deep learning algorithms to address various spatio-
temporal modeling problems (Wilson, Tan, and Luo 2018;
Shi et al. 2015; Liu et al. 2019). For spatial data, one emerg-
ing technique that can effectively handle spatial relation-
ships in the data is convolutional neural network (CNN).
CNN initially found its application in computer vision tasks,
but has since been successfully applied to a wider range
of problems, including climate downscaling (Vandal et al.
2017), precipitation nowcasting (Shi et al. 2015) and hail
prediction (Gagne et al. 2019). However, despite their grow-
ing body of literature, there has been scant research on
spatio-temporal deep learning for modeling extreme events.

Non-parametric deep learning methods are generally inef-
fective at inferring the distribution of extreme events unless
there are sufficiently long, historical observation data avail-
able. When trained for regression problems, deep learning
models are generally trained to predict the conditional mean
of a distribution using the mean squared error loss, and thus,
fail to capture the tail of the distribution. Extreme events
are governed by two parametric distributions (Coles 2001):
the distribution of block maxima is governed by the gener-
alized extreme value distribution (GEV) and the distribution
of excesses over a threshold are governed by the generalized
Pareto distribution (GPD).

In this paper, we propose a novel framework that com-
bines extreme value theory (EVT) with deep learning.
Specifically, our framework leverages the strengths of deep
learning in modeling complex relationships in geospatio-
temporal data as well as the ability of GPD to capture
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Figure 1: Relationship between shape parameter ξ of gen-
eralized Pareto distribution for modeling precipitation ex-
cesses in two successive time windows.

the distribution of excess values with limited observations.
However, integrating a deep neural network (DNN) with
EVT is a challenge as the loss function minimized by the
DNN must be modified to maximize the likelihood func-
tion of the GPD. Another computational challenge is that
the sufficient statistics of GPD must satisfy certain positiv-
ity constraints unlike the output of DNN, which are typically
unconstrained. Furthermore, the distribution of extreme val-
ues are often temporally correlated. For example, Figure 1
shows the relationship between the shape parameter ξ of the
GPD distribution for precipitation excesses from one year to
the next based on 45-year data from more than 1000 stations
considered in our study. This poses a challenge from a mod-
eling perspective as the number of excesses above a thresh-
old tends to vary from one time step to the next. Developing
a deep learning approach that can incorporate such variable
number of excess values as predictors, in addition to other
fixed length vectors, is another challenge to be addressed.

The major contributions of this paper are as follows:

1. We propose a deep learning framework to model the dis-
tribution of extreme events. The framework combines
CNN with deep sets (Zaheer et al. 2017) for modeling
geo-spatial relationships among predictors that include
fixed-length vectors and variable-sized sets.

2. We propose a re-parameterization method for constrain-
ing the outputs of the DNN so that they satisfy the req-
uisite constraints and present an algorithm that learns the
GPD parameters in an end-to-end fashion.

3. We evaluate our proposed framework on a real world cli-
mate dataset and demonstrate its effectiveness in compar-
ison to conventional EVT and deep learning approaches.

Related Work
Convolutional neural networks (Krizhevsky, Sutskever, and
Hinton 2012) have gained considerable attention over the
last several years due to its success in artificial intelligence
applications. The strength of CNN lies in its ability to model
spatial relationships. For example, CNN has been success-
fully used to model spatial relationships in geographic appli-
cations (Máttyus, Luo, and Urtasun 2017; Zhang, Liu, and
Wang 2018; Sun et al. 2018; Lebedev et al. 2019; Vandal
et al. 2017; Kaiser et al. 2017). A similar intuition motivates

the application of CNN to model temporal autocorrelations
in time series data. For example, Bai et al. (Bai, Kolter, and
Koltun 2018) provided empirical evidence that a properly
designed convolutional architecture can outperform recur-
rent neural networks. There have also been concerted efforts
to model both spatial and temporal relationships jointly us-
ing CNN (Tran et al. 2015, 2018; Ji et al. 2010). Instead of
applying convolution to model temporal relationships, some
research uses recurrent layers to model temporal relation-
ships (Donahue et al. 2015). For example, (Shi et al. 2015)
replaces every instance of matrix multiplication in an LSTM
with 2d convolution and then feeds the data to the LSTM
at each time step. However, none of these approaches are
designed for modeling extreme values.

Statistical approaches based on extreme value theory
(EVT) (Katz, Parlange, and Naveau 2002; Kharin and
Zwiers 2005; López and Francés 2013) are commonly used
to infer the distribution of extreme values. Several recent pa-
pers have combined deep learning with EVT but often only
as a post-processing step. For example,(Wu et al. 2021) fit a
GPD to the residuals of a neural network to help detect cyber
risks. Similarly, Yu et al. (Yu et al. 2021) identify samples
with unknown classes at test time using the Weibull distri-
bution. Weng et al. (Weng et al. 2018) utilize EVT to de-
rive a neural network robustness metric called CLEVER. In
none of these cases are deep learning and EVT integrated
together within a single end-to-end learning framework. In-
stead, EVT is used as a post-processing step to identify un-
usual samples or as a robustness score of the network. In
contrast we integrate EVT directly into our deep learning
formulation to predict the GPD parameters and training it in
an end-to-end fashion. Ding et al. (Ding et al. 2019) do inte-
grate EVT into the loss function but in an ad-hoc way, where
the CDF of the GPD is used to assign weights on extreme
samples whose prediction is framed as a binary classification
problem. Rather than learning the parameters of GPD, they
instead treated them as user-provided hyper-parameters.

Preliminaries

Let D =

{
(Xil, Yil)

∣∣∣∣ i ∈ {1, · · · , n}; l ∈ {1, · · · , L}}
be a geospatio-temporal dataset, where Xil denote the pre-
dictor attribute values for the time window (ti−1, ti] in lo-
cation l and Yil denote the corresponding target (response)
values for the time window (ti, ti+1]. Since we are inter-
ested in predicting the excesses above a threshold in the next
time window, the target variable corresponds to the set of
excess values at location l during the period (ti, ti+1], i.e.,
Yil = {ytl | ytl ≥ u, t ∈ (ti, ti+1]}. In addition, the predic-
tors can be divided into two groups,Xil ≡ (Xv

il, X
s
il), where

Xv
il ∈ Rd is a fixed length vector andXs

il ∈ Rpi is a variable
length vector corresponding to the set of excess values in the
previous window, i.e., Xs

il = {ytl | ytl ≥ u, t ∈ (ti−1, ti]}.
Note that the number of excess values can vary, e.g., one
window may have 10 excess values while the previous win-
dow has only 5 excess values. The collections of excess val-
ues associated with the current and next time windows form
the sets Xs

il and Yil, respectively. Our goal is to estimate the
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conditional distribution P (Yil,j |Xil) for all the locations li
conditioned on the predictors observed in the current win-
dow, where Yil,j is an element of the set Yil.

Extreme Value Theory
This paper focuses primarily on the use of generalized
Pareto distribution (GPD) for modeling the distribution of
excesses above a given threshold. For example, in precipita-
tion prediction, one may be interested in modeling the distri-
bution of high precipitation values above a certain threshold.

Let Y1, Y2, · · · be a sequence of independent and iden-
tically distributed random variables. Given an excess value
Y = u+ y, where u is some pre-defined threshold, the con-
ditional probability of observing the excess event is:

P (Y − u ≤ y | Y > u) =

1−
[
1 + ξy

σ

]−1/ξ

, ξ 6= 0

1− e−y, ξ = 0

Furthermore, its density function is given by:

P (y) =

 1
σ

[
1 + ξy

σ

]− 1
ξ−1

, ξ 6= 0

1
σ e

− y
σ ξ = 0

(1)

subject to the constraint ∀y : 1 + ξy
σ > 0. The GPD has two

parameters, shape, ξ, and scale, σ The shape parameter has a
significant impact on the overall structure of the probability
density. When ξ is negative, the support of the distribution
is finite such that 0 < y < −σξ due to the constraint. When
ξ is zero or positive, its support ranges from 0 to positive
infinity.

The advantage of using the GPD to model extreme values
is its generality as one does not have to know the underly-
ing distribution of the random variable prior to thresholding
since the distribution of excesses will be governed by the
GPD in relatively general conditions. In many cases, the val-
ues of ξ and σ may depend on some contextual features as
predictors x. Assuming a linear relationship between ξ and
x and between log(σ) and x (the log linear relationship is
used to guarantee that the estimate of σ is non-negative):

ξ = fξ(x) = wT1 x, log(σ) = fσ(x) = wT2 x (2)

where w1 and w2 are the model parameters, which can be
learned by minimizing the negative log-likelihood of GPD.

One important consideration when modeling data using a
GPD is the choice of threshold u since the threshold must
be set high enough for the GPD to be applicable. A com-
mon way to evaluate the suitability of a given threshold is
by examining the mean residual life plot. If a collection of
samples were drawn from a GPD then the empirical distri-
bution of the excesses should have a linear relationship with
selected threshold. Specifically, we have:

E(Y − u|Y > u) =
σ0 + ξu

1− ξ
(3)

for threshold u, and Y ∼ GPD(ξ, σ0). In the experiment
section, we will verify our choice of threshold by examining
the mean residual life plot for our precipitation data.

Deep Set
To accommodate the variable size set of excess values as in-
put predictor, xsil, we employ a deep set architecture (Zaheer
et al. 2017) to transform the variable-length input into fixed
size vector. The transformation consists of the following two
stages. The first stage is responsible for transforming each
element of the set, xsil,j , from its raw representation into a
high-level vector representation, hil,j by using a fully con-
nected network, φ. These element-wise representations are
then aggregated to obtain a fixed-length vector representa-
tion for the set. This set-level representation is then used as
input to a fully connected network, ρ, to produce the final

output representation, zsil = ρ

[∑
j φ(x

s
il,j)

]
Proposed DeepGPD Framework

Figure 2 shows the architecture of our DeepGPD frame-
work, which has the following three major components:

1. Local Feature Extraction - This component is respon-
sible for transforming both the (fixed-length) vector-
valued, xvil, and (variable-length) set-valued predictors,
xsil, at each location into a fixed-length feature vector.

2. Spatial Feature Extraction - This component models
the spatial relationships among the predictors in the data.

3. Extreme Value Modeling (EVM) - This component is
responsible for ensuring that the constraints on the GPD
parameters are satisfied by the induced model.

Local Feature Extraction
This component is responsible for learning a representation
of the predictors associated with each location l by utiliz-
ing both the set-valued predictors xsil and the vector-valued
predictors xvil. Learning a representation of the predictors
is challenging for two reasons. First, because the set-valued
predictors are variable length we must transform them into a
fixed length vector so that it can be used by the later stages of
the model. Second, the set-valued predictors may not always
be available for some locations.

To address the first challenge, we employ the deep set
architecture described in subsection to transform the set-
valued predictors into a fixed-length vector, zsil. For the sec-
ond challenge, there may be some cases where a given grid
cell lacks set-valued predictors, xsil. In these cases we set
zsil = 0. However, zeroing the inputs in this way risks the
possibility that predictions at locations without set predic-
tors will be distorted. To address this, an indicator variable,
Iil is introduced to indicate whether set-valued predictors
are available at a given location and time. This indicator vari-
able is then concatenated with the vector-valued predictors
and the deep set representation of the set-valued predictors
to generate the following vector: zil = zsil ‖ Iil ‖ xvil, where
‖ denotes the concatenation operator.

Our deep set implementation assumes there is a maximum
set size. Sets that are smaller than this maximum size are
padded with dummy values of zeros so that each set can be
represented by a fixed length vector. Each dummy element
is processed in the same way as the real set elements. After
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Figure 2: Proposed DeepGPD framework.

each set element is processed by several fully connected lay-
ers, only the representations of the actual set elements (i.e.
dummy elements excluded) are averaged together. This is
implemented through the use of a masking array multiplied
by the set member representations element-wise.

Spatial Feature Extraction
After extracting a separate representation for each location,
we need to model the spatial relationships between the rep-
resentations at different locations. DeepGPD uses a CNN to
capture the geospatial relationships in the data. In our archi-
tecture, we arrange the representation extracted from all the
gridded locations into a 3-dimensional tensor (excluding the
batch dimension) and then provide the tensor as input to a
CNN with residual layers (He et al. 2016). The final linear
layer of the CNN produces a response map for each location,
kil ∈ R2, for the prediction time window (ti, ti+1].

Extreme Value Modeling (EVM)
The EVM component is designed to predict the conditional
distribution of excess values by utilizing the response map
generated by the CNN. Specifically, it will convert the CNN
output for each location and time window (ti, ti+1] to the
generalized Pareto model parameters, ξil and σil. These pa-
rameters enable us to infer various statistics about the excess
values in the predicted time window, such as the expected
values at varying quantiles (including maximum and median
value) as well as their return level.

Unlike previous work such as (Ding et al. 2019), which
assumes that ξ and σ are hyperparameters provided by
users, DeepGPD enables both parameters to be automat-
ically learned from the data. Specifically, the deep archi-
tecture is trained to minimize the following negative log-
likelihood function of the excess values in the next time step:

L({ξil, σil}) =
∑
i,l,j

[
log σil + (1 +

1

ξil
) log(1 + ξil

yilj
σil

)

]
(4)

where i is the window number, l is the location and j is the
sample number.

One major computational challenge in estimating the
GPD parameters using a deep learning architecture is the
need to enforce positivity constraints on the solution of (4)
during training. To address this challenge, DeepGPD em-
ploys a re-parameterization trick to transform (ξil, σil) into

a pair of unconstrained variables kil = (k
(1)
il , k

(2)
il ) that can

be learned by the convolutional neural network.

Theorem 1 Let {ξ∗il, σ∗
il} = argmin L({ξil, σil}) subject to

the following positivity constraints:

∀i, j, l : σil > 0 and 1 + ξil
yilj
σil

> 0

By re-parameterizing (ξil, σil) 7→ (k
(1)
il , k

(2)
il ) as follows:

σil = exp (k
(1)
il ), ξil = exp (k

(2)
il )−

exp (k
(1)
il )

Mil
(5)

and solving for {k̂(1)il , k̂
(2)
il } = argmin L̂({uil, vil}), where

L̂({uil, vil}) =
∑
ilj

[
uil +

(
1 +

Mil

Milevil − euil

)

× log

(
1 + evil

yilj
euil
− yilj
Mil

)]
(6)

and Mil = maxj Yilj , then the solution set {ξ∗il, σ∗
il} can

be derived from the solution for {k̂(1)il , k̂
(1)
il } by applying the

mapping given in Equation (5).

The proof for the preceding theorem can be shown by sub-
stituting (5) into (4), which yields the equivalent objective
function for L̂({k(1)il , k

(2)
il }). Furthermore, since Equation

(4) can be re-written as follows:

σil = ek
(1)
il ≥ 0

1 + ξil
yilj
σil

= 1− yilj
Mil

+ ek
(2)
il

yilj

ek
(1)
il

≥ 0

the positivity constraints are automatically satisfied given
the fact that ∀i, l, j : yilj ≤ Mil, ek

(1)
il > 0 and ek

(2)
il > 0 as

long as k(1)il and k(2)il are not equal to −∞.

Corollary 1 The DeepGPD framework trained to optimize
the loss function in Equation (6) will generate the maximum
likelihood solution for {ξ∗il, σ∗

il} in Equation (4) given the
one-to-one mapping with {k̂(1)il , k̂

(2)
il } in Equation (5).

The preceding corollary demonstrates the advantages of
using our re-parameterization trick to train DeepGPD as the
values of k̂(1)il and k̂

(2)
il are less constrained compared to
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Figure 3: Fitted p-Value distribution of K-S test.

{ξ∗il and σ∗
il}. This enables the parameters to be more easily

learned by DeepGPD. All three components of the frame-
work, including deep set and CNN, are trained in an end-
to-end fashion using Adam (Kingma and Ba 2015). Once
the parameters for k̂(1)il and k̂(2)il are obtained, we can apply
Equation (5) to derive the corresponding GPD parameters.

Experimental Results
We evaluate our proposed framework on a 44-year global
precipitation data from 1970 to 2013. Specifically, we use
daily precipitation values collected from the Global His-
torical Climatology Network1 (GHCN) for 1,112 stations
located in the Northern Hemisphere (between 22.5◦N to
67.5◦N) as our target variable. The data is partitioned into
45 non-overlapping one-year time windows. Excess daily
precipitation values are considered as any value exceeding
one standard deviation above the mean for the station. For
predictor variables, we consider the excess values in the pre-
vious year as set-valued attributes and the mean and stan-
dard deviation of monthly climate values (e.g., convective
precipitation rate, solar radiation flux, relative humidity, and
sea level pressure) from the NCEP re-analysis project2 as
fixed-length vector-valued attributes.

Our objective is to predict the conditional distribution of
the excess precipitation values for next year based on the
observed excess values and statistics of the NCEP climate
variables for the current year. The precipitation data at each
location is de-seasonalized separately using its own monthly
means and standard deviations. Each 1 year window of pre-
dictor and target values are assigned to either training, vali-
dation or test sets, with 34 windows in training, 5 in valida-
tion and 4 in test. We repeat our experiment 10 times with
different train-validation-test splits.

To verify that the excess values follow the GPD, we per-
form the Kolmogorov-Smirnov goodness of fit test. The KS-
test is a non-parametric approach to determine whether a
given set of samples is drawn from a given distribution. To
do this, we first infer values of the GPD statistics, ξ and σ,
from the excess values observed at each location and time
window using SciPy genpareto class and then apply the KS-
test to assess whether the excess values were indeed drawn
from the inferred distribution. We observe that the average p-
value over all the locations and time windows is 0.60, which

1https://www.ncdc.noaa.gov/ghcn-daily-description
2https://www.ncep.noaa.gov/

(a) Excess mean for random samples of locations and
time windows. Colors represent different samples.

(b) Excess mean for all locations and time windows.

Figure 4: Mean residual life plot for excess precipitation.

Method NLL ρ(ξ) ρ(σ)

Persistence 0.6271± 0.0092 0.40 0.77
Linear Regression 0.6514± 0.0114 0.49 0.80
ViT Regression 0.6372± 0.0088 0.56 0.87
CNN Regression 0.6332± 0.0102 0.41 0.75
Linear GPD 0.6101± 0.0035 0.38 0.57
DeepGPD 0.5688± 0.0036 0.57 0.85

Table 1: Comparison between DeepGPD against baseline
methods in terms of negative log-likelihood (NLL) and cor-
relation (ρ) of predicted ξ and σ to ground truth values.

Method Negative log-likelihood
DeepGPD with GHCN only 0.5706± 0.0035
DeepGPD with NCEP only 0.5670± 0.0040
DeepGPD 0.5688± 0.0036

Table 2: Results of ablation study.

suggests that the inferred distributions accurately fit the data.
The distribution of the fitted p-values is shown in Figure 3.

Next we evaluate our choice of excess threshold. Equation
3 shows a linear relationship between the choice of thresh-
old and the mean value of the excesses. We empirically ver-
ify this linear relationship by plotting the chosen threshold
against the mean of excesses in Figure 4. The resulting dia-
gram is also known as the mean residual life plot. Ordinar-
ily, the mean residual life plot is used to evaluate the choice
of threshold for a single GPD distribution. However, in our
case, each window and location has its own GPD distribu-
tion. Thus we must evaluate our choice of threshold for this
entire family of excess distributions.
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In Figure 4a, we plot a random selection of mean resid-
ual life plots at different locations and windows and we find
that the relationship between thresholds and the mean resid-
ual is approximately linear around 1. In addition, Figure 4b
shows the average excess mean across all time windows and
locations at any given threshold with shading representing 1
standard deviation. In the vicinity of 1, the average excess
mean across all distributions varies linearly with the choice
of threshold and the relatively narrow shade suggests this
behavior is shared across most distributions. Notice that the
slope of both plots is negative around thresholds of 1 which,
based on Equation 3, indicates that ξ is negative-valued. The
approximately linear behavior in the mean residual life plot
around 1 justifies our choice of 1 standard deviation as our
threshold.

We compare DeepGPD against the following baselines.
Similar to DeepGPD, each baseline generates the GPD pa-
rameters of a location for the next time window as its out-
put. (1) Persistence - A GPD is fitted to the excess values
in the current window and used to predict the next win-
dow. (2) Linear Regression - A linear regression model is
trained to predict the GPD parameters (ξil and σil) for each
location using the NCEP climate variables as well as the fit-
ted GP parameters from previous window as its predictors.
(3) ViT Regression - This baseline uses the Vision Trans-
former architecture (Dosovitskiy et al. 2020) to predict the
GPD parameters and is trained using mean squared error loss
(MSE). To accommodate our pixel-wise regression problem
setting we remove the class token embeddings and set the
final MLP to output 2 scalars for each pixel in each patch
corresponding to the 2 GPD parameters. (4) CNN Regres-
sion - This baseline uses the same architecture (including
deep set and CNN) and predictors as DeepGPD except it re-
places the maximum likelihood loss with a mean square er-
ror loss on the GPD parameters, similar to the linear regres-
sion baseline. This is similar to the architecture proposed in
(He et al. 2016) but consists only of residual layers and a
final linear layer while omitting the pooling and fully con-
nected layers because it performs pixel-wise regression. (5)
Linear GPD (Coles 2001) - This is a linear GPD model for
predicting the GPD parameters using NCEP and the GPD
parameters from the previous window as its predictors (see
Equation (2)). Hyper-parameters for all deep learning mod-
els were selected as follows: learning rates between 10−2

and 10−5, number of layers ranged from 3 to 10, and hidden
dimensions between 5 and 50 units were explored. 3

Comparison against Baseline Methods
Table 1 compares the performance of DeepGPD against
baselines using negative log-likelihood and correlation be-
tween the predicted and actual ξ values as evaluation met-
rics. The results in Table 1 suggest that, with one excep-
tion, DeepGPD significantly outperforms all the baselines
regardless of the metric chosen. The performance of CNN
regression and linear regression are poor relative to other
baselines. Since both methods employ the mean-square er-

3The code and data for our implementation is available at https:
//github.com/TylerPWilson/deepGPD.

(a) correlation = 0.33 (b) correlation = 0.26

(c) correlation = 0.01 (d) correlation = -0.25

Figure 5: Relationship between predictive improvements
over baselines and true ξ.

ror (MSE) of the predicted GPD parameters as its loss func-
tion, this shows the importance of explicitly incorporating
extreme value theory and its corresponding negative log-
likelihood loss to train the model. The only baseline to com-
pare favorably to the proposed method according to any met-
ric is ViT regression which achieves correlations with the
ground truth ξ and σ comparable to DeepGPD due to being
an extremely expressive model trained explicitly to predict
the ground truth ξ and σ values through MSE loss. However,
because it doesn’t incorporate NLL into it’s loss in practice
it makes poor predictions of the distribution of observed ex-
cesses. The relatively strong performance of the persistence
method suggests the importance of using information about
the excess values in the previous time window to predict
their distribution in the next window.

The linear GPD model employs the same loss function
(i.e., MLE) as DeepGPD except it uses a linear layer, as op-
posed to non-linear model, to learn the mapping from the
predictors to the GPD parameters. This has two additional
implications. First, linear GPD is unable to directly incorpo-
rate the set-valued predictors of the GHCN; therefore they
can only use the inferred GPD statistics from previous win-
dow as one of its predictors. Furthermore, existing linear
GPD approach also does not incorporate spatial informa-
tion since it does not include a spatial component such as
CNN. As a result, the proposed DeepGPD method outper-
forms linear GPD by a significantly large margin, demon-
strating the importance of non-linearity and incorporating
spatial relationship into the modeling task. Nevertheless, the
linear GPD still outperforms other baselines, suggesting the
value of incorporating GPD into the learning formulation.

Table 2 compares our full model against variations that
utilize only the vector-valued (NCEP only) or the set-valued
predictors (GHCN only). The results show that all three
methods achieve comparable performance with significant
overlap in their confidence intervals. This suggests that there
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(a) window 0, true ξ (b) window 0, DeepGPD ξ (c) window 0, linear GPD ξ

(d) window 5, true ξ (e) window 5, DeepGPD ξ (f) window 5, linear GPD ξ

(g) window 10, true ξ (h) window 10, DeepGPD ξ (i) window 10, linear GPD ξ

Figure 6: Comparison between the spatial distribution of the true and predicted ξ values for linear GPD and DeepGPD.

exists large amount of redundant information between both
types of predictors. Although our model can effectively uti-
lize the set-valued or vector-valued predictors, leveraging
them together does not appear to improve the model.

Distribution of Estimated GPD Parameters
The previous subsection compares DeepGPD against the
baseline methods in terms of their negative log-likelihood
(NLL) and correlation with the ground truth GPD shape pa-
rameter values. Table 1 shows that DeepGPD significantly
outperforms the baselines but this raises the question of the
reason for its performance improvement. Since the results in
Table 1 are based on an aggregation over multiple time win-
dows and locations, we need to compare the relative perfor-
mance of DeepGPD against the baselines at a finer level. To
do this, we first compute the difference between the NLL of
each baseline against DeepGPD for each location and time
window. Positive differences suggest that the NLL value of
the baseline is worse than the NLL of DeepGPD. Figure 5
displays the relationship between the NLL difference of each
baseline relative to the proposed method and the true GPD
shape parameter ξ. First, note that there is a positive bias
along the y-axis in the plots, which suggests that the perfor-
mance improvement in DeepGPD is observed for the ma-
jority of the locations and time windows. In fact, DeepGPD
outperforms the baselines in 58% to 89% of locations and
windows. Second, in the case of linear and CNN regression
methods, observe that there is a positive correlation between
the value of ξ and relatively stronger performance by the
proposed method. This suggests that DeepGPD performs
best in situations where the tails of the distribution are heavi-
est. Since extreme events are the ones most important to pre-
dict, the strong performance of DeepGPD in these scenarios
is promising. This plot also shows there is a considerable
number of samples for which the ViT model performs worse
than DeepGPD. The plot also suggests that linear GPD out-
performs DeepGPD when ξ is in the range between -0.5 and
0. Nevertheless, there are still more data points with positive

NLL difference for the same range of ξ values.
Next, we examine the spatial distribution of the predicted

ξ values and compare them to their ground truth distribution.
Since large values of ξ are especially important we focus on
them. In Figure 6 we plot the predicted values of ξ for three
time windows with grid cells colored based on their relation-
ship to certain high thresholds. These thresholds range from
85th to 95th quantiles calculated based on the ground truth
data with ξ values exceeding the 95th quantile of the ground
truth ξ values colored black and everything below the 80th
percentile colored white and any ξ in between colored gray.
We produce separate plots for the ground truth, DeepGPD,
and the linear GPD baseline. Due to space limitations we
only show the results for linear GPD. These plots show that
DeepGPD does well in predicting the general spatial distri-
bution of the highest ξ values by identifying which locations
have relatively high or low ξ values. The worst predictions
are from linear GPD, which struggles to capture the variabil-
ity of the data with almost all locations visualized as black
or gray due to the large positive bias of the model as well as
the low standard deviation of its predictions.

Conclusions
In this paper we identified the limitations of existing deep
learning methods in predicting the distribution of extreme
values. To address this limitation we proposed a novel deep
learning architecture (DeepGPD) capable of learning the pa-
rameters of the generalized Pareto distribution while satisfy-
ing the conditions placed on those parameters. We evaluated
our results on a real world climate data set and showed that
DeepGPD outperformed various baseline methods.

One limitation of this work is that it models the marginal
distribution at each location and window separately. How-
ever, in some applications it is important to consider the
dependence structure of extreme values. In future work we
plan to study the joint distribution of extreme values using
techniques like copula theory and multivariate extreme value
distributions.
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