
SmartIdx: Reducing Communication Cost in Federated Learning by Exploiting
the CNNs Structures

Donglei Wu1, Xiangyu Zou1, Shuyu Zhang1, Haoyu Jin1, Wen Xia1,2*, Binxing Fang1

1School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China
2Peng Cheng Laboratory, China

{donglei.wu, xiangyu.zou, shuyu.zhang97, haoyu.jin97}@hotmail.com, xiawen@hit.edu.cn, fangbx@cae.cn

Abstract

Top-k sparsification method is popular and powerful for
reducing the communication cost in Federated Learning
(FL). However, according to our experimental observation,
it spends most of the total communication cost on the index
of the selected parameters (i.e., their position information),
which is inefficient for FL training. To solve this problem,
we propose a FL compression algorithm for convolutional
neural networks (CNNs), called SmartIdx, by extending the
traditional Top-k largest variation selection strategy into the
convolution-kernel-based selection, to reduce the proportion
of the index in the overall communication cost and thus
achieve a high compression ratio. The basic idea of Smar-
tIdx is to improve the 1:1 proportion relationship between
the value and index of the parameters to n:1, by regarding
the convolution kernel as the basic selecting unit in parame-
ter selection, which can potentially deliver more information
to the parameter server under the limited network traffic. To
this end, a set of rules are designed for judging which kernel
should be selected and the corresponding packaging strate-
gies are also proposed for further improving the compression
ratio. Experiments on mainstream CNNs and datasets show
that our proposed SmartIdx performs 2.5×−69.2× higher
compression ratio than the state-of-the-art FL compression
algorithms without degrading training performance.

Introduction
Federated Learning (denoted as FL) (McMahan et al. 2017;
Konecný et al. 2016b) allows many clients to collaboratively
train a model while keeping their private datasets in their lo-
cal, and has become a popular privacy-preserving machine
learning approach (Wei et al. 2019; Zheng et al. 2020; Ng
et al. 2020; Liu et al. 2020a,b; Smith et al. 2017). Broadly
speaking, the main processes of FL can be described as be-
low: 1© Clients download the current global model from the
central parameter server. 2© Clients train the downloaded
global model on their private datasets in parallel, and gen-
erate a new local model. 3© Clients upload their new local
model to the parameter server. 4© The server aggregates the
received local models, and generates a new global model
as the result of the current training round. When the server
sends back the averaged global model to clients, and clients

*Corresponding author.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

begin the next training round by continually training the re-
ceived model with their private datasets. These four steps
are iteratively performed between clients and server until the
global reaches the required accuracy.

One of FL’s mainstream scenarios is that the server locates
in a data center with good Internet resources, and clients
are edge devices (e.g., smartphones, IoTs, or wearable de-
vices) (Konecný et al. 2016a,b; McMahan et al. 2017; Sat-
tler et al. 2020; Smith et al. 2017; Zheng et al. 2020) which
are limited in low bandwidth and unstable network. Exist-
ing studies show that residential Internet connections tend
to reach far higher download than upload speeds (Goga and
Teixeira 2012; Konecný et al. 2016a; Kairouz et al. 2019;
Cui et al. 2020; Zhang et al. 2021a, 2022), thus there exist
a serious bottleneck in FL when a huge number of clients
send their local model to the server, especially when the up-
loaded models are the complicated and large-scale convolu-
tional neural networks (CNNs).

To alleviate the communication bottleneck of FL, a nat-
ural idea is to compress the network traffic by reducing
the total size of uploaded model parameters. Recently, Top-
k sparsification-based compression techniques significantly
reduce communication overheads of federated/distributed
learning without sacrificing the training convergence speed
and inference accuracy (Dryden et al. 2016; Strom 2015;
Sattler et al. 2020; Sattler et al. 2019; Aji and Heafield 2017;
Lin et al. 2018; Chen et al. 2018; Abdi and Fekri 2020;
Zhang et al. 2020). In these approaches, instead of trans-
mitting the whole local model, weight updates or gradients
(denoted as parameters) with the largest variations after lo-
cal training will be selected and uploaded to the parameters
server for reducing the network traffic. Here the selected pa-
rameters are regarded as individuals and they are usually or-
ganized in pairs (e.g., <the value, the index> of a selected
parameter). The index is used to indicate a selected parame-
ter’s position in the model (i.e., which parameter is selected),
and the value is the specific numerical value of this parame-
ter. In the server, the value will be used to update the previ-
ous global model’s parameters at the corresponding position
according to the index. Thus only the value participants in
model training while the index does not.

Many previous works attempt to employ quantization
techniques (Aji and Heafield 2017; Dryden et al. 2016; Wen
et al. 2017) and encoding schemes (Sattler et al. 2020; Strom

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

4254

2015; Sattler et al. 2019) to further reduce the sizes of the
‘value’ and ‘index’ parts, respectively. However, according
to our 1st key observation, ‘the value’ part is greatly com-
pressed (16×−32×) while ‘the index’ part is hard to be
compressed (2×−3×), which thus leads to the ‘index’ part
takes an increasingly higher share of the network traf-
fic. For example, according to our experimental observation,
there are about 89.4%−94.1% traffic costs spent on trans-
mitting ‘the index’ parts after using quantization and encod-
ing techniques in Top-k sparsification based FL compression
methods (Aji and Heafield 2017; Sattler et al. 2019; Sattler
et al. 2020; Strom 2015; Zhang et al. 2021b).

On the other hand, previous work (Chen et al. 2018) men-
tioned that the traditional Top-k parameter selecting strat-
egy that selects parameters with a large variation, may miss
some critically important parameters with a small variation.
These parameters could be also related to high activity in-
put features. Thus we aim at exploring new communication-
efficient selecting strategies in this paper. By studying the
convolution kernels structures in CNNs, we try to design
a ‘Kernel-based’ parameter selecting strategy, in which
the convolution kernels are regarded as a whole selecting
unit (i.e., all the parameters in the convolution kernel are se-
lected). Meanwhile, we find the 2nd key observation that
when transmitting the same amount of parameters, this
selecting parameters with the whole unit of convolution
kernel achieves approximate training performance com-
pared with the traditional Top-k strategy in FL (detailed
in Section). More importantly, by exploiting the structures
of convolution kernel in CNN models, we can let parame-
ters in a convolution kernel share an index (i.e., one index
for multiple values) after using this ‘kernel-based’ parame-
ter selecting strategy, which significantly reduces the propor-
tion of the index part. From another perspective, kernel-
based selection strategy delivers more updated value to
the server than traditional Top-k sparsification with the
same communication cost, which is beneficial to prompt-
ing the FL training.

In this work, motivated by the above two key observa-
tions, we propose a novel FL compression algorithm (called
SmartIdx) to significantly reduce communication cost in FL,
which optimizes the 1:1 proportion of selected parameter
pairs (i.e., <the value, the index>) to n:1 by regarding the
convolution kernel as the parameter selecting unit in convo-
lutional layers. More specifically, there are three steps for
SmartIdx: 1© Selecting Parameters: several ‘important’ pa-
rameters of a CNN model are selected according to their
variations, which are used to select ‘important’ convolution
kernels. 2© Collecting Properties: the Size and Number
properties of each selected parameter are recorded, which
are used to determine the encoding strategy of convolution
kernel candidates. 3© Packaging Parameter: combined with
the collected properties, several rules are designed to encode
the final uploaded parameters into three kinds of packages
(i.e., Individual Package, Kernel Package, and Pattern Pack-
age) for transmission. In the encoded kernel/pattern pack-
ages, multiple parameters share one index to reduce the FL
communication cost.

Generally, the contributions of this paper are four folds:

• We observe that there is a large proportion of communi-
cation cost spent on the index (i.e., indicating which pa-
rameters are selected) in mainstream Top-k sparsification
based FL compression methods, which is useless for the
model learning in FL. Thus the index cost is expected to
be reduced for improving the FL compression ratio and
training performance.

• Meanwhile, we experimentally verify that when trans-
mitting the same amount of parameters (i.e., with the
same sparse ratio), our proposed ‘Kernel-based’ selection
strategy that regards parameters in the convolution kernel
as a whole selecting unit, achieves an approximate Fed-
erated Learning training performance to the traditional
‘Top-k’ strategy that selects individual parameters.

• Based on the kernel-based selection strategy, we design
a novel FL compression algorithm called SmartIdx. It
allows 1© parameters in a convolution kernel share one
index, which can significantly reduce the index propor-
tion in the total traffic of FL communication. And 2© the
selected kernels with the same sign will share one sign,
which can further reduce the value cost in the total traffic.

• Experiments on typical CNN structures and datasets sug-
gest that our proposed SmartIdx achieves 2.5×−69.2×
compression ratio when transmitting the same amount of
parameters, and achieves higher test accuracy with the
same network traffic limitation, than the state of arts.

Background and Related Work
Federated Learning (FL) is a particular case of distributed
learning, which aims at casting off the collection of the pri-
vate data from participants. However, the huge number of
clients, the limited network resource of each client, and the
increased size of the model make the communication prob-
lem becomes a bottleneck in practical FL.

To reduce the communication cost of FL, FedAvg algo-
rithm proposed by (McMahan et al. 2017) to enlarge the
communication interval, thus offloads the expensive band-
width resource to the local computation. Based on FedAvg,
sparsification, quantization, and encoding techniques are
further exploited to reduce the size of the model weight
updates/gradients communicated between server and client.
Broadly speaking, the sparsification strategy reduces the net-
work overhead by communicating sparse local model that
only include k ‘important’ parameters (Chen et al. 2018; Lin
et al. 2018). Quantization and encoding schemes can reduce
the size of numerical value and position information of these
k ‘important’ parameters (Seide et al. 2014; Wen et al. 2017;
Alistarh et al. 2017; Sattler et al. 2020; Hu et al. 2020).

Typically, a sparse Binary compression (SBC) frame-
work (Sattler et al. 2019) reduces the communication cost
in FL. In SBC, all weight-updates but the fraction k with
the highest magnitude will be set to zero (Top-k sparsifica-
tion). Further, the sparse weight-updates are quantized to bi-
nary (quantization), the index of the non-zero elements will
be encoded by optimal Golomb encoding (positions cod-
ing). Additionally, a Deep Gradients Compression (DGC)
algorithm (Lin et al. 2018) uses Top-k sparsification to re-
duce the size of gradients, and run-length coding to com-

4255

Approaches Index Value σ
Scalable-DNN (Strom 2015) ∼11-bit 1-bit 0.08

SBC (Sattler et al. 2019) ∼8.4-bit 1-bit 0.11
Grad. Dropping (Aji and Heafield 2017) 32-bit 2-bit 0.03

Table 1: The average traffic composition of four gradient
sparsification based Federated/Distributed Learning com-
pression methods for each selected parameter.

press the traffic of sparse gradient’s index. To ensure no
loss of accuracy, DGC employs momentum correction and
local gradient clipping on the Top-k sparsification. In addi-
tion, DGC also uses momentum factor masking and warmup
training to overcome the staleness problem caused by the
reduced communication. In Top-k sparsification based com-
pression methods, a common and important step is to accu-
mulate those unuploaded updates in local and add them to
the next FL rounds, which has been proven to be essential to
maintain the model performance during the training (Karim-
ireddy et al. 2019; Alistarh et al. 2018; Stich, Cordonnier,
and Jaggi 2018; Zheng, Huang, and Kwok 2019).

In this paper, we set the FedAvg algorithm as the baseline,
and evaluate our proposed SmartIdx algorithm with the SBC
and DGC in Section . More related work about FL compres-
sion approaches are introduced in supplementary1.

Observation and Motivation
Observation 1. As already described, the steps of traditional
Top-k sparsification-based methods (Aji and Heafield 2017;
Sattler et al. 2020; Lin et al. 2018; Strom 2015), are: 1© Sort-
ing all parameters in the model according to their variations
in a local training round. 2© Selecting Top-k (i.e., the largest
k) ones in the sorted results, regarding them as individu-
als (i.e., independent units), and recording them in pairs as
<the value, the index> of a selected parameter. Generally,
the value and the index will be further compressed by quan-
tization and coding technique in different methods. For the
simplicity, assume that both the floating value and the inte-
ger index of each parameter need 32 bits to represent, we
can define the compression ratio of value and index as:

CRv =
32k

TQ(v)

, CRi =
32k

TC(i)

(1)

k is the number of selected parameters with large varia-
tion. TQ(v) and TC(i) denote the size of the quantized value
and the coded index, respectively. Existing compression ap-
proaches (Alistarh et al. 2017; Wen et al. 2017; Sattler et al.
2020) quantize the floating value to 1−2 bits, which cor-
responding to the CRv is about 16−32. While the coding
scheme (e.g., golomb coding) used to encode the integer in-
dex to 8-11 bits, which corresponding to the CRi is about
2−3 as suggested in approaches (Sattler et al. 2020; Sattler
et al. 2019; Strom 2015). Obviously, CRi is much lower
than CRv , which causes the index to still takes a huge
share of the total traffic after compression in these ap-
proaches. Compared with ‘the value’ part will be used to

1https://github.com/wudonglei99/smartidx

0

0.2

0.4

0.6

0.8

1

0 30 60 90 120

Top-k
Rand-k
Kernel-based

0

0.2

0.4

0.6

0.8

1

0 40 80 120 160

Top-k
Rand-k
Kernel-based

0

0.2

0.4

0.6

0.8

0 40 80 120 160

Top-k
Rand-k
Kernel-based

(a) Fmnist

(c) Cifar10 (d) Tiny Imagenet
Training Rounds

Te
st

 A
cc

ur
ac

y

0

0.2

0.4

0.6

0.8

0 100 200 300 400 500

Top-k
Rand-k
Kernel-based

(b) Mnist

Figure 1: Comparisons of inference accuracy among three
selecting strategies for FL compression.

update global model in the central server, ‘the index’ part
is only employed to indicate which parameters are selected.
Excessive communication cost on index means a low effi-
ciency in FL communication. In this paper, we define the
transmitting efficiency σ for FL compression methods:

σ =
K

Tv + Ti
(2)

Tv and Ti are communication cost (bit) of value and in-
dex, K denotes the amount of uploaded parameters. Table ??
shows the communication cost composition and correspond-
ing σ of 4 typical Federated/Distributed Learning compres-
sion approaches, according to their detailed design method-
ologies. We find that most of the traffics are spent on trans-
mitting the index, but not the value, and σ of these ap-
proaches also quite low.

Observation 2. Top-k sparsification-based compression
techniques achieve very promising performance in FL, and
the theoretical analysis of the convergence has been proven
by several existing studies (Alistarh et al. 2018; Karimireddy
et al. 2019; Zheng, Huang, and Kwok 2019; Stich, Cordon-
nier, and Jaggi 2018), but the shortcoming about index cost
in 1st observation inspire us to explore a communication-
efficient parameter selection strategy.

It is well known that parameters in a convolution kernel
always work together, and kernels are often used as a mono-
lith to extract features in CNN structures. More importantly,
we notice that this structured property helps to reduce the
index proportion because only one index is needed to deter-
mine all parameter’s position in the same selected convolu-
tion kernel. Following this observation, we design a parame-
ter collection strategy by regarding parameters in the convo-
lution kernel as a whole selecting unit for sparsification. In
doing so, the index proportion in the total traffic is reduced
as the numbers of the index are dramatically decreased.

Intuitively, the training performance (i.e., convergence
rate and test accuracy) of kernel-based selection should be
approximate to the Top-k selection as they both consider the
Linf norm as a measure of ‘importance’, otherwise any a
block of continuous parameters are selected also need only

4256

Latest Local Model Sparse Model

Getting the
Varied Most

The selected parameterkernel The unselected parameter The index of parameter

Selecting Parameters

parameter Properties

{S1,N1}

{S2,N2}

{Sn-1,Nn-1}

{Sn,Nn}

Collecting Properties Packaging ParametersStep 1 Step 2

size

number
IP

PP KP

Step 3

Quantification

Figure 2: General workflow of SmartIdx. IP, KP, and PP are short for individual package, kernel package, and pattern package.

one index and reduce the communication cost. Thus, the ex-
periment of training performance is designed to empirically
prove the reasonableness of kernel-based selection. Specifi-
cally, we employ three parameters selecting strategies (i.e.,
Top-k, Rand-k, Kernel-based) to reduce the communication
cost in FL, and compare the training performance among
these methods (as shown in Figure 1).

• ‘Top-k’ denotes that each client selects K parameters that
are varied most for each training round;

• ‘Rand-k’ denotes that each client randomly selects K pa-
rameters for each training round;

• ‘Kernel-based’ (method of this paper) denotes that each
client selects several convolution kernels where k varied-
most parameters locate in. And there are total K param-
eters included (the detailed selection algorithm will be
detailed in Section).

Three approaches use the same sparse ratio (SR), which is
defined as the proportion of selected parameters per round.
The close blue and green curves in Figure 1 suggests that
‘Kernel-based’ performs an approximate FL model train-
ing results as ‘Top-k’, which are significantly better than
the Rand-k selection strategy. These experimental results are
consistent with our expectation (More experiments of dif-
ferent CNNs are shown in supplementary1). Essentially, the
kernel-based selection and Top-k selection both try to pick
up some ‘important’ parameters in each round, and their dif-
ference is the selection granularity. Top-k regards a single
weight as the basic unit while the kernel-based uses a con-
volution kernel as the basic unit.

In a nutshell, the above two key observations motivate us
to propose an efficient FL compression algorithm that fo-
cuses on reducing the indexing cost by using ‘Kernel-based’
selection strategy, which will be detailed in the next section.

Design Methodologies
Overview
In this paper, we propose SmartIdx, an efficient FL compres-
sion approach that uses the ‘kernel-based’ selection strategy
to reduce index cost while maintaining the FL training effi-
ciency. As shown in Figure 2, SmartIdx has three key steps:

1. Selecting Parameters: Selecting these ‘important’ pa-
rameters of CNNs, i.e., those varied most in each FL

training round, which will guide SmartIdx to further se-
lect the ‘important’ convolution kernels.

2. Collecting Properties: Acquiring and analyzing the se-
lected parameters’ two properties corresponding to the
convolution kernels: Size and Number, which will be
used as the clues for judgement and packaging of param-
eters in the next steps.

3. Packaging Parameters: Classifying the selected param-
eters (in convolutional layers or others) to get the selected
convolution kernels and other selected individual param-
eters (e.g., locating in full-connection layers), which will
then be encoded into three packages, including individ-
ual package, kernel package, and pattern package. In this
step, our packaging method performs a higher transmit-
ting efficiency by reducing the index proportion.

Selecting Parameters
As discussed in Section , traditional Top-k sparsification-
based techniques select parameters according to their abso-
lute values of variations or gradients (Aji and Heafield 2017;
Sattler et al. 2020; Strom 2015; Lin et al. 2018; Chen et al.
2018). Similarly, our approach follows them to select several
parameters for further ‘Kernel-based’ selection.

Generally, clients usually run multiple training iterations
in a FL training round. Specifically, assuming that the ith
parameter ωi in the local training is updated to ω′

i after a
training round, the ith parameter’s variation degree is calcu-
lated as: ∆i = |ω′

i − ωi|.
We calculate ∆ values for all parameters after an FL train-

ing round, and then, the k largest ∆ values will be identified
to select k parameters. Note that the hyper-parameter k de-
cides the sparse ratio and the final compression ratio, which
will be discussed in Section .

Collecting Properties
In this step, we traverse the selected parameters and collect
two properties of them:

• Size S: This records whether a selected parameter locates
in a convolution kernel. If the selected parameter locates
in a convolution kernel, S is configured as the size of the
kernel; Otherwise, S is set to the value ‘1’.

• Number N : If a selected parameter locates in a convo-
lution kernel, and the size of this convolution kernel is s,

4257

N records the total number of convolution kernels whose
sizes are s. If the parameter does not belong to a convo-
lution kernel, N is set to the value ‘0’.

The two properties reflect where the selected parameters
are located in CNNs and will be utilized for further com-
pression as described in the next subsection.

Packaging Parameters
After collecting properties of the selected parameters, all the
selected parameters and other parameters located in the re-
lated convolution kernel will be quantized: first averaged to
the value µ according to their absolute values, and then sim-
ply represented by +µ or -µ (i.e., one bit each parameter
along with their shared µ), as other Top-k sparsification-
based FL compression methods do (Strom 2015; Sattler
et al. 2020). Next, these quantized parameters will be pack-
aged as described in Algorithm 1.

Specifically, the selected and quantized parameters will be
encoded into three packages:
• A parameter wi will be encoded into the Individual

Package (IP) if Si = 1, which means it locates in FC
layer, bias layer, or just a 1×1 convolution kernel.

• A parameter wi will be encoded into the Kernel Pack-
age (KP), if it locates in a larger convolution kernel (i.e.,
Si 6= 1), while there are less than 2Si convolution kernels
in the CNN whose size is Si.

• Otherwise, a parameter wi will be encoded into Pattern
Package (PP), which means there are more than 2Si ker-
nels in the CNN whose size is Si.

Note that the Pattern Package can be considered as a
further optimization on the Kernel Package, to achieve a
higher compression ratio. More specifically, 2S represents
the number of all possible combinations of the S signs (i.e.,
patterns ‘+’ or ‘-’) for all parameters in the convolution ker-
nel with a size of S. When there are more than 2S kernels
with a size of S, there must be at least two convolution ker-
nels with the same pattern (i.e., the same signs ‘+’ or ‘-’).

For example, for the 3×3 convolution kernels, there are
29 patterns at most. If more than 29 kernels are with the size
of 3×3, there must be at least two convolution kernels with
the same pattern. In this case, SmartIdx can further reduce
the repeated transmission for the convolution kernels with
the same pattern by (1) classifying the corresponding con-
volution kernels (i.e., Ni > 2Si and Si > 1) according to
their patterns; and then (2) for those kernels have the same
pattern, only recording one pattern and multiple indices of
the selected kernels which belong to this pattern.

According to the above Algorithm 1, the index and value
costs are both significantly reduced since 1© all the parame-
ters in the same convolution kernel share a common index,
and 2© the cost for transmitting repeated signs of different
kernels could be saved. Moreover, as suggested by the stud-
ies (Strom 2015; Sattler et al. 2020), instead of communi-
cating the absolute non-zero positions, communicating the
distances between all indices can further save the commu-
nication cost of the index, so we employ Golomb encoding
(Golomb 1966) to compress the index of parameters in each
package in SmartIdx.

Algorithm 1: Packaging the Selected Parameters.
Input: The selected parameters & their properties: wi, {Si,
Ni}; // Si: Size of wi located unit; Ni: Number of wi lo-
cated unit; ki is the convolution kernel containing wi.
Output: Individual Package(IP), Kernel Package(kP), Pat-
tern Package(PP)

1: for wi and {Si, Ni}, i = 0, 1, 2, . . . do
2: if Si = 1 then
3: Individual Package← wi

4: else if Si > 1, Ni < 2Si then
5: Kernel Package← ki
6: else if Si > 1, Ni > 2Si then
7: Pattern Package← ki
8: end if
9: end for

10: return IP,KP,PP

Communication and Computation Cost Discussion
Communication Cost: The communication costs of Smar-
tIdx per round are composed of the cost of individual pack-
age Cip, kernel package Ckp, pattern package Cpp, and
metadata M:

C = Wip + G(iip)︸ ︷︷ ︸
Cip

+

K∑
i=0

Sini + G(ikp)︸ ︷︷ ︸
Ckp

+

P∑
j=0

Sj + G(ipp)︸ ︷︷ ︸
Cpp

+M (3)

where G(·) denotes the communication cost of the golomb
encoded index. Wip denotes the number of parameters in
IP. Si and Sj denote the kernel size in KP and PP. In kp, ni
denotes the quantity of kernel with the size of Si. Metadata
M is used to mark some of the necessary information of each
package, which only takes up a small part of traffic. Since all
selected parameters are quantized to the mean of non-zero
elements, we use 1 bit to record the sign of each value (i.e.,
0 denotes negative value and 1 denotes positive value).

Computation Cost: As introduced in Section 4.1, there
are mainly three steps in SmartIdx. Assume that the time
complexity of Step 1 is O(n1), where n1 is the number of
total parameters in the CNN. The time complexities of Step
2 and Step 3 are both O(n2), where n2 is the number of the
selected parameters. Since n1 >> n2, the time complexity
of SmartIdx is O(n1), which is nearly the same as the tradi-
tional Top-k compression method.

Experimental Evaluation
Experimental Setup
Models and Datasets: Referring to existing studies (Cal-
das et al. 2018; Sattler et al. 2020; Konecný et al. 2016a; Li
et al. 2020; Lin et al. 2018), the local models used for this
work are structure and size simplified Vgg11 (Simonyan and
Zisserman 2015), Resnet18 (He et al. 2016), and Google-
LeNet (Szegedy et al. 2015), which are named as vgg11*,
resnet18*, GLnet*. The datasets used to training are IID
(independent identically distributed) partitioned Tiny Ima-
geNet (TmgNet) (Krizhevsky, Sutskever, and Hinton 2012)

4258

0
2
4
6
8

10

0 1 2 3 4 5 6

Fmnist
Mnist
cifar10
TmgNet

0

0.02

0.04

0.06

0 1 2 3 4 5 6

Fmnist
mnist
cifar10
TmgNet

(a) Sparse ratio with different k (b) Communication cost with different k

Sp
ar

se
 R

at
io

C
om

m
. C

os
t (

K
B

)

The number of k (x1000) The number of k (x1000)

Figure 3: The relationship between hyper-parameters k and
(a) sparse ratio, (b) communication cost, with training dif-
ferents CNNs on Cifar10.

/ Cifar10 (Krizhevsky and Hinton 2009), and Non-IID parti-
tioned Mnist (LeCun 1998) / Fashion Mnist (FMnist) (Xiao,
Rasul, and Vollgraf 2017). For the IID distribution, each
client has the same amount of private data with various and
random classes. For the Non-IID distribution, each client is
assigned the same amount of two random classes of data.
Additionally, each client has the same amount of data (See
supplementary1 for more illustrations).
Configuration of FL: In this paper, the base FL configu-
rations are set by referring to the existed studies (Konecný
et al. 2016a; McMahan et al. 2017), there are total of 100
clients, 10 clients will be randomly selected to participate in
each FL round. Each client conducts their local model train-
ing by using Adam optimizer (Kingma and Ba 2015) for 1
epoch, the local batch size is set to 10.
Hyper-parameters: The only hyper-parameter of SmartIdx
is the numbers of selected parameters k, which is described
in Section . Note that in the SmartIdx, the sparse ratio
and communication cost are not strictly proportional to the
hyper-parameters k, they are two pairs of positively corre-
lated variables. Considering that the client training GLnet*
on different datasets. Figure 3 suggests that both the sparse
ratio and communication cost have almost achieved linear
growth with the rising of k. It means that the sparse ratio
and communication cost in FL can be adjusted by k (results
on more CNNs are shown in the supplementary1). Based on
this property, next experimental evaluations could be con-
ducted on different configurations of compression ratio and
communication cost of SmartIdx.
Baseline and Compared Algorithms: In our experiments,
the baseline is set to the non-compressed and full precise
vanilla Federated Averaging algorithm (FedAvg). To evalu-
ate the performance of SmartIdx, we compare the SmartIdx
to 2 Top-k sparsification based FL comparison algorithms:
SBC (Sattler et al. 2019) and DGC (Lin et al. 2018), which
are introduced in Section . For certain CNN and dataset, we
will obtain the baseline of converged test accuracy Accb by
conducting the FedAvg with a certain round Rb.

Comparison of Compression Ratio with the Same
Sparse Ratio
In this section, we compare SmartIdx with SBC and DGC in
compression ratio with the same sparse ratio. As mentioned
in Section , the sparse ratio of SmartIdx can be controlled
by adjusting the hyper-parameters k. And there are simi-

CNNs Methods Fmnist Mnist Cifar10 TmgNet
SBC 42.0 43.7 39.7 40.0

VGG11* DGC 4.1 4.5 3.6 3.7
SmartIdx 179.2 207.8 206.4 178.3

SBC 39.2 41.7 20.8 41.0
GLnet* DGC 4.2 3.9 2.4 3.8

SmartIdx 113.8 109.3 72.4 101.8
SBC 65.0 46.0 65.7 66.6

Resnet18* DGC 6.5 5.3 6.3 6.5
SmartIdx 413.9 367.0 422.9 413.0

Table 2: Compression ratio with the same sparse ratios of
SBC, DGC, and SmartIdx on different CNNs and datasets.

0

0.2

0.4

0.6

0.8

0 40 80 120 160

SBC DGC SmartIdx

0.7

0.8

0.9

120 130 140 150 160

0

0.2

0.4

0.6

0.8

1

0 40 80 120 160

SBC DGC SmartIdx

0.9

0.95

1

140 150 160 170

0

0.2

0.4

0.6

0.8

0 40 80 120 160

SBC
DGC
SmartIdx

0

0.2

0.4

0.6

0.8

0 100 200 300 400 500

SBC
DGC
SmartIdx

Training Rounds

(a) Fmnist (b) Mnist

(c) Cifar10 (d) TmgNet

Te
st

 A
cc

ur
ac

y

Figure 4: Training performance with the same communica-
tion costs of SBC, DGC, and SmartIdx on different datasets.

lar hyper-parameters in SBC and DGC for controlling their
sparse ratio (Sattler et al. 2019; Lin et al. 2018). According
to their training performances upon various configurations
of CNNs and datasets, we set a series of the same sparse
ratios for each method to evaluate the communication costs
(See supplementary1 for more illustrations). In doing so, the
communication costs of three methods with the same sparse
ratio are obtained, and their Compression Ratios (CR) can be
calculated by the size of the raw CNNs divided by the com-
munication cost. Table ?? shows that the SmartIdx achieves
2.5×−69.2× more compression ratio than SBC and DGC
by reducing the traffic of index. These results suggest that
SmartIdx greatly saves communication resources by utiliz-
ing the inherent n:1 relationship between index and value
of the uploaded convolution kernels. And this superiority is
favorable to the FL client with limited bandwidth resources.

Convergence Rounds with the Same
Communication Cost
As discussed in Section , sparsification- and quantization-
based approaches (including our approach) reduce the traffic
cost, but maybe decrease the valuable ‘information’ deliver,
which incurs more training rounds to reach the required test

4259

Datasets CNNs Rb/Accb
SBC DGC SmartIdx

CR σ acc r CR σ acc r CR σ acc r
VGG11* (200/68%) 38.55 1.94 68.01% 161 12.73 0.17 67.98% 199 206.39 9.60 68.24% 190

Cifar10 GLNet* (200/67%) 20.14 1.51 66.43% 198 3.80 0.17 67.01% 159 72.49 5.07 67.21% 194
ResNet18* (200/63%) 59.29 1.83 63.18% 172 11.66 0.17 63.08% 191 422.86 11.18 63.10% 186

VGG11* (500/70%) 38.38 1.92 60.60% 500 9.02 0.17 68.90% 499 178.34 7.96 70.60% 474
TmgNet GLNet* (500/55%) 40.10 1.80 45.18% 500 4.04 0.17 54.95% 499 101.81 4.47 55.21% 497

ResNet18* (500/70%) 54.29 1.76 60.17% 500 19.57 0.17 70.24% 448 413.05 10.63 70.00% 496

Table 3: Evaluations of compression ratio, transmitting efficiency, test accuracy and FL rounds on best practices.

accuracy and lower test accuracy. Thus there is a trade-off
between the communication costs and training performance.
In this section, we explore the training performance among
SBC, DGC, and SmartIdx with the same communication
cost. Similar to section , a series of communication costs of
different configurations of CNN and dataset are set for SBC,
DGC, and SmartIdx. With the same communication cost per
round, we can compare the training performance of SBC,
DGC, and SmartIdx.

Figure 4 shows the test accuracy curves of the FL global
model on Resnet18* with 4 datasets. We learn that with the
same communication cost per FL round, models trained by
SmartIdx have higher test accuracy than SBC and DGC.
Essentially, with the same communication cost, SmartIdx
delivers more updates value to the server as most of the
communication costs are spent on transmitting parameter’s
value. This superiority is favorable to FL clients who take
full advantage of communication resource (See supplemen-
tary1 for more results). In summary, compared with the SBC
and DGC, SmartIdx reduces the communication cost with
the same sparse ratio, or achieves better training perfor-
mance with the same communication cost per round.

Comparison on Best Practices
In this subsection, we explore best practices among SBC,
DGC, and SmartIdx. A best practice indicates that within a
given FL communication rounds Rb, training to the target
test accuracy Accb, the minimum sparse ratio SRb (i.e., the
maximum compression ratio) of a particular approach could
obtain.

We evaluate three methods on 2 datasets and 3 CNNs, Ta-
ble ?? shows best practices about compression ratio CR,
transmitting efficiency σ, highest test accuracy acc, and
training rounds r of them. Note that due to SBC and DGC
cannot reach to theAt withinRb in some cases, we select the
results of these cases corresponding to the highest accuracy
achieved by them. Table ?? suggests that the σ of SmartIdx
is 2.5×−65.8× higher than SBC and DGC, which are con-
sistent with our intuition in Section . As a result, SmartIdx
achieves 2.5×−36.2× higher compression ratio than SBC
and DGC on their best practices (More comparisons of best
practices are shown in the supplementary1).

To further reveal the essence of the superiority of Smar-
tIdx, we calculate the bit number consumed by index and
value of SmartIdx in Individual Package (IP), Kernel Pack-
age (KP), and Pattern Package (PP), respectively. Addition-
ally, Sparse Ratio (SR) and Compression Gain (CG) of

0

2

4

6

8

10

Fm
ni
st

M
ni
st

Ci
fa
r1
0

Tm
gN
et

IP KP PP

0

0.2

0.4

0.6

0.8

1

1.2

Fm
ni
st

M
ni
st

Ci
fa
r1
0

Tm
gN
et

IP KP PP

0
20
40
60
80

100
120

Fm
ni
st

M
ni
st

Ci
fa
r1
0

Tm
gN
et

IP KP PP

In
d
e

x
 C

o
s
t
p

e
r

P
a
ra

m
e
te

r
(b

it
)

V
a
lu

e
 C

o
s
t
p
e

r
P

a
ra

m
e
te

r
(b

it
)

C
o

m
p
re

s
s
io

n
 G

a
in

p
e

r
P

a
ra

m
e
te

r

(a) Cost of index in
each package

(b) Cost of value in
each package

(c) Compression gain
in each package

Figure 5: Comparisons of index cost, value cost, and com-
pression gain among different packages.

each package are given. CG is calculated by the raw com-
munication cost of a selected parameter divide by the com-
munication cost of the compressed version of this parameter
(i.e., the sum of coded index and quantized value), it reflects
the final compression effect on a parameter. Figure 5 shows
the details of best practices on Resnet18* and 4 datasets.
(a) suggests that the communication cost spent on the in-
dex is about 12.1×−31.7× that on the value in the (IP),
which is similar to the traditional FL compression meth-
ods SBC and DGC. In the KP and PP, due to parameters
in a convolution kernel share an index makes the n:1 pro-
portion between value and index, the communication costs
spent on the index are greatly reduced. In Figure 5 (b), due to
the convolution kernels belong to the same pattern share one
signs in the pattern kernel, the communication costs spent
on the value are further saved. As the result, the highest CG
is achieved by PP, and the lowest CG is achieved IP in (c)
(See supplementary1 for results on more CNNs).

Conclusion
In this paper, we observe the transmitting efficiency of the
selected parameters in the communication of the existing
Top-k sparsification methods in FL is quite low, which is be-
cause indices take a huge share of traffic costs. Therefore, we
propose SmartIdx that uses a convolution-Kernel-based se-
lection strategy by exploiting the structure of CNNs, which
significantly reduces the index cost in the whole FL commu-
nication. Compared with the traditional Top-k sparsification
methods, experiments show our approach achieves a much
higher compression ratio without degrading the model con-
vergence and accuracy of Federated Learning.

4260

Acknowledgments
Thanks for anonymous reviewers’ insightful comments and
valuable suggestions. This research was partly supported
by the National Key-Research and Development Program
of China under Grant No. 2020YFB2104003; the Na-
tional Natural Science Foundation of China under Grant
no. 61972441; the Shenzhen Science and Technology Pro-
gram under Grant no. JCYJ20200109113427092 and no.
GXWD20201230155427003-20200821172511002; Guang-
dong Basic and Applied Basic Research Foundation No.
2021A1515012634.

References
Abdi, A.; and Fekri, F. 2020. Quantized Compressive
Sampling of Stochastic Gradients for Efficient Communi-
cation in Distributed Deep Learning. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial Intelli-
gence Conference, IAAI 2020, The Tenth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020, 3105–3112.
AAAI Press.
Aji; and Heafield. 2017. Sparse Communication for Dis-
tributed Gradient Descent. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2017, Copenhagen, Denmark, September
9-11, 2017, 440–445.
Alistarh, D.; Grubic, D.; Li, J.; and et al. 2017. QSGD:
Communication-Efficient SGD via Gradient Quantization
and Encoding. In NeurIPS 2017, December 4-9, 2017, Long
Beach, CA, USA, 1709–1720.
Alistarh, D.; Hoefler, T.; Johansson, M.; and et al. 2018. The
Convergence of Sparsified Gradient Methods. In NeurIPS
2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, 5977–5987.
Caldas, S.; Konecný, J.; McMahan, H. B.; and et al. 2018.
Expanding the Reach of Federated Learning by Reducing
Client Resource Requirements. arXiv:1812.07210.
Chen, C.; Choi, J.; Brand, D.; and et al. 2018. Ada-
Comp : Adaptive Residual Gradient Compression for Data-
Parallel Distributed Training. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, (AAAI-
18), the 30th innovative Applications of Artificial Intelli-
gence (IAAI-18), and the 8th AAAI Symposium on Educa-
tional Advances in Artificial Intelligence (EAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018, 2827–2835.
Cui, L.; Su, X.; Zhou, Y.; and Zhang, L. 2020. ClusterGrad:
Adaptive Gradient Compression by Clustering in Federated
Learning. In IEEE Global Communications Conference,
GLOBECOM 2020, Virtual Event, Taiwan, December 7-11,
2020, 1–7. IEEE.
Dryden, N.; Moon, T.; Jacobs, S. A.; and Essen, B. V.
2016. Communication Quantization for Data-Parallel Train-
ing of Deep Neural Networks. In 2nd Workshop on Ma-
chine Learning in HPC Environments, MLHPC@SC, Salt
Lake City, UT, USA, November 14, 2016, 1–8.

Goga, O.; and Teixeira, R. 2012. Speed Measurements of
Residential Internet Access. In Passive and Active Measure-
ment - 13th International Conference, PAM 2012, Vienna,
Austria, March 12-14th, 2012. Proceedings, volume 7192
of Lecture Notes in Computer Science, 168–178. Springer.
Golomb, S. W. 1966. Run-length encodings. IEEE Transac-
tions on Information Theory, 12(3): 399–401.
He, K.; Zhang, X.; Ren, S.; and et al. 2016. Deep Resid-
ual Learning for Image Recognition. In 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, 770–778.
IEEE Computer Society.
Hu, Z.; Zou, X.; Xia, W.; and et al. 2020. Delta-DNN: Effi-
ciently Compressing Deep Neural Networks via Exploiting
Floats Similarity. In ICPP 2020: 49th International Confer-
ence on Parallel Processing, Edmonton, AB, Canada, Au-
gust 17-20, 2020, 40:1–40:12. ACM.
Kairouz, P.; McMahan, H. B.; Avent, B.; ; and et al.
2019. Advances and Open Problems in Federated Learning.
arXiv:1912.04977.
Karimireddy, S. P.; Rebjock, Q.; Stich, S. U.; and et al. 2019.
Error Feedback Fixes SignSGD and other Gradient Com-
pression Schemes. In ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of Ma-
chine Learning Research, 3252–3261. PMLR.
Kingma, D. P.; and Ba, J. 2015. Adam: A Method for
Stochastic Optimization. In 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings.
Konecný, J.; McMahan, H.; Yu, F.; and et al. 2016a. Fed-
erated Learning: Strategies for Improving Communication
Efficiency. arXiv:1610.05492.
Konecný, J.; McMahan, H. B.; Ramage, D.; and Richtárik, P.
2016b. Federated Optimization: Distributed Machine Learn-
ing for On-Device Intelligence. arXiv:1610.02527.
Krizhevsky, A.; and Hinton, G. 2009. Learning multiple lay-
ers of features from tiny images. Technical report, Univer-
sity of Toronto, Toronto, Ontario.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
ageNet Classification with Deep Convolutional Neural Net-
works. In NeurIPS 2012. Proceedings of a meeting held
December 3-6, 2012, Lake Tahoe, Nevada, United States,
1106–1114.
LeCun, Y. 1998. The MNIST Database of Handwritten Dig-
its. http://yann.lecun.com/exdb/MNIST/. Accessed: 1998.
Li, T.; Sanjabi, M.; Beirami, A.; and et al. 2020. Fair Re-
source Allocation in Federated Learning. In Proceedings of
ICLR’20, Addis Ababa, Ethiopia, April 2020.
Lin, Y.; Han, S.; Mao, H.; and et al. 2018. Deep Gradient
Compression: Reducing the Communication Bandwidth for
Distributed Training. In Proceedings of ICLR’18, Vancou-
ver, Canada, April 2018.
Liu, F.; Wu, X.; Ge, S.; and et al. 2020a. Federated Learn-
ing for Vision-and-Language Grounding Problems. In Pro-
ceedings of AAAI’20, New York, NY, February, 2020, 11572–
11579.

4261

Liu, Y.; Huang, A.; Luo, Y.; and et al. 2020b. FedVision: An
Online Visual Object Detection Platform Powered by Fed-
erated Learning. In Proceedings of AAAI’20, New York, NY,
February, 2020, 13172–13179.
McMahan, B.; Moore, E.; Ramage, D.; and et al. 2017.
Communication-Efficient Learning of Deep Networks from
Decentralized Data. In Proceedings of AISTATS’17, Fort
Lauderdale, FL, April 2017, volume 54, 1273–1282.
Ng, K.; Chen, Z.; Liu, Z.; and et al. 2020. A Multi-player
Game for Studying Federated Learning Incentive Schemes.
In Proceedings of IJCAI’20, Yokohama, Japan, January
2021, 5279–5281.
Sattler, F.; Wiedemann, S.; Müller, K.; and et al. 2019.
Sparse Binary Compression: Towards Distributed Deep
Learning with minimal Communication. In Proceedings of
IJCNN’19, Budapest, Hungary, July 2019, 1–8.
Sattler, F.; Wiedemann, S.; Müller, K.; and et al. 2020.
Robust and Communication-Efficient Federated Learning
From Non-i.i.d. Data. IEEE Transactions on Neural Net-
works and Learning Systems, 31(9): 3400–3413.
Seide, F.; Fu, H.; Droppo, J.; and et al. 2014. 1-bit stochas-
tic gradient descent and its application to data-parallel dis-
tributed training of speech DNNs. In Proceedings of INTER-
SPEECH’15, Singapore, September 2014.
Simonyan, K.; and Zisserman, A. 2015. Very Deep Convo-
lutional Networks for Large-Scale Image Recognition. In
3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Confer-
ence Track Proceedings.
Smith, V.; Chiang, C.-K.; Sanjabi, M.; and Talwalkar, A. S.
2017. Federated multi-task learning. In NeurIPS 2017, Long
Beach, CA, December 2017, 4424–4434.
Stich, S. U.; Cordonnier, J.; and Jaggi, M. 2018. Sparsified
SGD with Memory. In NeurIPS 2018, December 3-8, 2018,
Montréal, Canada, 4452–4463.
Strom, N. 2015. Scalable distributed DNN training us-
ing commodity GPU cloud computing. In Proceedings of
INTERSPEECH’15, Dresden, Germany, September, 2015,
1488–1492.
Szegedy, C.; Liu, W.; Jia, Y.; and et al. 2015. Going deeper
with convolutions. In IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2015, Boston, MA, USA,
June 7-12, 2015, 1–9.
Wei, X.; Li, Q.; Liu, Y.; and et al. 2019. Multi-Agent Visu-
alization for Explaining Federated Learning. In Proceedings
of IJCAI’19, Macao, China, August 2019, 6572–6574.
Wen, W.; Xu, C.; Yan, F.; and et al. 2017. TernGrad: Ternary
Gradients to Reduce Communication in Distributed Deep
Learning. In Proceedings of NIPS’17, Long Beach, CA, De-
cember 2017, 1509–1519.
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-MNIST:
a Novel Image Dataset for Benchmarking Machine Learning
Algorithms. arXiv:1708.07747. .
Zhang, F.; Zhai, J.; Shen, X.; and et al. 2021a. TADOC: Text
analytics directly on compression. VLDB J., 30(2): 163–188.

Zhang, F.; Zhai, J.; Shen, X.; and et al. 2022. POCLib: A
High-Performance Framework for Enabling Near Orthogo-
nal Processing on Compression. IEEE Trans. Parallel Dis-
tributed Syst., 33(2): 459–475.
Zhang, S.; Wu, D.; , H.; and et al. 2021b. QD-Compressor:
a Quantization-based Delta Compression Framework for
Deep Neural Networks. In 39th IEEE International Confer-
ence on Computer Design, ICCD 2021, Virtual Conferenc,
October 24-27, 2021. IEEE.
Zhang, X.; Zhu, X.; Wang, J.; and et al. 2020. Federated
learning with adaptive communication compression under
dynamic bandwidth and unreliable networks. Information
Sciences, 540: 242–262.
Zheng, S.; Huang, Z.; and Kwok, J. T. 2019.
Communication-Efficient Distributed Blockwise Mo-
mentum SGD with Error-Feedback. In NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, 11446–
11456.
Zheng, W.; Yan, L.; Gou, C.; and et al. 2020. Federated
Meta-Learning for Fraudulent Credit Card Detection. In
Proceedings of IJCAI’20, Yokohama, Japan, January 2021,
4654–4660.

4262

