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Abstract
Maximum Inner Product Search (MIPS) plays an important
role in many applications ranging from information retrieval,
recommender systems to natural language processing and
machine learning. However, exhaustive MIPS is often ex-
pensive and impractical when there are a large number of
candidate items. The state-of-the-art approximated MIPS is
product quantization with a score-aware loss, which weighs
more heavily on items with larger inner product scores. How-
ever, it is challenging to extend the score-aware loss for
additive quantization due to parallel-orthogonal decomposi-
tion of residual error. Learning additive quantization with re-
spect to this loss is important since additive quantization can
achieve a lower approximation error than product quantiza-
tion. To this end, we propose a quantization method called
Anisotropic Additive Quantization to combine the score-
aware anisotropic loss and additive quantization. To effi-
ciently update the codebooks in this algorithm, we develop
a new alternating optimization algorithm. The proposed al-
gorithm is extensively evaluated on three real-world datasets.
The experimental results show that it outperforms the state-
of-the-art baselines with respect to approximate search accu-
racy while guaranteeing a similar retrieval efficiency.

Introduction
Maximum Inner Product Search (MIPS) has wide applica-
bility in recommender systems, information retrieval, natu-
ral language processing and machine learning. For example,
the inner product has been widely used in recommender sys-
tems to estimate users’ preference for items (Krichene et al.
2018; Li et al. 2017; Xue et al. 2017; Koren, Bell, and Volin-
sky 2009; Cremonesi, Koren, and Turrin 2010), in informa-
tion retrieval to estimate the relevance between query and
response (Weston, Bengio, and Usunier 2010; Luan et al.
2021) and in natural language process to estimate the like-
lihood of the next word given the context (Vaswani et al.
2017; Zhang et al. 2018). Lately, MIPS has also been applied
for training tasks such as scalable gradient computation in
large output spaces (Yen et al. 2018), efficient sampling for
speeding up softmax computation (Mussmann and Ermon
2016) and sparse updates in end-to-end trainable memory
systems (Pritzel et al. 2017).

*Corresponding author
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

To define the MIPS problem, consider a large set S of
collecting candidate items, where S ⊂ Rd, and a given
query point q ∈ Rd. The goal is to search for x ∈ S which
maximizes (or approximately maximizes) the inner product
〈q,x〉. Formally, we are interested in efficiently computing

x∗ = arg max
x∈S
〈q,x〉 .

Exhaustively computing the exact inner product between
query and the set S is often expensive and even imprac-
tical when the cardinality of the set is large. Several tech-
niques have been proposed in the literature including hash-
ing (Chen et al. 2019; Neyshabur and Srebro 2015; Shrivas-
tava and Li 2014), graph-based search (Liu et al. 2020; Mo-
rozov and Babenko 2018), or quantization (Guo et al. 2020,
2016; Babenko and Lempitsky 2014; Ge et al. 2013) to solve
the approximate MIPS problem efficiently.

The quantization-based techniques have shown strong
performance. Particularly, in (Guo et al. 2020), the authors
proposed a new family of anisotropic loss functions for the
MIPS task called score-aware quantization loss, where is
armed with a weight function to weigh more heavily on
items with larger inner product scores a specific weight
function. Therefore, the anisotropic loss is considered to be
more suitable for the MIPS task so it is applied for learn-
ing product quantization. The product quantization with the
anisotropic loss has achieved state-of-the-art MIPS perfor-
mance. However, it has a lot of room for improvements
since additive quantization has a more strong representa-
tion capacity and has been empirically shown to remark-
ably outperform product quantization in approximation and
search accuracy. However, the codebooks in additive quan-
tization are more difficult to learn, particularly with the
anisotropic loss due to parallel-orthogonal decomposition
of residual error. Therefore, it is worth investigating how to
adapt anisotropic loss to additive quantization.

To this end, we propose Anisotropic Additive Quantiza-
tion to combine anisotropic loss and additive quantization.
To efficiently learn the codebooks, we develop a new al-
ternating optimization algorithm after analyzing the parallel
and orthogonal errors in detail. Finally, we conduct exten-
sive experiments on three real-world datasets. The results
show that the proposed method outperforms the state-of-the-
art baselines with respect to approximate search accuracy
while guaranteeing similar retrieval efficiency.
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To summarize, we deliver the following contributions:

• To the best of our knowledge, we adapt the anisotropic
loss for additive quantization for the first time, to pro-
mote the advancement of approximate MIPS.

• We develop a new alternating optimization algorithm,
such that the codebooks can be effectively updated and
the codes of the data can be fast computed.

• The proposed Anisotropic Additive Quantization algo-
rithm is comprehensively evaluated on three real-world
datasets, where the results demonstrate that Anisotropic
Additive Quantization outperforms the state-of-the-art
baselines.

The rest of this paper is organized as follows: In the next
part, the related works are discussed. In the preliminary sec-
tion, we introduce score-aware quantization loss as prelimi-
nary. Then, we propose Anisotropic Additive Quantization.
In the experiments part, we report our experiment results.
Finally, we conclude this paper in last part.

Related Works
The MIPS problem has been studied for more than a decade.
There is a large body of similarity search literature on max
inner product and nearest neighbor search about hashing
(Chen et al. 2019; Neyshabur and Srebro 2015; Shrivastava
and Li 2014), graph search (Liu et al. 2020; Morozov and
Babenko 2018; Kleinberg 2000) and quantization (Guo et al.
2020; Babenko and Lempitsky 2014), etc. Interested readers
could refer to the survey (Wang et al. 2015; Li et al. 2019).

There are two main tasks to develop an efficient MIPS
system, one task is to reduce the number of items that are
scored to identify the top result. This is typically done with
a space partitioning method.

One class of approaches to reducing the number of items
scored is space partitioning. These approaches partition the
space into different buckets. To perform MIPS in this set-
ting, we find the relevant buckets for a given query and
score only the items in these buckets. Examples of this ap-
proach include tree search methods and locality-sensitive
hashing. Tree search methods such as (Muja and Lowe 2014;
Dasgupta and Freund 2008) partition the space recursively,
forming a tree. Locality-sensitive hashing (Shrivastava and
Li 2014; Neyshabur and Srebro 2015; Indyk and Motwani
1998; Andoni et al. 2015) partitions the space using a
similarity-preserving hash function. There is also a class of
approaches based on graph search (Malkov and Yashunin
2018; Harwood and Drummond 2016). These methods work
by navigating a graph by greedily selecting the neighbor
with the highest dot product.

The other task is improving the rate at which items are
scored. This is typically done with quantization, which is
most relevant to our work. We will pay more attention to the
work related to quantization.

Quantization is widely used in state-of-the-art MIPS
systems with large-scale settings. Using the quantization
method, we can accomplish a more efficient calculation of
the inner product by looking up the table. The time com-
plexity required about a d-dimensional query vector with n

quantization points isO(dK +nM), where K is the size of
each quantization codebook and M is the number of code-
books. This is much faster than the O(nd) complexity re-
quired for exact computation. Besides, quantized datapoints
take up less space in memory or on disk. This further im-
proves the utilization of space.

Quantization-based methods usually derive multiple
codebooks by minimizing the loss function between data
points and the composition of codewords. It is possible
to composite these codewords by concatenation and addi-
tion, such that an exponentially large codebook can be gen-
erated. Product quantization (Jegou, Douze, and Schmid
2010), as one of the most representative works for quanti-
zation, decomposed the vector representation space into the
Cartesian product of subspaces. Optimized product quanti-
zation (Ge et al. 2013) jointly learned space decomposition
and subspace quantization. Composite Quantization (Zhang,
Du, and Wang 2014) and Additive Quantization (Babenko
and Lempitsky 2014) do not decompose space but directly
learned multiple codebooks in an iterative way. Besides,
there are some other quantization methods like random pro-
jections (Charikar 2002; Vempala 2005; Li and Li 2019), bi-
nary quantization (He, Wen, and Sun 2013; Erin Liong et al.
2015; Dai et al. 2017).

A large body of work (Guo et al. 2020; Martinez et al.
2018; Guo et al. 2016; May et al. 2019) is dedicated to im-
proving quantization technology to solve MIPS. Our work
is a further improvement of additive quantization (Babenko
and Lempitsky 2014) to make it more suitable for maximum
inner product search by combining the anisotropic loss pro-
posed in (Guo et al. 2020).

Preliminary
In this section, we introduce an important loss function
called score-aware quantization loss which was firstly pro-
posed in the ScaNN (Guo et al. 2020) and achieved supe-
rior performance in the maximum inner product search com-
pared to methods using reconstruction error.

Score-Aware Quantization Loss
We start considering the quantization objective of minimiz-
ing the expected total inner product quantization errors over
the query distribution:

Eq

n∑
i=1

(〈q,xi〉 − 〈q, x̃i〉)2 = Eq

n∑
i=1

〈q,xi − x̃i〉2 . (1)

It takes expectation over all possible combinations of dat-
apoints x and queries q, where x̃ is an approximation of x
by quantization. A natural idea is that not all pairs of (x, q)
are equally important. The approximation error on the pairs
which have a high inner product is far more important since
they are likely to be among the top-ranked pairs and can
greatly affect the search result, while for the pairs whose
inner product is low the approximation error matters much
less.

Based on the above observation, the formal loss function
is defined as the following:
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Definition 1. Given a datapoint xi, its quantization x̃i, and
a weight function w : R −→ R+ of the inner product score,
the score-aware quantization loss with respect to a query
distribution Q is defined as

l(xi, x̃i, w) = Eq∼Q[w(〈q,xi〉) 〈q,xi − x̃i〉2]. (2)
By defining the parallel residual error, it is the component

of the residual error parallel to the datapoint xi, which can
be computed as

r‖ (xi, x̃i) =
〈(xi − x̃i) ,xi〉xi

‖xi‖2
,

and orthogonal residual error which can be computed as
r⊥ (xi, x̃i) = (xi − x̃i)− r‖ (xi, x̃i) ,

under natural statistical assumptions about the query, in
(Guo et al. 2020), the authors have shown that the score-
aware quantization loss can be efficiently calculated by the
following theorem:
Theorem 1. Suppose we are given a datapoint xi, its quan-
tization x̃i, and a weight function w. Assuming that query
q is uniformly distributed in the d-dimensional unit sphere,
the score-aware quantization loss equals

l(xi, x̃i, w) = h‖(w, ‖xi‖)‖r‖(xi, x̃i)‖2

+ h⊥(w, ‖xi‖)‖r⊥(xi, x̃i)‖2

with h‖ and h⊥ defined as follows:

h‖ := (d− 1)

∫ π

0

w (‖xi‖ cos θ)
(
sind−2 θ − sind θ

)
dθ

h⊥ :=

∫ π

0

w (‖xi‖ cos θ) sind θdθ.

A simple and effective weighting function is w(t) =
I(t ≥ T ). This weight function only considers quantization
loss when the dot product is above a threshold T . In (Guo
et al. 2020), the authors have shown that with this weight-
ing function, the loss function will lead to an anisotropic
weighting that more greatly penalizes error parallel with the
datapoint than error orthogonal to the datapoint. Concretely,

h‖(w, ‖xi‖) ≥ h⊥(w, ‖xi‖). (3)
Thus, the score-aware quantization loss with the weighting
functionw(t) = I(t ≥ T ) is called anisotropic loss. We also
use this weighting function for our method.

Anisotropic Additive Quantization
The additive quantization assumes to use M codebooks,
C(1), · · · ,C(M), to approximate the data vector x with x̃,
which is defined as follows:

x̃ =

M∑
m=1

C
(m)
im(x).

where C(m) = [C
(m)
1 , . . . ,C

(m)
K ] ∈ Rd×K , im(x) returns

the index in the m-th codebook of the data x.
Next, using anisotropic loss function ` (xi, x̃i) =

hi,‖
∥∥r‖ (xi, x̃i)

∥∥2 + hi,⊥ ‖r⊥ (xi, x̃i)‖2 to obtain a new
objective function for additive quantization we call the
anisotropic additive quantization problem.

Definition 2. Given a dataset x1, x2, . . . , xn of points in
Rd, a number M of codebooks each with K d-dimensional
codewords, the anisotropic additive quantization problem is
to find the M codebooks that minimizes

min
C(1),...,C(M)

n∑
i=1

min
x̃i∈

∑M
m=1 C

(m)

im(xi)

hi,‖
∥∥r‖ (xi, x̃i)

∥∥2
+hi,⊥ ‖r⊥ (xi, x̃i)‖2 .

(4)

Optimization Procedure
We can represent each index im(xi) as a one-hot vector,
and concatenate these one-hot vectors in a specified or-
der to obtain the index vector bi = [b

(1)
i , · · · , b(M)

i ]> ∈
{0, 1}MK×1, where the k-th element b(m)

i,k of the vector b(m)
i

equals to 1 if im(xi) = k and 0 otherwise.
If we further concatenate the codebook matrix C(m) by

column to obtain the matrix C = [C(1), · · · ,C(M)] ∈
Rd×MK , we can explicitly formulate the objective loss eq
(4) as a function of our parameter vector Θ =

(
C, {bi}[n]

)
.

Concretely, we have the following proposition:

Proposition 1. The objective loss function eq (4) is equiva-
lent to

Loss(C, b) =
n∑
i=1

L(i) (C, bi) , (5)

with L(i)(C, bi) defined as follows:

L(i)(C, bi) = bi
>C>

(
hi,‖ − hi,⊥
‖xi‖2

xixi
> + hi,⊥I

)
Cbi

− 2hi,‖xi
>Cbi + hi,‖‖xi‖2.

(6)

Proof. Consider a single point xi with r‖ := r‖ (xi, x̃i) =
1
‖x‖2xix

>
i (xi − x̃i) and r⊥ := r⊥ (xi, x̃i) = xi−x̃i−r‖.

We have that

‖r⊥‖2 =
(
xi − x̃i − r‖

)> (
xi − x̃i − r‖

)
= ‖xi‖2 + ‖x̃i‖2 − 2x>i x̃i −

∥∥r‖∥∥2 , (7)

where we use the fact that xi − x̃i = r‖ + r⊥ and r‖ is
orthogonal to r⊥. We also have∥∥r‖∥∥2 =

1

‖xi‖4
(
xi (xi − x̃i)

>
xi

)> (
xi (xi − x̃i)

>
xi

)
=

1

‖xi‖4
x>i (xi − x̃i)x

>
i xi (xi − x̃i)

>
xi

=
1

‖xi‖2
x>i (xi − x̃i) (xi − x̃i)

>
xi

= ‖xi‖2 +
x̃>i xix

>
i x̃i

‖xi‖2
− 2x>i x̃i.

(8)
Combining equations (7) and (8), we have that
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L(i)(C, bi) : = hi,‖
∥∥r‖∥∥2 + hi,⊥ ‖r⊥‖2

= x̃>i

((
hi,‖ − hi,⊥

) xix>ı
‖xi‖2

+ hi,⊥I

)
x̃i

− 2hi,‖x
>
i x̃i + hi,‖ ‖xi‖

2
.

(9)
Combining above equation (9) and x̃i = Cbi, we get the

desired result.

Next, we develop an iterative algorithm to optimize the
anisotropic additive quantization problem. Similar to the
additive quantization algorithm (Babenko and Lempitsky
2014), our algorithm iterate between minimization over the
assignment b step and codebook C update step.

Update{bi}. It can be easily seen that bi, the index vec-
tor of xi, given C fixed, is independent to {bj}j 6=i, the opti-
mization problem is decomposed to n subproblems. To ob-
tain the assignment bi, we need to optimize

b∗i = arg min
bi

L(i)(C, bi). (10)

This involves a combinatorial optimization problem, which
suffers from high computational costs. Similar to (Zhang,
Du, and Wang 2014; Martinez et al. 2016), we use the alter-
native optimization technique to optimize it, and solve the
subvectors {b(m)

i }Mm=1 alternatively. Given {b(l)i }l 6=m fixed,
we update b(m)

i by exhaustively checking all the elements in
the codebook C(m), finding the element such that the objec-
tive value is minimized, and accordingly setting the corre-
sponding entry of b(m)

i to be 1 and all the others to be 0.
Update{C}. Fixing b, the codebook C is learned with

minimizing the equation (5).
C∗ = arg min

C
Loss(C, b).

This is a convex quadratic minimization problem. By setting

T =
∑
i

bi ⊗ Id

(
hi,⊥Id +

hi,‖ − hi,⊥
‖xi‖2

xix
>
i

)
b>i ⊗ Id

R =
∑
i

hi,‖ (bi ⊗ Id)xi,

where ⊗ denotes Kronecker product, Id is the d-
dimensional identity matrix, the closed-form solution can be
given as follows:

Vec(C) = T−1R,

where V ec(C) denotes the vectorization of the matrix C,
formed by stacking the columns of C into a single column
vector.

It is easy to observe that in the update C step, the storage
of matrix T requires O(M2K2d2) memory. It is difficult
to accept in high bits. However, higher bits tend to bring a
better quantization effect, so we propose another method of
updating the codebooks by using coordinate descent to al-
ternatively update each codeword in all codebooks. Specifi-
cally, we have the following theorem:

Theorem 2. Suppose all the index vectors b are fixed. By
setting

T k =
∑

i:bi,k=1

Hi, Rk =
∑

i:bi,k=1

(
hi,‖xi −HiSi,k

)
,

with Hi and Si,k defined as follows:

Hi =
hi,‖ − hi,⊥
‖xi‖2

xix
>
i + hi,⊥I

Si,k =
∑
j 6=k

bi,jCj ,
(11)

the update formula for codeword Ck can be given as fol-
lows:

Ck = T−1k Rk, ∀k ∈ {1, 2, . . . ,M ∗K}. (12)

When we are updating Ck, we consider the other Ci, i 6= k
as constants.

Proof. Ignoring the constant term hi,‖‖xi‖2 in equation (6),
we have

Li = b>i C
>HiCbi − 2hi,‖x

>
i Cbi.

Then,

∇Ck
Li = 2b2i,kHiCk+2bi,kHi

∑
j 6=k

bi,jCj−2hi,‖bi,kxi,

Note that here bi,k is only equal to 1 or 0 for all k ∈ [M ∗K],
Hi is defined in equation (11).

Since the equation (3) showed that h‖ ≥ h⊥, the
loss function is a convex quadratic function. Thus, let
∇Ck

Loss = 0, we have

Ck =

 ∑
i:bi,k=1

Hi

−1  ∑
i:bi,k=1

(
hi,‖xi −HiSi,k

)
= T−1k Rk,

where we use the fact that ∇Ck
Loss =

∑n
i=1∇Ck

Li, the
Loss is defined in equation (5) and Si,k is defined in equa-
tion (11).

Initialization. As the process of updating each codeword
requires other codewords, the initiation of the learning pro-
cess needs initial codebooks, unable to only set the assign-
ment variables randomly like AQ (Babenko and Lempit-
sky 2014). In most of the experiments below, we initial-
ize the learning process by selecting K random datapoints
or performing initialization by codebooks obtained within
anisotropic production quantization. (a PQ codeword can be
turned into a full-length AQ vector, by padding it with zero
chunks)

The complete optimization procedure is the following:

1. (Initialization Step) Select K random datapoints or
perform initialization by codebooks obtained within
anisotropic production quantization.
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2. (Partition Assignment Step) For each datapoint xi, up-
date bi by using the value of current codebooks that min-
imizes the anisotropic loss eq (10).

3. (Codebook Update Step) Optimize the loss function by
alternatively update each codeword eq (12) in all code-
books while keeping every codebooks partitions con-
stant.

4. Repeat Step 2 and Step 3 until convergence to a fixed
point or the maximum number of iteration is reached.

Complexity Analysis
The encoding time complexity of each data point is
O(IeMKd), where Ie is the maximum number of iteration
rounds in updating bi. In our experiments, Ie is set to 3.
The mean time complexity for updating each codeword re-
quires O(nd2/K + d3), The latter part is due to matrix in-
verse T−1k , the former part is other matrix computation re-
lated to Hi and Si,k. The complete update of codebooks
requires O(IcnMd2 + IcMKd3) time complexity, where
Ic is the maximum number of iteration rounds in updat-
ing C. The memory we need during all update processes
is O(d2 +MKd), which is nothing to reckon with.

Experiments
In this section, we conduct experiments on three real-world
datasets to show our method leads to improved performance
on maximum inner product search. Firstly, we will introduce
the three datasets in our experiments. After comparing loss
and relative error with ScaNN, we further combine the in-
verted indexing structure to investigate the performance and
efficiency of the proposed method. Finally, we conducted
experiments to compare with baselines.

All the quantization methods are implemented in Python
and all experiments are conducted in a Linux server with
3.00GHZ intel GPU and 300G main memory.

Datasets
We use three real-world datasets to evaluate our algorithm.
As maximum inner product search is often used in recom-
mender systems, two datasets we use, LastFM and EchoNest
are famous music recommendation datasets. In addition, we
also compare our algorithms on Glove1.2M, which is used
in ScaNN (Guo et al. 2020) for evaluation.

LastFM dataset collected 357, 847 items, 156, 122 users
scored on it. EchoNest dataset collected 260417 items,
766882 users scored on it. We use matrix decomposition
to train them into 32-dimensional embedding vectors as de-
scribed in (Lian et al. 2015), and 10, 000 users are randomly
selected as queries. The Glove1.2M is a collection of 1.2
million 100-dimensional word embeddings trained as de-
scribed in (Pennington, Socher, and Manning 2014). The
Glove dataset is meant to be used with a cosine distance sim-
ilarity metric. MIPS is equivalent to cosine similarity search
when all datapoints are equal-norm. Following (Guo et al.
2020), we adopt our technique to cosine similarity search by
unitnormalizing all datapoints on Glove1.2M.

Figure 1: Score-aware loss on LsatFM for the proposed
method and ScaNN with different code bit lengths and code-
books sizes.

Figure 2: The relative error of inner product estimation for
true Top-1 on LsatFM across multiple code bit lengths and
codebooks size settings.

Comparison with ScaNN
Loss and relative error We start by directly comparing
the score-aware loss between the proposed method and the
ScaNN on the same anisotropic quantization threshold in
LsatFM.

As the number of codebooks in product quantization must
divide the dimensionality of the data, in order to obtain as
many experimental results as possible, in this subsection
we apply matrix decomposition on LsatFM to obtain 100-
dimensional embedding vectors.

In Figure 1, we plot score-aware loss as a function of the
code length or codebooks size for the LsatFM. It can be seen
that for all code lengths and codebooks size, our method
score-aware loss is considerably lower than for the ScaNN.

Next we look at the accuracy of the estimated top-1 inner
product as measured by relative error | 〈q,x−x̃〉〈q,x〉 |. This is im-
portant in application scenarios where an accurate estimate
of 〈q,x〉 is needed, such as softmax approximation, where
the inner product values are often logits later used to com-
pute probabilities.

We see in Figure 2 that our method leads to smaller rel-
ative error overall bit settings and codebooks size. Given
these encouraging results, we further investigate the perfor-
mance and efficiency of the proposed method.

Combined with Inverted Indexing Structure As the
time complexity O(nM) of table lookup is related to n
when the number of data is large, it will suffer a large time
consumption, in order to improve the efficiency, we further
combine the inverted indexing structure (Jegou, Douze, and
Schmid 2010).
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Figure 3: Recall curves when returning 100 neighbors (Recall10@100) with varying the number of searched items.

It clusters the data first by the coarse quantizer so that
the query only needs to find some of the most relevant cen-
troids. It only takes a small amount of time O(Kvd) to find
the relevant centroids, which reduces the time complexity
to O(nqM) when calculating the inner product by using
lookup tables, where Kv is the number of centroids in the
coarse quantizer, nq is the number of items to search about
the specified query. Usually nq is much less than n. Thus,
combined with inverted indexing, the algorithm is more suit-
able for large-scale searches and can return more results
faster.

Under the inverted structure, the number of search items is
the main factor affecting the performance of the algorithm.
We investigate its effect in this subsection while further com-
paring it with ScaNN.

In this experiment, we set ground-truth to 10, and the eval-
uation criteria used is recall10@100 which indicates the por-
tion of the ground-truth being included in the top-100 re-
sults. Note that the 100 neighbors here are only selected ac-
cording to the ADC score (Jegou, Douze, and Schmid 2010),
if we need a higher recall, we can return more neighbors
according to the ADC score, then rerank the results by the
exact inner product.

In Figure 3, we can see that the proposed method outper-
forms ScaNN in all different search scales. Besides, we also
see that how to reasonably determine the number of items
to search, which will be used in the Comparison with Base-
lines.

Speed Benchmarks The efficiency of the algorithm is
crucial in the MIPS. In this subsection, we further investi-
gate the efficiency of the algorithm. For a fair comparison,
we use the same inverted indexing structure, and the same
ADC computation based on the inner product for ScaNN
(Guo et al. 2020).

In time complexity, the AQ algorithm takes more time to
build the lookup table than the PQ algorithm, but this is not
critical because their other query processes, such as finding
the coarse quantizer cluster centroids to search for, calcu-
lating the inner product by using lookup tables, and sorting
ADC scores, are the same. Our experiments also confirm it.

From the Figure 4, it can be seen that most of the ratios
are concentrated around 1 even at very high bits. The reason
why the ratio appears less than 1 is that the PQ algorithm

Figure 4: Search time ratio with varying search sizes for
different codes length M , codebooks size K on the Glove
dataset.

builds lookup tables on multiple subspaces, while the AQ
algorithm builds lookup tables only on a full d-dimensional
space, which has less expenditure other than computation.
It indicates that the two methods have similar search times,
while according to the Figure 3, the proposed method has a
better performance in terms of recall.

Comparison with Baselines
Baselines In this subsection, we introduce the baseline
methods for comparison. The compared algorithms are as
follows.

• ScaNN (Guo et al. 2020), is the state-of-the-art MIPS
quantization method. ScaNN and our method are com-
pared on the same number of codebooks, same number
of codewords, and same anisotropic quantization thresh-
old.

• SIMPLE-LSH (Neyshabur and Srebro 2015), is the
representative work of the MIPS hashing method, which
transforms the input vectors such that the MIPS problem
becomes equivalent to the L2NNS problem in the trans-
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Figure 5: Recall 1@T curve comparing with baselines on MIPS tasks.

formed space. The hash code length is set to the bits used
in quantization methods, which occupies the same stor-
age as quantization-based methods. We return the neigh-
bors based on the hamming distance, as described in the
(Neyshabur and Srebro 2015).

• ip-NSW (Morozov and Babenko 2018), is the represen-
tative work of the MIPS graph method, which solves the
MIPS problem with the usage of similarity graphs. We
used the author’s implementation and the recommended
parameters. In addition, for a reasonable comparison,
when constructing the graph, we set the number of edges
per vertex as the same as the number of codebooks in
quantization methods, the size of the dynamic candidate
list is set to 1024.

Settings In addition to the above descriptions, for the two
music dataset, we use 8 codebooks in quantization methods,
with anisotropic quantization threshold T set to 0.1 times the
mean norm of the datapoints on EchoNest and 0.05 times the
mean norm of the datapoints on LastFM. The Glove dataset
is consistent with ScaNN, using 50 codebooks with T set to
0.2. The number of codewords is set to 16 except for EchoN-
est, which is set to 128.

Results In terms of efficiency, due to the different imple-
mentation languages (e.g. C and C++ are more efficient than
Python.), the programmers’ skills (e.g. whether program-
mers use parallel computation mode), the characteristics of
different methods (e.g. SIMPLE-LSH needs to search all
datapoints, other methods only need to search partial dat-
apoints), a fair comparison of efficiency between different
methods is difficult to achieve. We compare only with the
ScaNN which is also a quantization method and is efficient.
In the Comparison with ScaNN part, we have conducted a
comprehensive efficiency comparison with ScaNN. The re-
sults are presented in Figure 4.

In terms of accuracy, we report the experiment by the re-
call@T measure, defined as a probability (computed over
a number of queries) that the set of T closest neighbors
returned by algorithms contains the true nearest neighbor.
We generate ground-truth results using brute force search
and compare the neighbors returned by each method against
ground-truth. The results are shown in the form of recall@T-
vs-log2(T ) curves.

From the recall curves Figure 5, it is clear that our
method outperforms existing graph and hashing methods.
Our method achieves similar results to ScaNN on the glove
dataset, but significantly outperforms ScaNN on the other
datasets. It shows that our algorithm returns more accurate
neighbors.

Conclusions
In this paper, we propose a quantization method called
Anisotropic Additive Quantization to handle fast inner prod-
uct search. We develop a new alternating optimization al-
gorithm, such that the codebooks can be effectively up-
dated and the codes of the data can be fast computed. Fi-
nally, we conducted extensive experiments on three real-
world datasets, investigating the relative error, recall, and ef-
ficiency of the proposed method. The results show that the
proposed method outperforms the state-of-the-art baselines
with respect to approximate search accuracy while guaran-
teeing similar retrieval efficiency.
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