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Abstract

Cross-Lingual Information Retrieval (CLIR) aims to
rank the documents written in a language different
from the user’s query. The intrinsic gap between dif-
ferent languages is an essential challenge for CLIR.
In this paper, we introduce the multilingual knowledge
graph (KG) to the CLIR task due to the sufficient in-
formation of entities in multiple languages. It is re-
garded as a “silver bullet” to simultaneously perform
explicit alignment between queries and documents and
also broaden the representations of queries. And we pro-
pose a model named CLIR with hierarchical knowledge
enhancement (HIKE) for our task. The proposed model
encodes the textual information in queries, documents
and the KG with multilingual BERT, and incorporates
the KG information in the query-document matching
process with a hierarchical information fusion mech-
anism. Particularly, HIKE first integrates the entities
and their neighborhood in KG into query representa-
tions with a knowledge-level fusion, then combines the
knowledge from both source and target languages to
further mitigate the linguistic gap with a language-level
fusion. Finally, experimental results demonstrate that
HIKE achieves substantial improvements over state-of-
the-art competitors.

Introduction
The escalation of globalization burgeons the great demand
for Cross-Lingual Information Retrieval (CLIR), which has
broad applications such as cross-border e-commerce, cross-
lingual question answering, and so on (Li et al. 2020;
Rücklé, Swarnkar, and Gurevych 2019; Xu et al. 2021). In-
formally, given a query in one language, CLIR is a docu-
ment retrieval task that aims to rank the candidate documents
in another language according to the relevance between the
search query and the documents.
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Most existing solutions to tackle the CLIR task are built
upon machine translation (Dwivedi and Chandra 2016) sys-
tems (also known as MT systems). One technical route is
to translate either the query or the document to the same
language as the other side (McCarley 1999; Aljlayl and
Frieder 2001; Picchi and Peters 1998; Croft, Turtle, and
Lewis 1991). The other is to translate both the query and
the document to the same intermediate language (Kishida
and Kando 2003), e.g. English. After aligning the language
of the query and documents, monolingual retrieval is per-
formed to accomplish the task. Hence, the performance of
the MT systems and the error accumulations may render
them inefficient in CLIR.

Recent studies strive to model CLIR with deep neural net-
works that encode both query and document into a shared
space rather than using MT systems (Zhang et al. 2019;
Sasaki et al. 2018; Hui et al. 2018a; Li et al. 2020). Though
these approaches achieve some remarkable successes, the in-
trinsic differences between different languages still exist due
to the implicit alignment of these methods. Meanwhile, the
query is not very long, leading the lack of information while
matching with candidate documents.

To tackle these issues, we aim to find a “silver bul-
let” to simultaneously perform explicit alignment between
queries and documents and broaden the information of
queries. The multilingual knowledge graph (KG), e.g. Wiki-
data (Vrandečić and Krötzsch 2014), is our answer. As a rep-
resentative multilingual KG, Wikidata1 includes more than
94 million entities and 2 thousand kinds of relations, and
most of the entities in Wikidata have multilingual aligned
names and descriptions2. With such an external source of
knowledge, we can build an explicit bridge between the
source language and target language on the premise of the
given query information. For example, Figure 1 exhibits a
query “新冠病毒” in Chinese (“COVID-19” in English)

1https://www.wikidata.org/wiki/Wikidata:Main Page
2More than 260 languages are supported now.
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Figure 1: A toy example for utilizing the multilingual KG
for CLIR. The query is in Chinese and the documents are
in English. In the query, we give an English translation for
better understanding. The entities are denoted in circles. The
dotted black line presents the descriptions of an entity. The
solid black arrow presents relations between entities. The
solid blue arrow shows the related entity of the given query.
The hollow arrow presents the documents of the query. The
entities and corresponding descriptions in KG are bilingual.

and candidate documents in English. Through the multilin-
gual KG, we could link “新冠病毒” to its aligned entity in
English, i.e. “COVID-19”, and then extend to some related
neighbors, such as “Fever”, “SARS-CoV-2” and “Oxygen
Therapy”. Both the aligned entity and the local neighbor-
hood might contribute to extend the insufficient query and
fill in the linguistic gap between the query and documents.

Along this line, we adopt the multilingual KG as an ex-
ternal source to facilitate CLIR and propose a HIerarchical
Knowledge Enhancement (HIKE for short) mechanism to
fully integrate the relevant knowledge. HIKE establishes a
link between queries and multilingual KG through the en-
tities mentioned in queries, and makes full use of the se-
mantic information of entities and their neighborhood in KG
with a hierarchical information fusion mechanism. Specifi-
cally, a knowledge-level fusion integrates the information in
each individual language in the KG, and a language-level fu-
sion combines the integrated information from different lan-
guages. The multilingual KG provides valuable information,
which helps to reduce the disparity between different lan-
guages and is beneficial to the matching process over queries
and documents.

To summarize, the contributions are as follows.

• We adopt the external multilingual KG not only as an

enhancement for sparse queries but also as an explicit
bridge mitigating the gap between the query and the doc-
ument in CLIR. To the best of our knowledge, this is
the first work that utilizes multilingual KG for the neu-
ral CLIR task.

• We propose HIKE that makes full use of the entities men-
tioned in queries as well as the local neighborhoods in the
multilingual KG for improving the performance in CLIR.
HIKE contains a hierarchical information fusion mecha-
nism to resolve the sparsity in queries and perform easier
matching over the query-document pairs.

• Extensive experiments on a number of benchmark
datasets in four languages (English, Spanish, French,
Chinese) validate the effectiveness of HIKE against state-
of-the-art baselines.

Related Work
Current information retrieval models for cross-lingual tasks
can be categorized into two groups: (i) translation-based
approaches (Nie 2010; Zbib et al. 2019) and (ii) semantic
alignment approaches (Bai et al. 2010; Sokolov et al. 2013).

Early works mainly focus on translation-based models.
One way is to translate queries to the target language of doc-
uments (Oard, He, and Wang 2008), or to translate the doc-
uments or corpus to the same language as queries (Miller,
Leek, and Schwartz 1999; Xu and Weischedel 2000). The
other is to translate both queries and documents to the same
intermediate language, e.g. English (Kishida and Kando
2003). In both cases, they aim to simplify the process and
use the monolingual information retrieval methods to solve
the CLIR problem.

Recently, with the development of deep neural networks,
semantic alignment approaches, which directly tackle the
CLIR tasks without the translation process, have gained
much attention. These methods align queries and docu-
ments into the same space with probabilistic or neural net-
work methods and perform query-document matching in
the aligned space. Sokolov et al. (2013) proposed a method
about learning bilingual n-gram correspondences from rel-
evance rankings. Sasaki et al. (2018) presented a simple
yet effective method using shared representations across
CLIR models trained in different language pairs. The re-
lease of BERT (Devlin et al. 2019) leads to breakthroughs
in various NLP tasks (Jiang et al. 2020), including docu-
ment ranking tasks. Thus Contextualized Embeddings for
Document Ranking (CEDR) (MacAvaney et al. 2019) is an
effective method for using BERT to enhance the current
prevalent neural ranking models, such as KNRM (Xiong
et al. 2017b), PACRR (Hui et al. 2018b) and DRMM (Guo
et al. 2016). Sun and Duh (2020) utilized a multilingual ver-
sion of BERT (a.k.a multilingual BERT or mBERT) to con-
duct the CLIR task. These BERT-based neural ranking mod-
els achieve the state-of-the-art results compared with other
models.

Besides, due to the fast-growing scale of KGs such
as Wikidata (Vrandečić and Krötzsch 2014) and DBpe-
dia (Auer et al. 2007), some researches focus on using high-
quality KGs as extra knowledge to perform the information
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retrieval task. Xiong et al. (2017a) presented a word-entity
duet framework for utilizing KGs in ad-hoc retrieval. Entity-
Duet Neural Ranking Model (EDRM) (Liu et al. 2018),
which introduces KGs to neural search systems, represents
queries and documents by their word and entity annotations.
Despite the popularity of KG for information retrieval, the
works on the topic of KG for CLIR are rarely found. Zhang,
Färber, and Rettinger (2016) introduced KG to CLIR sys-
tems using the standard similarity measures for document
ranking. However, this work does not use neural network
models. To the best of our knowledge, our work is the first
work that incorporates multilingual KG information for the
neural CLIR task.

Methodology
In this section, we illustrate the overall framework of our
HIKE model, including the model architecture and the de-
tailed description of model components.

Notations
CLIR is a retrieval task in which search queries and can-
didate documents are written in different languages. HIKE
establishes a connection between CLIR and the multilingual
KG via the entities mentioned in queries, and leverage the
KG information through these entities and their local neigh-
borhood in KG. Specifically, for each entity, we obtain the
following information from the multilingual KG: (i) entity
label3, (ii) entity description, (iii) labels of neighboring enti-
ties, and (iv) descriptions of neighboring entities. It is worth
noting that all the information in the KG is multilingual, and
the information in different languages is aligned. We lever-
age the above information to facilitate the CLIR task. Given
a query q and a document d. We present an entity eq ∈ E and
the i-th neighboring entity nei ∈ E , where E is the entity set
in KG. Both the entity and neighboring entities have two
information for incorporating: labels and descriptions. Fur-
thermore, for a specific bilingual information retrieval task,
the label and description of eq can be described as lreq and
preq , respectively. The label and the description of nei can
be descried as lrnei

and prnei
, where r ∈ {s, t} indicates the

source language or target language. All these information,
including q, d, lreq , preq , lrnei

and prnei
, is composed of a se-

quence of tokens.

Model Architecture
HIKE incorporates the multilingual semantic information
of the entities and their local neighborhoods from KG into
the current CLIR model. The overall architecture of HIKE
is shown in Figure 2. HIKE consists of three modules:
an encoder module, a hierarchical information fusion mod-
ule and a query-document matching module. Specifically,
in the encoder module, HIKE utilizes multilingual BERT
to embed the queries, documents, and semantic informa-
tion from KG into low-dimensional vectors. Thus the en-

3In some large-scale KGs like Wikidata (Vrandečić and
Krötzsch 2014) and DBpedia (Auer et al. 2007), the name of an
entity is denoted as its label.

coder outputs the embeddings to the hierarchical informa-
tion fusion module, and the latter combines the information
from KG into queries and expedites the matching with doc-
uments. Particularly, the knowledge-level (first-level) fusion
integrates the information in KG, using the multi-head at-
tention mechanism (Vaswani et al. 2017). We use two in-
dividual knowledge-level fusion modules to extract features
from source and target languages. And then, the language-
level (second-level) fusion integrates two representations of
an entity in source and target languages through a multi-
layer perceptron. After the hierarchical information fusion
mechanisms, we utilize a matching model to get the rel-
evance score of the query-document pair. The higher the
score, the more relevant the query and the document are.

Encoder
The encoder aims to embed the tokens from queries, doc-
uments, entities and neighboring entities. It consists of
two parts: Query and Document Duet Encoder (QD-Duet-
Encoder) and Knowledge Encoder (K-Encoder). QD-Duet-
Encoder embeds a query-document pair to a d-dimensional
vector. And K-Encoder transforms the label and description
of an entity into another d-dimension vector.
QD-Duet-Encoder concatenates the tokens from queries
and documents into one sequence, using [CLS] and [SEP]
as meta-tokens. [CLS] is a special symbol added in front
of every input example, and [SEP] is a special separator to-
ken (Devlin et al. 2019). And then the encoder sums the to-
ken embedding, segment embedding, positional embedding
for each token to get the input embedding and computes the
output embedding that represents the semantic and match-
ing information of a query-document pair. Embedding query
and document together can make the ranking model benefit
from deep semantic information from BERT in addition to
individual contextualized token matching (MacAvaney et al.
2019). For a given query q and document d, we have an out-
put from QD-Duet-Encoder as shown in Equation (1). vqd is
the [CLS] embedding of the output.

vqd = QD-Duet-Encoder({[CLS], q, [SEP], d}), (1)

where QD-Duet-Encoder(·) is a multilingual BERT model4
and {·, ·} means concatenating two sequences of tokens to
one sequence.
K-Encoder aims to embed the knowledge information from
entities or neighboring entities in two languages to a fea-
ture vector. Inspired by the advantages of embedding the
query and document together, we use [CLS] and [SEP]
to concatenate the label and the description of an entity
to obtain the embedding. Suppose there are k neighbor-
ing entities, we denote the set of neighboring entity la-
bels as N r

l = {lrne1
, lrne2

, · · · , lrnek
} and the descriptions as

N r
p = {prne1

, prne2
, · · · , prnek

}. All these entities are fed into
K-Encoder to compute a feature embedding of the entity as

vr
eq = K-Encoder({[CLS], lreq , [SEP], preq}),

vr
nei

= K-Encoder({[CLS], lrnei
, [SEP], prnei

}),
(2)

4We used BERT-base, multilingual cased.
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Figure 2: The overall framework of HIKE. The left part is the general architecture, and the right part is the detailed illustration.

where i = 1, 2, · · · , k. K-Encoder(·) is also a multilingual
BERT. r ∈ {s, t} denotes that the parameter is for source
and target languages, respectively. We sort the neighboring
entities in descending order according to their relevance to
the central entity and select top k neighboring entities to
obtain vr

nei
, where k is a hyper-parameter. Specifically, we

first run the popular KG embedding model TransE (Bor-
des et al. 2013) to get the embeddings of entities, and then
calculate the cosine similarity between two entities as the
relevance score. vr

eq and vr
nei

are the [CLS] embedding
of the entity and the i-th neighboring entity, respectively.
The set of feature vectors of neighboring entities is N r =
{vr

ne1
,vr

ne2
, · · · ,vr

nek
}. vqd, vr

eq and N r will be treated as
the inputs of the fusion module in the next subsection.

Hierarchical Information Fusion
In this section, we detail the hierarchical information fusion
module, which is a two-level fusion mechanism, comprising
knowledge-level fusion and language-level fusion.
Knowledge-Level Fusion contains two modules: a multi-
head self-attention mechanism and an information aggrega-
tor. With the help of both two modules, our model can learn
a wealth of similar semantic information among the entity,
neighboring entities and query-doc pair. In the self-attention
mechanism, vqd, vr

eq and N r are gathered together and fed
into the attention module to calculate the attention values.
The input matrix Er is denoted as:

Er = (vqd ⊙ vr
eq ⊙ vr

ne1
⊙ vr

ne2
⊙ · · · ⊙ vr

nek
), (3)

where ⊙ is an operation that stacks row vectors into a matrix.
Er contains the embeddings from query, document, en-

tity and the local neighborhood of the entity. To encapsu-
late more valuable information, we utilize the multi-head at-
tention mechanism (Vaswani et al. 2017) to learn better la-
tent semantic information. The self-attention module takes
three inputs (the query, the key, and the value), which are
denoted as Q, K, V ∈ R(2+k)×d (d is the embedding size)
respectively. To be specific, we only discuss the j-th head of
the multi-head attention mechanism. First, the self-attention
model uses each embedding in Er to get the query Qj ,
key Kj and value V j through a linear transformation layer.
Then the model goes on using each embedding in the query
to attend each embedding in the key through the scaled dot-
product attention mechanism (Vaswani et al. 2017), and gets
the attention score. Finally, the obtained attention score is
applied upon the value V j to calculate a new representation
of Att(Qj ,Kj ,V j), which is formulated as:

Att(Qj ,Kj ,V j) = softmax(
Qj · (Kj)T√

d
) · V j . (4)

Therefore, each row of Att(Qj ,Kj ,V j) is capable of in-
corporating the semantic information from the rows in V j .
Furthermore, a layer normalization operation (Ba, Kiros,
and Hinton 2016) is applied to the output of attention
model to obtain the representation of the j-th head Hj =
LayerNorm(Att(Qj ,Kj ,V j)). Next, we pack the multi-
head information using the following operation:

Multi-Head(Q,K,V ) = (H1||H2|| · · · ||Hm)WH , (5)
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where WH ∈ Rmd×d is a parameter matrix and m is the
number of heads.

Accordingly, we obtain the representation after the multi-
head attention M r = (vqd

′ ⊙ vr
eq

′ ⊙ vr
ne1

′ ⊙ vr
ne2

′ ⊙
· · · ⊙ vr

nek

′) = Multi-Head(Q,K,V ) ∈ R(2+k)×d, where
r ∈ {s, t} denotes that the parameter is for source and target
languages respectively. vqd

′, vr
eq

′ and vr
nei

′(i = 1, 2, . . . , k)
represent the output vectors of multi-head self attention. Fi-
nally, we use an information aggregator which consists of a
linear transformation layer as Equation (6) to compute the
final representation of the knowledge-level features.

erkg = Tanh(WK · vec(M r) + bK), (6)

where vec(·) is a vectorization function that concatenates
each row of a matrix as a long vector. WK ∈ Rd×(2+k)d

is a parameter matrix and bK is a d-dimension vector. erkg
incorporates the deep semantic information from the KG.
Language-Level Fusion combines the query-document pair
information with eskg and etkg , which are obtained from the
knowledge-level fusion. We use the vqd as guidance in the
fusion processing, which is donated in blue arrow in Fig-
ure 2. And then, these embeddings are combined by a lin-
ear transformation layer which uses Tanh as the activation
function to generate a unified representation as:

ekglang = Tanh[WL(vqd||eskg||etkg) + bL], (7)

where s and t represent the source and target languages.
WL ∈ Rd×3d and bL ∈ Rd are parameters. ekglang is the
unified embedding that incorporates the information from
queries, documents, and the multilingual KG.

Matching Function
Finally, HIKE uses the matching function to obtain the score
of a query-document pair. Particularly, vqd and ekglang will
be concatenated and fed into another linear layer to obtain
the relevant ranking score of the query-document pair:

f(q, d) = Softmax[WS(vqd||ekglang) + bS ], (8)

where f(q, d) is the ranking score between the query and
document. WS ∈ R1×2d and bS ∈ R1 are parameters. And
Softmax is an activate function to convert the results into
the probability over different classes.

In the training stage, we use standard pairwise hinge loss
to train the model as shown in Equation (9).

L =
∑

d∈D+
q

∑
d′∈D−

q

[1− f(q, d) + f(q, d′)]+. (9)

D+
q and D−

q are the set of relevant documents and irrelevant
documents of the query q , and [·]+ = max(0, ·).

Experiment Methodology
In this section, we describe the details of our experiments,
including the dataset, the multilingual KG, baselines, evalu-
ation metrics and implementation details.

Dataset
We evaluate the HIKE model in a public CLIR dataset
CLIRMatrix (Sun and Duh 2020). Specifically, we use the
MULTI-8 set in CLIRMatrix, in which queries and doc-
uments are jointly aligned in 8 different languages. The
dataset is mined from 49 million unique queries and 34 bil-
lion (query, document, relevance label) triplets. The rele-
vance label ∈ {0, 1, 2, 3, 4, 5, 6} indicates the relevance of
the query-document pair. The higher the value, the more rel-
evant the query-document pair is. In MULTI-8, queries re-
main the same no matter what the language of documents is.
For instance, three language pairs English-Spanish, English-
French and English-Chinese in MULTI-8 share the same
queries. Furthermore, we choose four widely used languages
in the world to conduct the bilingual information retrieval
tasks, including English (EN), French (FR), Spanish (ES)
and Chinese (ZH). Thus there are 12 language pairs in the
dataset for training, validation and testing. The training sets
of every language pair contain 10,000 queries, while the val-
idation and the test sets contain 1,000 queries. Meanwhile,
the number of candidate documents for each query is 100.
We use the test1 set in MULTI-8 as our test set to verify the
model performance.

As for knowledge graph, we use Wikidata (Vrandečić and
Krötzsch 2014), a multilingual KG with entities and rela-
tions in a multitude of languages. The related entities of
queries are annotated by mGENRE (Cao et al. 2021), a mul-
tilingual entity linking model which has a high accuracy of
entity linking on 105 languages. Table 1 shows the average
number of neighboring entities in each dataset.

EN-ES EN-FR EN-ZH ES-EN ES-FR ES-ZH
source language 7.11 6.53
target language 6.15 6.34 4.86 7.37 6.73 5.21

FR-EN FR-ES FR-ZH ZH-EN ZH-ES ZH-FR
source language 6.41 4.95
target language 7.11 6.19 4.93 7.02 6.13 6.33

Table 1: Average number of golden neighboring entities.
“Golden” means the neighboring entities have both the de-
scription and the label in a specific language of the queries.
The source language is on the left of the connector “-”, while
the target language is on the right.

Baselines
To demonstrate the effectiveness of our model, we compare
the performance with the following baselines:

• Vanilla BERT (MacAvaney et al. 2019; Sun and Duh
2020): a fine-tuned multilingual BERT model for CLIR.

• CEDR (MacAvaney et al. 2019): the contextualized em-
beddings for document ranking (CEDR) model. This
model can be applied to various popular neural rank-
ing models, including KNRM (Xiong et al. 2017b),
DRMM (Guo et al. 2016) and PACRR (Hui et al. 2018b),
to form CEDR-KNRM/DRMM/PACRR.
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Language PairMetrics
Models

Vanilla BERT CEDR-DRMM CEDR-KNRM CEDR-PACRR HIKE− HIKE

EN-ES
NDCG@1 75.82 73.55 75.40 77.28 80.05 83.81∗

NDCG@5 80.08 79.19 80.30 80.69 82.63 84.05∗

NDCG@10 83.36 82.55 83.47 83.42 85.14 86.18∗

EN-FR
NDCG@1 76.92 74.63 71.40 78.33 80.05 82.93∗

NDCG@5 78.99 78.27 78.53 80.90 81.21 83.43∗

NDCG@10 82.02 81.01 81.89 83.40 83.20 85.22∗

EN-ZH
NDCG@1 68.98 70.33 76.60 75.10 72.25 78.16∗

NDCG@5 78.30 78.13 81.35 79.92 78.90 81.86∗

NDCG@10 82.32 81.91 84.23 82.71 82.90 84.96∗

ES-EN
NDCG@1 74.88 70.73 74.05 74.55 76.38 80.13∗

NDCG@5 75.04 72.34 74.58 75.05 75.10 78.34∗

NDCG@10 76.09 74.60 75.99 76.44 76.20 78.61∗

ES-FR
NDCG@1 67.40 74.97 76.05 77.38 73.97 80.21∗

NDCG@5 72.86 74.65 76.75 76.73 75.18 78.97∗

NDCG@10 75.51 76.59 78.20 78.16 77.10 79.88∗

ES-ZH
NDCG@1 64.25 65.00 69.35 65.62 65.75 70.70∗

NDCG@5 69.82 68.69 73.16 73.58 70.71 74.75∗

NDCG@10 74.08 72.70 75.99 75.85 74.60 77.06∗

FR-EN
NDCG@1 71.15 71.28 70.52 76.90 76.23 81.03∗

NDCG@5 72.99 72.82 73.99 76.58 75.37 77.73∗

NDCG@10 75.46 75.14 75.58 78.03 76.78 78.72∗

FR-ES
NDCG@1 77.01 74.60 74.43 80.85 78.98 83.52∗

NDCG@5 78.18 76.67 77.22 78.89 79.70 80.57∗

NDCG@10 79.91 78.41 79.16 80.56 80.81 81.69∗

FR-ZH
NDCG@1 63.33 62.37 69.75 65.33 65.37 70.78∗

NDCG@5 71.73 70.65 73.86 67.82 72.34 74.42∗

NDCG@10 75.92 74.49 76.89 74.79 76.16 77.47∗

ZH-EN
NDCG@1 56.63 62.83 60.32 61.53 60.45 68.52∗

NDCG@5 61.69 64.71 64.61 64.53 63.89 68.43∗

NDCG@10 64.79 66.99 67.03 66.57 66.43 69.72∗

ZH-ES
NDCG@1 54.03 59.95 61.55 60.45 63.33 67.88∗

NDCG@5 61.64 64.53 66.47 65.61 66.16 68.95∗

NDCG@10 66.20 67.99 69.30 68.55 69.19 71.09∗

ZH-FR
NDCG@1 59.05 53.23 59.97 58.85 59.47 65.40∗

NDCG@5 63.40 61.68 64.81 63.91 64.84 68.07∗

NDCG@10 66.97 65.71 68.34 67.27 68.26 70.51∗

Table 2: NDCG values of baselines and our model. Numbers in the table are in percentages. * marks statistically significant
improvements (t-test with p-value < 0.05) compared with the best baseline.

• HIKE−: A variant of HIKE, which concatenates the KG
information with the query directly. The difference be-
tween HIKE− and HIKE is that HIKE− does not use the
hierarchical information fusion mechanism.

Evaluation Metrics
Normalized Discounted Cumulative Gain (NDCG) is
adopted for evaluation. And we choose NDCG@1,
NDCG@5 and NDCG@10 (only evaluate the top 1, 5 and
10 returned documents) as the metrics in all language pairs.

Implementation Details
In the training stage, the number of heads for the multi-head
attention mechanism in knowledge-level fusion is set to 6. In
order to reduce the GPU memory and training time, we save
the embeddings of entity information before training. The
number of all entities we extracted from KG is 376,785. And

we only fine-tune the BERT model to obtain textual repre-
sentations. The learning rates are divided into two parts: the
BERT lr1 and the other modules lr2. And we set lr1 to 1e-5
and lr2 to 1e-3. We set the number of neighboring entities in
KG as 3. For those entities without enough neighboring en-
tities, we copy the existing neighboring entities instead. We
randomly sample 1600 query-document pairs as our training
data per epoch. The maximum training epochs are set to 15.

Evaluation Results
We conduct three experiments to demonstrate the effective-
ness of the HIKE model.

Ranking Accuracy
Table 2 summarizes the evaluation results of different cross-
lingual retrieval models. From Table 2, we have the fol-
lowing findings. (i) The results indicate that HIKE signifi-
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Model EN ES FR ZH
ES FR ZH EN FR ZH EN ES ZH EN ES FR

HIKE 86.18 85.22 85.30 78.61 79.88 77.06 78.72 81.69 77.47 69.72 71.09 70.51
HIKE w/o descriptions 85.39 84.29 84.05 77.27 79.09 76.35 77.79 80.95 76.41 68.69 70.31 69.51
HIKE w/o labels 85.47 84.86 84.81 78.34 79.57 76.38 78.58 81.36 76.71 69.29 70.59 70.34
HIKE w/o neighboring entities 85.33 84.47 84.58 78.03 78.17 76.65 78.15 80.90 76.55 68.65 70.23 69.09
HIKE w/o target language information 84.68 83.98 83.84 77.70 78.39 76.22 77.79 81.18 76.25 68.59 69.94 69.09

Table 3: NDCG@10 of models in ablation study.

Figure 3: The change of NDCG@10 with the number of neighboring entities increasing.

cantly and consistently outperforms all the baseline models
on 12 language pairs w.r.t all metrics, which demonstrates
the effectiveness of the proposed model HIKE. (ii) Compar-
ing with Vanilla BERT, the improvement of HIKE− embod-
ies the usefulness and importance of the KG. The external
KG makes up for the deficiency of queries and provides
accurate information while ranking the documents. More-
over, the results of HIKE perform better than HIKE−, which
shows the advantages of our hierarchical fusion mechanism.
(iii) Specifically, HIKE achieves substantial improvements
of both NDCG@1 and NDCG@5 on most datasets compar-
ing with other models, which indicates the knowledge in-
formation learned from the entities and neighboring entities
is highly related to the task. This result shows that HIKE is
capable of ranking the most relevant documents to the top.

All these findings prove that KG information and the hier-
archical information fusion can facilitate the CLIR task, and
narrow the gap between different languages.

Ablation Study
In this section, we conduct the ablation study to testify the
effectiveness of different information used in HIKE. In ad-
dition, we do the experiments as: (i) Remove the labels or
descriptions of entities and neighboring entities to verify the
effects of them; (ii) Remove the information of neighboring
entities to study the influence of neighboring entities; (iii)
Remove the information of target language to learn the im-
portance of them in document ranking.

The results are shown in Table 3. From the results, we
observe that (i) HIKE obtains the best ranking performance
than other incomplete models, indicating that every part of
our model makes contributions to the ranking performance.
(ii) The model without entity labels outperforms the one
without entity description. We conjecture the reason lies in
that the information from entity descriptions is more abun-
dant than that from the labels, which is able to provide more
beneficial information for the CLIR task. (iii) The model

without target language information performs worst in our
ablation test. It demonstrates that target language informa-
tion plays a significant role in the CLIR task, which estab-
lishes an explicit connection between the query in the source
language and the documents in the target language.

The Effect of Neighboring Entity Number
In this subsection, we explore the influence of the number
of neighboring entities. We set the number of neighboring
entities from 1 to 7 (step-size is 2) . Figure 3 demonstrates
the results, which are divided into four groups according to
the different source languages. Each group contains three
different target languages. From the figure, there exists an
optimal number of neighbors for each language pair. The
model performance first goes up as the number of neigh-
boring entities increases. After the optimal value, the per-
formance falls down. We conjecture the reason lies in that
models with small numbers of neighbors cannot take full
advantage of the local neighborhood information in KG, re-
sulting in weak NDCG@10 values. While large numbers of
neighboring entities may bring in some unrelated informa-
tion, leading to unsatisfactory results as well.

Conclusion
In this paper, we presented HIKE, a hierarchical knowledge-
enhanced model for the CLIR task. HIKE introduces exter-
nal multilingual KG into the CLIR task and is equipped with
a hierarchical information fusion mechanism to take full ad-
vantage of the KG information. Specifically, the knowledge-
level fusion integrates the KG information in each language.
And the language-level fusion combines the information
from both source and target languages. The multilingual KG
is capable of providing valuable information for the CLIR
task, which is beneficial to bridge the gap between queries
and documents in different languages. Finally, extensive ex-
periments on benchmark datasets clearly validated the supe-
riority of HIKE against various state-of-the-art baselines.
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