
Forecasting Asset Dependencies to Reduce Portfolio Risk

Haoren Zhu,*1 Shih-Yang Liu,*1 Pengfei Zhao,†2 Yingying Chen,3 Dik Lun Lee 1

1Hong Kong University of Science and Technology,
2Beijing Normal University-Hong Kong Baptist University United International College,

3London School of Economics and Political Science,
{hzhual, sliuau, dlee}@cse.ust.hk, ericpfzhao@uic.edu.cn, y.chen233@lse.ac.uk

Abstract

Financial assets exhibit dependence structures, i.e., move-
ments of their prices or returns show various correlations.
Knowledge of assets’ price dependencies can help investors
create a diversified portfolio, which reduces portfolio risk due
to the high volatility of the financial market. Since asset de-
pendency changes with time in complex patterns, asset de-
pendency forecast is an essential problem in finance. In this
paper, we organize pairwise assets dependencies in an Asset
Dependency Matrix (ADM) and formulate the problem of as-
sets dependencies forecast to predict the future ADM given
a sequence of past ADMs. We propose a novel idea view-
ing a sequence of ADMs as a sequence of images to capture
the spatial and temporal dependencies among the assets. In-
spired by video prediction tasks, we develop a novel Asset
Dependency Neural Network (ADNN) to tackle the ADM pre-
diction problem. Experiments show that our proposed frame-
work consistently outperforms the baselines on both future
ADM prediction and portfolio risk reduction tasks.

Introduction
In financial market, it is well known that asset returns are
dependent on each other 1 , forming a complex dependence
structure among the assets (Elton and Gruber 1973; Ane and
Kharoubi 2003). For instance, stocks of the same industry
may move up or down together in response to market news,
and the price fluctuation in one industry at a particular time
may result in price fluctuation of its downstream industries
later. The dependency structure of a financial market is very
complex, and the ability to predict it will result in significant
financial advantages. For example, we can reduce portfolio
risk by investing in different classes of assets that are inde-
pendent or negatively correlated to each other. Asset depen-
dency can be measured in many ways, including the correla-
tion and covariance coefficients between two assets. Given a
group of assets, the pairwise coefficients between the assets
can be represented with a matrix, termed Asset Dependency

*These authors contributed equally.
†Corresponding author.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Financial assets may include stocks, securities, and deriva-
tives, etc. Further, for brevity, we use “asset dependence” to refer
to the dependence between the returns of two assets.

(a) Assets of same industry are posited together

(b) Assets are randomly posited

Figure 1: Correlation matrix of a number of assets.

Matrix (ADM). For example, if the correlation coefficient
is used to measure the dependency of two assets, ADM is
equivalent to the well-known correlation matrix.

Various statistical methods have been proposed for pre-
dicting future ADMs. A simple prediction model uses the
correlation matrix computed from the time window end-
ing at t as the predicted ADM for t′ > t. Later, improve-
ments that consider asset groups, financial indexes, and beta
estimations have been proposed (Elton, Gruber, and Pad-
berg 1977; Baesel 1974; Blume 1975; Vasicek 1973). Un-
fortunately, existing financial solutions suffer from many re-
strictive statistical assumptions and limitations on modeling
time-varying dependence structures.

Asset dependencies exhibit both spatial and temporal
properties. Spatial dependency refers to the dependence be-
tween two assets at a particular time. It reflects the complex
relationships between a group of assets. For example, high-
tech stocks are inherently correlated and may respond to an
event in the same way, e.g., increase of interest rates. Tempo-
ral Dependency refers to the dependency between two assets
along the timeline. That is, a fluctuation of an asset’s return
due to some events will impact the future price movements
of itself and other assets. A typical financial phenomenon
known as “sector rotation” (Conover et al. 2008) is caused
by the intertwined influences of both types of dependencies.

Figure 1(a) shows an example of spatiotemporal patterns
in ADMs. Ten assets are selected from each of the tech-
nology, investment, pharmaceuticals sectors. Assets from

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

4397



the same industry are placed next to each other in the ma-
trix (i.e., having sequential indexes). Each entry in the ma-
trix represents the correlation coefficient between two as-
sets, where white indicates a coefficient of 1 and black a
coefficient of -1. At t = 0, we can observe the central re-
gion (enclosed by the black box), representing dependen-
cies between assets in the “invest” sector, shows positive
correlations. On the other hand, the region to the right of
the center, representing dependencies between assets in the
“invest” sector and assets in the “pharmaceuticals” sector,
shows weakly negative correlations. Both examples illus-
trate various strengths of spatial dependencies among assets.
As time elapses, we can see that groups of assets show dif-
ferent correlations. At t = 3000, we can see that assets in
“invest” remain generally positively correlated, while assets
in “invest” and “pharmaceuticals” (the central right region
enclosed by the black box) become more negative.

We formulate the problem of sequential ADM prediction
as a future ADM prediction problem given a sequence of past
ADMs. We propose solutions inspired by the video predic-
tion problem (Oprea et al. 2020), which aims at predicting
future image frames based on a sequence of past frames.
Each frame corresponds to an ADM matrix, with each frame
pixel representing the correlation between two assets. Video
data are characterized with spatiotemporal properties since
the value of a pixel is related to its neighbor pixels as well as
pixels in previous frames. Spatiotemporal models with deep
learning framework, e.g., “Convolutional Recurrent Neural
Networks” CRNN, are successful (Shi et al. 2015; Mathieu,
Couprie, and LeCun 2015; Hsieh et al. 2018; Babaeizadeh
et al. 2017; Wang et al. 2018) due to their ability to extract
features in both spatial and temporal dimensions.

A major challenge of directly applying CRNN to ADM
prediction is that pixels of the same object are naturally
grouped together both spatially and temporally in the im-
ages, while asset dependency values have no predefined
placement in the ADMs. Two related values can be placed in
the matrix far away from each other; likewise, two unrelated
values can be placed close in the matrix. In Figure 1(b), as-
sets are placed randomly, and we cannot see any clear spatial
or temporal clustering of assets in the matrices. Thus, CRNN
will not be effective if it directly takes ADMs with randomly
placed assets as input. Comparing Figures 1(a) and 1(b), we
can see that spatial and temporal patterns in ADMs can be
better revealed with proper asset positioning. We refer to the
determination of asset placements in ADMs for enhancing
future ADMs prediction as the ADM representation problem.

A poorly placed ADM hampers the effectiveness of
CRNN. To tackle this problem, a transformation function
that is capable of obtaining better representations of the orig-
inal ADMs is required. Motivated by representation learn-
ing (Bengio, Courville, and Vincent 2014), which automat-
ically discovers optimal representations from the raw data,
and Mixture of Experts (Jacobs et al. 1991) (MoE), which
responds to different circumstances with greater specializa-
tion, we design Asset Dependency Neural Network (ADNN).
The contributions are listed as follows:
• We propose the novel idea of viewing assets dependen-

cies as a sequence of images and apply video prediction

techniques to capture the spatiotemporal dependencies
for forecasting assets dependencies.

• We observe that assets in ADM do not have a priori order
like pixels in images, and we propose methods to trans-
form ADMs so that spatial dependencies can be effec-
tively discovered and exploited to enhance ADM predic-
tion accuracy.

• We propose a novel model, ADNN, to learn an optimal
transformation function that maps an ADM into an op-
timal representation before feeding it to CRNN. ADNN
employs Mixture of Experts (MoE) to learn from the
large variety of factors affecting asset returns. We achieve
an integrated, end-to-end framework that can effectively
improve the prediction accuracy.

• We evaluate the performance using not only ADM pre-
diction accuracy but also the risks of portfolios con-
structed from the predicted ADMs. Experiment results
show that our proposed framework significantly outper-
forms baselines in both aspects.

Related Work
Financial Applications of Dependencies
Dependency of assets is a crucial input to multiple financial
applications. In portfolio diversification, an optimal portfo-
lio invests in an optimal combination of assets (Markowitz
1952). Asset dependencies influence the diversification level
of a portfolio, where higher dependency of assets incurs
lower diversification of a portfolio. The dynamic feature of
asset dependencies is also important to consider when con-
structing a portfolio. For example, when market conditions
are deteriorating, correlations of assets increase and may
even approach one. During the evolvement of asset correla-
tions, a diversified portfolio at t may be no longer diversified
at t′ and produce unexpected losses (van Binsbergen 2011).
Therefore, we need to model the dynamics of the ADM to
achieve a consistent diversification level of a portfolio.

Conventional ADMs Prediction Methods
Multivariate GARCH (MGARCH) models are extensions of
univariate volatility models to estimate time-varying asset
dependencies. Modification of MGARCH models includes
the Dynamic Conditional Correlation (DCC) model (En-
gle 2002) and its variants (Rangel and Engle 2012; En-
gle, Ledoit, and Wolf 2019), which address the dynamic
correlation structure of ADMs by parameterizing the con-
ditional correlations. However, these statistics-oriented ap-
proaches (1) hold unrealistic statistical assumptions, which
make them inapplicable to real data(Caporin and McAleer
2013) and (2) utilize linear regression in parameter estima-
tion, which is incapable of modeling the high-dimensional
dependencies embedded in ADMs. Compared with existing
works, our framework is more flexible with no imposing
structures required on ADMs, making it capable of captur-
ing different spatiotemporal patterns.

Convolutional Recurrent Neural Network
CRNN represents a series of spatiotemporal models com-
bining convolutional neural networks (CNNs) for extracting

4398



spatial features and recurrent neural networks (RNNs) for
temporal features. ConvLSTM (Shi et al. 2015) is one of the
pioneer works with convolution structure in both the input-
to-state and state-to-state transitions. After that, other ad-
vanced spatiotemporal modeling techniques have been pro-
posed, e.g., PredRNN (Wang et al. 2017), and Eidetic 3D
LSTM (E3D-LSTM) (Wang et al. 2018). Due to the ADM
representation problem introduced before, the transforma-
tion of ADM needs to be done appropriately. According to
the authors’ best knowledge, our work is the first to use the
spatiotemporal model to solve sequential ADM prediction
considering the ADM representation problem.

Problem Definition
ADM Definition
In financial convention, given the historical daily price of an
asset {p0, p1, ..., pT }, where pt denotes the price at time t, the
returns of the asset at time t is calculated by:

rt = log(pt)− log(pt−1) (1)
where logarithm normalization is applied to the price data
so that the derived returns are weak stationary. Denote the
returns of asset i at time t as r

ai
t and let f(ai, aj)t denote the

dependency measurement between asset i and asset j at time
t. For correlation function f of two assets ai and aj in period
[t− nlag , t], f(ai, aj)t, is calculated as follows:

f(ai, aj)t =
Σt
p=t−nlag

(r
ai
p − rai )(r

aj
p − raj )√

Σt
p=t−nlag

(r
ai
p − rai )2

√
Σt
p=t−nlag

(r
aj
p − raj )2

(2)
It is natural to use matrix to group all pairwise dependencies.
Then, ADM at time t can be formulated as:

Mt =


f(ai, ai)t f(ai, aj)t · · · f(ai, an)t
f(aj , ai)t f(aj , aj)t · · · f(aj , an)t

...
...

. . .
...

f(an, ai)t f(an, aj)t · · · f(an, an)t

 (3)

ADM Prediction Model
Given a historical ADM sequence denoted as:

Mk,u
t = {Mt−(k−d)·u|1 ≤ d ≤ k, t ≥ (k − d) · u,

with t, k, u, d ∈ Z+}
(4)

where k denotes the length of the input sequence, t denotes
the current time and u denotes the rolling distance between
each input matrix in the day unit. Figure 2 illustrates the
ADM sequence construction process. Mk,u

t ∈ Rk×c×w×h

where c denotes the number of channels, w and h denotes the
width and height of ADM. Our target is to predict Mt+h ∈
R1×c×w×h, where h denotes the horizon, which is the du-
ration that an investor expects to hold a portfolio. For ex-
ample, if the portfolio is rebalanced on a monthly basis, the
investors are interested in the ADM one month later, and h

should be set to 21 (average monthly trading days). We for-
mulate ADM prediction model as:

M̂t+h = F(Mk,u
t |ΘF ) (5)

Figure 2: ADMs Construction. rajq denotes the return of asset
j at time q, and Mt denotes the ADM at time t. We first
generate ADM sequences from the asset returns sequence.
In this figure, k = 10, u = 2 and q = t − (k − 1)u = t − 18.
With fixed u, k, h, and shift of current time t, we can obtain
multiple input sequences and their corresponding targets.

where ΘF denotes the parameters of model F and M̂t+h

denotes the predicted ADM. We will discuss F in detail in
the methodology. To learn the model parameters, the loss is:

Lsqr = (Mt+h − M̂t+h)
2

=

n∑
i=1

n∑
j=1

(f(ai, aj)t+h − f̂(ai, aj)t+h)
2 (6)

Methodology
ConvLSTM
As introduced above, to forecast future ADM, temporal and
spatial signals hidden in historical ADM need to be carefully
modeled. Considering the pioneer contribution and concise-
ness of the ConvLSTM (Shi et al. 2015) in handling spatial
and temporal patterns, we choose ConvLSTM as the basic
building block of our framework. The core unit of the Con-
vLSTM network is ConvLSTM cell. All of the input states
and intermediate states representations fed to the cell are
tensors with the shape Rc×w×h. Denote the input state as
Xt, memory state as Ct, hidden state as Ht, and gated sig-
nals as it, ft, gt, ot at each timestamp for one cell. The future
state of a certain pixel in the matrix is determined by the in-
puts and past states of its local neighbors. This can easily be
achieved by using a convolution operator in the state-to-state
and input-to-state transitions:

it = σ(Wxi ∗Xt +Whi ∗ Ht−1 +Wci ◦ Ct−1 + bi)

ft = σ(Wxf ∗Xt +Whf ∗ Ht−1 +Wcf ◦ Ct−1 + bf )

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗Xt +Whc ∗ Ht−1 + bc)

ot = σ(Wxo ∗Xt +Who ∗ Ht−1 +Wco ◦ Ct + bo)

Ht = ot ◦ tanh(Ct)

(7)

4399



where ‘∗’ denotes the convolution operator and ‘◦’ denotes
the Hadamard product.

Asset Dependency Neural Network
Due to the ADM representation problem discussed in the in-
troduction, we need to transform ADM to better represent the
spatial dependency. Denote the height and width of ADM as
h and w; the optimal transformation function is defined as
T : Rh×w → Rh×w, and we have:

M̃ = T(M) (8)
where M refers to original ADM and M̃ refers to trans-
formed matrix characterized with better spatial property.

One natural way of constructing the transformation T is to
place assets with high dependency values closely in ADM,
e.g., by various clustering techniques, as a preprocessing
step before feeding to spatiotemporal model. However, this
two-steps approach has multiple drawbacks: (1) the suitable
number of clusters changes with time, and the optimal fre-
quency of clustering is unknown (2) the optimal transfor-
mation function T may involve more complex conversion,
which is unable to be captured by only rearranging the posi-
tion (3) the position transformation generated in preprocess-
ing cannot guarantee that the derived matrices are the opti-
mal data representations for model training. To tackle these
problems, we propose an end-to-end framework that com-
posite the transformation function solving the ADM repre-
sentation problem with the spatiotemporal blocks capturing
spatial and temporal signals in ADM, named as Asset Depen-
dency Neural Network (ADNN). With this design, the trans-
formation function T can be trained and updated together
with the spatiotemporal block. In this paper, we choose Con-
vLSTM as the spatiotemporal block even though T can also
be composited with other spatiotemporal models.

To approximate the optimal T, a polynomial approxima-
tion function is utilized. Since linear functions are not com-
plex enough to model the complexity of financial markets
while higher dimensional functions can result in overfitting,
we select quadratic function, which is a common practice
in function approximation problems (Torokhti and Howlett
2001; Boubekeur and Schlick 2007). The quadratic func-
tion conducts the transformation by assigning a new value
to each entry based on the whole matrix. It includes the abil-
ity to approximate position rearrangement and data scaling
if such modifications are optimal from the perspective of
representation learning. The quadratic function is combined
with the original prediction model and can be written as:

T(Mk,u
t ) = at ◦Mk,u

t ◦Mk,u
t + bt ◦Mk,u

t + ct

M̂t+h = F(Mk,u
t |ΘF ) = C ⊙ T(Mk,u

t |ΘC◦T)
(9)

where at, bt, ct denotes the coefficient tensor of the quadratic
term, the linear term, and the constant term respectively, all
of the coefficients are in the shape of R1×c×w×h. ⊙ denotes
the composition of two functions. Note that T is merged with
C (ConvLSTM) and trained together in an end-to-end man-
ner. at = fa(Mk,u

t |Θa), fa denotes the coefficient function
outputting at given parameter set Θa and input Mk,u

t . Co-
efficients bt, ct are output by functions fb and fc similarly.
This dynamic design can produce different results adapting

Figure 3: An overview of the ADNN architecture.

to different inputs and hence remedying the limitation of the
static transformation method. A natural idea is to model co-
efficient function f by Multilayer Perceptron (MLP) (Good-
fellow, Bengio, and Courville 2016); however due to the
complexity of financial market, ADM could be influenced by
various market factors like macro-economy, interest rates,
industry rotation, shocking events, etc. MLP has its limita-
tion in encoding such complex market behavior signals, and
as a result can only learn an over-generalized rule for all the
market situations. For example, assuming there are k differ-
ent market states caused by different financial events, and
the dependency between two stocks may vary with respect
to different states. The utilization of MLP on approximat-
ing transformation function only allows the model to learn
a general rule that applies to all k market situations, which
often results in over-generalization of the model and yields
unsatisfactory performance.

Inspired by the effectiveness of Mixture-of-Experts
(MoE) (Jacobs et al. 1991) and recent MoE applications
(Shazeer et al. 2017; Ma et al. 2018) on solving complex
data problem where a single dataset consists of many differ-
ent data regimes, we expect T to be capable of transforming
input ADM into a proper representation with respect to dif-
ferent market states. MoE comprises a gating network and
multiple subnets, where each subnet is a MLP (expert). It
achieves improvement especially on the complex dataset as
it utilized its gating network to select a sparse combination
of experts to process input from different data patterns, and
in our setting, ADM from different market states. By replac-
ing MLP with the MoE block in our transformation func-
tion, T can properly transform the input ADM into better
representation, as different market rules have been learned
by different experts, and the gating network can now act as a
knowledgeable manager who decides to assign task Mk,u

t to
specialized experts and combines their analyses afterward.
The critical difference between MLP and MoE on construct-
ing T is that MLP learns a single rule that generalized all the
complex market scenarios while MoE introduces different
subnets to specialize in different market scenarios and com-
bined their output to generate better ADM representation.

Figure 3 illustrates the whole ADNN architecture. The in-
put ADM sequence Mk,u

t is fed to T, the transformed re-
sult Rk,u

t is sent to the ConvLSTM encoder followed by
ConvLSTM decoder, which then outputs the predicted ADM

4400



M̂t+h ∈ R1×c×h×w. Inside T, in order to better extract the
features of the input ADM sequence, we use two consecutive
3d convolutional layers (Goodfellow, Bengio, and Courville
2016), and the output Ek,ut (Equation 10) is fed to the MoE
layers, where coefficients of the quadratic transformation
function are learned by each separate MoE block. Transfor-
mation function T can be formulated as:

Ek,ut = Wconv2 ∗ (Wconv1 ∗Mk,u
t )

at = MoEquad(E
k,u
t |Θa)

bt = MoElinear(E
k,u
t |Θb)

ct = MoEconst(E
k,u
t |Θc)

Rk,u
t = T(Mk,u

t ) = at ◦Mk,u
t ◦Mk,u

t + bt ◦Mk,u
t + ct

(10)

where [Wconv1, Wconv2] denote the 3D convolution layers,
[MoEquad, MoElinear,MoElinear] denote the Mixture of Ex-
perts layers used to produce the coefficients at, bt, ct, Rk,u

t
denotes the converted result which will be input for the Con-
vLSTM block for spatial temporal signal extraction.

Experiment
We evaluate ADNN from two aspects: ADM prediction ac-
curacy and portfolio risk reduction.

Experiment Setting
We construct a pool of real stock prices by combining the
daily price data of stocks from S&P-100, NASDAQ-100,
and DJI-30, including most influential companies in recent
15 years (from 2005/09/27 to 2020/08/05). We retain stocks
with complete closing price data throughout the whole pe-
riod, resulting in 133 stocks in the pool, each of which hav-
ing a time series of 3740 price data points.

The ADM sequences can be generated from the stock
price data as depicted in Figure 2. A general guideline from
finance is to choose nlag at least as large as the number of as-
sets n to avoid the out-of-sample problem (Tashman 2000).
However, if nlag is too large, the model may be incapable
of capturing short-term (e.g. monthly) ADM dynamics. To
strike a balance, we set nlag = 42 and n = 32. Since we have
a complete pool of 133 stocks, we randomly select stocks
from the pool to generate 10 stock datasets, each of which
is composed of 32 stocks. We evaluate the performance of
the methods on each stock dataset independently to guaran-
tee the generality of the experimental outcome. The full list
of stocks in each stock dataset is attached in the technical
appendix. In this paper, we study ADMs’ monthly evolution
so h = u = 21 (the number of trading days in a month).
We set k = 10. There are 3487 ADM sequences generated
for each stock dataset. We select the first 90% of ADM se-
quences as training samples (including validation) and the
remaining 10% as testing samples.

We use Adam optimizer and the experiments are run on
a server with 4 NVIDIA GeForce RTX 2080-ti Graphic
Cards. We utilize the gradual warm-up learning rate sched-
uler (Goyal et al. 2017) and select cosine annealing as the
next scheduler to dynamically set the learning rate.

Baselines
Since we focus on the use of correlation coefficients in ADM
prediction, we introduce the following baselines used in fi-
nancial industry. For fairness, methods that utilize external
information (e.g., economic indicators) are excluded from
the comparison.

• Constant Correlation Model (CCM) considers the cor-
relation of returns between any pair of securities to be
the same for a given group of securities (Elton and Gru-
ber 1973). It takes the historical means of all the pairwise
correlations as the prediction for the next period.

• DCC-Garch (Engle 2002) considers the dynamic prop-
erty of correlation in the model by parameterizing the
conditional correlations to forecast the future correlation
matrix and utilizes the predicted correlation matrix to
generate future covariance matrices.

We also adapt classical spatiotemporal prediction ap-
proaches to the sequential ADM prediction task:

• Convolution-3D (Conv3D)(Gebert et al. 2019) has an
encoder-decoder structure with a sequence of 3d convo-
lution layers as encoder and another sequence of 3d con-
volution layers as decoder.

• Long-Short-Term-Memory network (LSTM)
(Hochreiter and Schmidhuber 1997) takes a sequence of
vectors as input and predicts the target vector. The 2D
ADMs are first reshaped to 1D vectors for the task.

In addition, we evaluate other transformation architectures
that incorporate ConvLSTM as the building block.

• Raw-ConvLSTM feeds the raw ADM sequences to the
ConvLSTM without any transformation T.

• P-ConvLSTM involves static reposition of entries in
ADMs in the preprocessing stage. Entries of ADMs will
be clustered using k-means based on the training set, for
which similar entries are placed closely together. The
placement of each entry is the same for the testing set,
and the number of clusters is tuned to 12.

• T-ConvLSTM is an end-to-end framework that first
transforms ADMs through a fully-connected network T
instead of learning a quadratic transformation, then the
transformed result is fed to ConvLSTM.

• MLP-ConvLSTM has a similar architecture to ADNN
except that it utilizes multi-layer perceptron (MLP) to
learn the (coefficients of) quadratic transformation func-
tion T instead of MoE.

Evaluation of ADM Prediction Accuracy
Evaluation Metrics ADM prediction accuracy is mea-
sured by the following two metrics:

• Mean square error (MSE) is calculated by averaging
the squared difference of each entry between the ground-
truth matrix and the predicted matrix.

• Gain to the previous ADM. It is a common practice
in finance that takes the ADM of the latest period as
the future ADM (Elton, Gruber, and Urich 1978), where

4401



nexp Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 Avg.

2 (topk = 1) 0.0135 0.0133 0.0136 0.0085 0.0144 0.0084 0.0125 0.0130 0.0130 0.0130 0.0123
4 (topk = 2) 0.0082 0.0087 0.0088 0.0085 0.0091 0.0117 0.0075 0.0078 0.0080 0.0083 0.0086
8 (topk = 4) 0.0080 0.0085 0.0086 0.0085 0.0090 0.0087 0.0075 0.0075 0.0079 0.0076 0.0082
16 (topk = 4) 0.0081 0.0090 0.0115 0.0087 0.0089 0.0086 0.0076 0.0079 0.0080 0.0074 0.0086

Table 1: MSE versus nexp.

Method Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 Mean(Std)

Raw-Conv MSE 0.00846 0.00842 0.00887 0.00855 0.00946 0.00883 0.0152 0.00784 0.00789 0.00772 0.0091(0.0021)
LSTM Gain 0.210 0.225 0.199 0.188 0.179 0.202 -0.487 0.236 0.211 0.234 0.140(0.2096)
P-Conv MSE 0.00863 0.0112 0.00851 0.00908 0.00966 0.00877 0.00780 0.00843 0.00792 0.00829 0.0089(0.0009)
LSTM Gain 0.193 -0.099 0.231 0.138 0.161 0.207 0.237 0.222 0.155 0.176 0.162(0.0927)
T-Conv MSE 0.01365 0.00965 0.0140 0.0134 0.116 0.0147 0.00943 0.0136 0.0139 0.0132 0.0127(0.0018)
LSTM Gain -0.275 0.111 -0.266 -0.270 -0.009 -0.329 0.077 -0.325 -0.398 -0.307 -0.199(0.1754)

MLP-Conv MSE 0.00862 0.00908 0.0109 0.00866 0.00955 0.00914 0.0104 0.00820 0.00823 0.00918 0.0096(0.0009)
LSTM Gain 0.188 0.146 -0.003 0.168 0.132 0.160 -0.019 0.192 0.155 0.079 0.095(0.0720)

ADNN MSE 0.00802 0.00852 0.00858 0.00845 0.00897 0.00871 0.00754 0.00752 0.00789 0.00757 0.0082(0.0005)
Gain 0.252 0.215 0.226 0.198 0.221 0.213 0.262 0.267 0.218 0.249 0.232(0.0223)

Conv3D MSE 0.0148 0.0151 0.0152 0.0129 0.0137 0.0136 0.0133 0.0142 0.0142 0.0142 0.0141(0.0007)
Gain -0.379 -0.392 -0.374 -0.222 -0.187 -0.231 -0.302 -0.387 -0.421 -0.414 -0.331(0.0833)

LSTM MSE 0.196 0.215 0.186 0.195 0.194 0.189 0.160 0.181 0.197 0.194 0.205(0.0133)
Gain -17.3 -18.8 -15.8 -15.8 -15.8 -16.0 -14.6 -16.7 -18.7 -18.3 -16.9(1.3637)

CCM MSE 0.0144 0.0143 0.0158 0.0161 0.0177 0.0161 0.0141 0.0142 0.0170 0.0147 0.0154(0.0012)
Gain -0.342 -0.314 -0.431 -0.532 -0.534 -0.455 -0.381 -0.385 -0.709 -0.457 -0.454(0.1097)

DCC MSE 0.0151 0.0152 0.0143 0.0141 0.0150 0.0157 0.0133 0.0155 0.0148 0.0143 0.0147(0.0007)
Gain -0.405 -0.398 -0.293 -0.339 -0.302 -0.416 -0.303 -0.514 -0.482 -0.424 -0.388(0.0730)

Table 2: Performance Comparison on Different Datasets.

M̂t+h = Mt. For convenience, we name this simple strat-
egy as Previous. We can use Previous method as a bench-
mark and calculate the gain of the predicted ADM M̂t+h

comparing with Previous as follows:

Gain = 1−
MSE(M̂t+h)

MSE(Mt)
(11)

Larger gain indicates better performance over Previous.

Parameters Setting We repeatedly run the model with
various groups of hyperparameters and use the Bayesian
method to fine-tune the proposed framework.

We study the influence of several important hyperparam-
eters based on the aforementioned 10 stock datasets. The
inital learning rate for the adaptive learning rate scheduler
is set to 5e − 4. We have tested the model with the fol-
lowing batch sizes: {128, 256, 384, 512, 640} and finalized the
batch size to 512. Horizon h is an application-specific pa-
rameter, and since our application is portfolio management
with monthly adjustments, we set h = 21. Linear and cubic
transformation instead of the proposed quadratic one were
investigated and the experiment shows that the model incurs
higher cost and longer convergence time as the degree in-
creases and the quadratic form reaches the best performance
in terms of MSE and gain.

The performance of MoE depends on two crucial param-
eters, (1) the number of experts nexp, which determines how

many experts in total are contained in the network, and (2)
topk, which determines how many experts participate in gen-
erating the final transformation function (topk ≤ nexp). Table
1 shows how the two parameters affect the learning of the
transformation function T and in turn the prediction MSE.
The entry in the table denotes given nexp, the MSE returned
by the optimal topk on average in the 10 stock datasets. For
example, when nexp = 8, on average topk = 4 obtains the
optimal MSE among the 10 stock datasets. We have multi-
ple observations from the table: (1) the optimal (nexp, topk)
pair is (8,4), (2) nexp and topk are not the larger the better,
which may be due to the fact that initial increase of nexp to
a optimal number can successfully capture the complexities
of market data, but over-increasing nexp lays a burden on
model convergence and harms the performance.

Prediction Accuracy Results Analysis The overall pre-
diction accuracy result is shown in Table 2. The average run-
ning time on each dataset is around 3 hours. We can observe
that deep learning based methods generally outperform sta-
tistical methods (CCM and DCC), indicating the superiority
of data-oriented methods over methods that greatly depend
on unrealistic statistical assumptions, especially in the com-
plex and dynamic financial domain. LSTM/Conv3D, which
are simple models that utilize only temporal/spatial informa-
tion, yields unsatisfactory prediction accuracy. The inferior

4402



performance of LSTM further demonstrates the importance
of spatiotemporal behaviors in ADM prediction compared to
the consideration of temporal behavior alone.

By incorporating both spatial and temporal information,
ConvLSTM improves prediction accuracy. To study if the ad-
dition of a transformation layer can help alleviate the limit
imposed by the ADM representation problem on raw ConvL-
STM, we evaluate ConvLSTM extended with different trans-
formation methods. We can see that the performance im-
provement of P-ConvLSTM and T-ConvLSTM are marginal
and sometimes even negative. For P-ConvLSTM, the static
clustering approach failed to capture the time-varying pat-
terns of the market. Even though T-ConvLSTM uses an end-
to-end architecture that is superior to P-ConvLSTM in prin-
ciple, it displays worse performance, which indicates that
without proper design, the utilization of deep layers can de-
grade the model.

After comparing methods with various transformation
function T, we can observe from Table 2 that both MLP-
ConvLSTM and ADNN in quadratic form achieve the best
results. Compared with MLP-ConvLSTM, ADNN could bet-
ter learn the optimal representation using a group of experts
to handle the variety and complexity of the financial mar-
ket. The superiority of ADNN over MLP-ConvLSTM lies in
the nature of MoE which is able to model different market
scenarios while MLP can only learn a single general model.
Notice that the use of transformation function might have
minor performance gain on some datasets (e.g. set 2). In
these cases, perhaps the raw ADMs already exhibit good spa-
tial property to ConvLSTM so the transformation would not
help much. In conclusion, ADNN has gained consistent per-
formance advantages on different datasets over various base-
lines. It shows the necessity of a well-designed transforma-
tion of raw ADM to solve the ADM representation problem.

Evaluation of Portfolio Risk Reduction
As introduced in the related work, “Modern Portfolio The-
ory” (Markowitz 1952) calculates the weight of each asset in
the portfolio by considering the dynamic property of assets
dependencies. Equation 12 briefly summarizes the idea:

Σ̂m = diag(s) · Γ̂m · diag(s)

ωm = argmin
ω

ωT Σ̂mω

σ2m = ωT
mΣωm

(12)

where Γ̂m denotes the predicted correlation matrix with re-
spect to forecasting method m (here Γ̂m = M̂t+h), s denotes
the ground truth standard deviation vector 2 at time (t + h),
diag(s) is to create a diagonal matrix with s. We first calcu-
late the predicted covariance matrix Σ̂ (first line of Equation
12) and obtain the optimal asset weight vector ωm (second
line). Then, the actual variance of the derived portfolio ω can
be computed with the future groundtruth covariance matrix
Σ (third line). In Equation 12, portfolio volatility σ2m is a

2The reason of assuming that future standard deviation vector
is known is to eliminate the extra variability brought by s since the
main purpose of evaluation here is to examine the performance of
ADM (in this paper “correlation”) prediction.

Figure 4: Portfolio Example using Dataset 7.

function of Σ̂m, and when Σ = Σ̂m the optimal portfolio
volatility/risk is obtained.

We randomly choose one stock dataset (set 7) as the
source for constructing a diversified portfolio based on the
predicted ADMs. All of the methods under evaluation build
up their portfolios from the same 32 stocks in the stock
dataset, which are then evaluated based on their respective
portfolios’ volatility σ2m. For baselines, we choose (1) the
intuitive but commonly used Previous method (introduced
in the beginning of evaluation of ADM prediction accuracy),
(2) the well-known statistical method DCC-Garch, and (3)
the second best deep learning method T-ConvLSTM. All
baselines and the proposed ADNN will be compared to Op-
timal (Σ̂ = Σ). For simplicity, we hold the assumption that
no short selling is allowed (i.e. asset weight ωi ∈ [0, 1] ).

The comparison results are shown in Figure 4. We can ob-
serve that, as expected, both DCC and ADNN are superior to
the method Previous, and they display similar trends. ADNN
outperforms DCC with an average risk of 1.67×10−4, which
ranks only second to the optimal portfolio. In terms of av-
erage risk, ADNN achieves an improvement of 24.8% over
Previous and 13.9% over DCC. In conclusion, the ADNN
method is capable of generating a more diversified portfo-
lio compared with the baselines.

Conclusion
The prediction of asset dependency matrix (ADM) has been
extensively studied in the financial industry. In this paper,
we formulate the problem as sequential ADM prediction and
solve the ADM representation and forecasting problem by
proposing ADNN, which incorporates MoE for transforming
ADM and facilitating the ConvLSTM model to predict future
ADMs. We validate the effectiveness of ADNN on real stock
data by comparing it with various baselines and apply it to
the portfolio diversification task.

For future work, we plan to extend the current research
in the following three directions: (1) design position trans-
formation in an end-to-end manner and visualize the pro-
cess to improve explainability, (2) apply the framework to
more kinds of ADM (e.g., covariance matrix), and (3) com-
pete against well-established portfolios with consideration
of more realistic factors (e.g., transaction cost).

4403



Acknowledgements
Research reported in this paper was supported by the Re-
search Grants Council HKSAR GRF (No. 16215019) and
UIC Research Grant (No. R201705). We appreciate the
anonymous reviewers for their helpful comments on the
manuscript.

References
Ane, T.; and Kharoubi, C. 2003. Dependence structure and
risk measure. The journal of business, 76(3): 411–438.
Babaeizadeh, M.; Finn, C.; Erhan, D.; Campbell, R. H.; and
Levine, S. 2017. Stochastic variational video prediction.
arXiv preprint arXiv:1710.11252.
Baesel, J. B. 1974. On the assessment of risk: Some further
considerations. The Journal of Finance, 29(5): 1491–1494.
Bengio, Y.; Courville, A.; and Vincent, P. 2014. Rep-
resentation Learning: A Review and New Perspectives.
arXiv:1206.5538.
Blume, M. E. 1975. Betas and their regression tendencies.
The Journal of Finance, 30(3): 785–795.
Boubekeur, T.; and Schlick, C. 2007. QAS: Real-Time
Quadratic Approximation of Subdivision Surfaces. In 15th
Pacific Conference on Computer Graphics and Applications
(PG’07), 453–456.
Caporin, M.; and McAleer, M. 2013. Ten things you should
know about the dynamic conditional correlation representa-
tion. Econometrics, 1(1): 115–126.
Conover, C. M.; Jensen, G. R.; Johnson, R. R.; and Mercer,
J. M. 2008. Sector rotation and monetary conditions. The
Journal of Investing, 17(1): 34–46.
Elton, E. J.; and Gruber, M. J. 1973. Estimating the depen-
dence structure of share prices–implications for portfolio se-
lection. The Journal of Finance, 28(5): 1203–1232.
Elton, E. J.; Gruber, M. J.; and Padberg, M. W. 1977. Simple
rules for optimal portfolio selection: the multi group case.
Journal of Financial and Quantitative Analysis, 329–345.
Elton, E. J.; Gruber, M. J.; and Urich, T. J. 1978. Are betas
best? The Journal of Finance, 33(5): 1375–1384.
Engle, R. 2002. Dynamic conditional correlation: A simple
class of multivariate generalized autoregressive conditional
heteroskedasticity models. Journal of Business & Economic
Statistics, 20(3): 339–350.
Engle, R. F.; Ledoit, O.; and Wolf, M. 2019. Large dy-
namic covariance matrices. Journal of Business & Economic
Statistics, 37(2): 363–375.
Gebert, P.; Roitberg, A.; Haurilet, M.; and Stiefelhagen, R.
2019. End-to-end Prediction of Driver Intention using 3D
Convolutional Neural Networks. In 2019 IEEE Intelligent
Vehicles Symposium (IV), 969–974.
Goodfellow, I.; Bengio, Y.; and Courville, A. 2016. Deep
Learning. MIT Press. http://www.deeplearningbook.org.
Goyal, P.; Dollár, P.; Girshick, R.; Noordhuis, P.;
Wesolowski, L.; Kyrola, A.; Tulloch, A.; Jia, Y.; and He,
K. 2017. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677.

Hochreiter, S.; and Schmidhuber, J. 1997. Long Short-Term
Memory. Neural Computation, 9(8): 1735–1780.
Hsieh, J.-T.; Liu, B.; Huang, D.-A.; Fei-Fei, L.; and
Niebles, J. C. 2018. Learning to decompose and disen-
tangle representations for video prediction. arXiv preprint
arXiv:1806.04166.
Jacobs, R. A.; Jordan, M. I.; Nowlan, S. J.; and Hinton, G. E.
1991. Adaptive mixtures of local experts. Neural computa-
tion, 3(1): 79–87.
Ma, J.; Zhao, Z.; Yi, X.; Chen, J.; Hong, L.; and Chi, E. H.
2018. Modeling task relationships in multi-task learning
with multi-gate mixture-of-experts. In Proceedings of the
24th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, 1930–1939.
Markowitz, H. 1952. Portfolio Selection. The Journal of
Finance, 7(1): 77–91.
Mathieu, M.; Couprie, C.; and LeCun, Y. 2015. Deep multi-
scale video prediction beyond mean square error. arXiv
preprint arXiv:1511.05440.
Oprea, S.; Martinez-Gonzalez, P.; Garcia-Garcia, A.;
Castro-Vargas, J. A.; Orts-Escolano, S.; Garcia-Rodriguez,
J.; and Argyros, A. 2020. A Review on Deep Learning Tech-
niques for Video Prediction. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 1–1.
Rangel, J. G.; and Engle, R. F. 2012. The Factor–Spline–
GARCH model for high and low frequency correlations.
Journal of Business & Economic Statistics, 30(1): 109–124.
Shazeer, N.; Mirhoseini, A.; Maziarz, K.; Davis, A.; Le, Q.;
Hinton, G.; and Dean, J. 2017. Outrageously Large Neural
Networks: The Sparsely-Gated Mixture-of-Experts Layer.
arXiv:1701.06538.
Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.;
and Woo, W.-c. 2015. Convolutional LSTM network: A ma-
chine learning approach for precipitation nowcasting. arXiv
preprint arXiv:1506.04214.
Tashman, L. J. 2000. Out-of-sample tests of forecasting ac-
curacy: an analysis and review. International journal of fore-
casting, 16(4): 437–450.
Torokhti, A.; and Howlett, P. 2001. On the best quadratic
approximation of nonlinear systems. IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Applica-
tions, 48(5): 595–602.
van Binsbergen, J. H. 2011. Anticipating Correlations: A
New Paradigm for Risk Management. 49(1): 150–150.
Vasicek, O. A. 1973. A note on using cross-sectional infor-
mation in Bayesian estimation of security betas. The Journal
of Finance, 28(5): 1233–1239.
Wang, Y.; Jiang, L.; Yang, M.-H.; Li, L.-J.; Long, M.; and
Fei-Fei, L. 2018. Eidetic 3d lstm: A model for video pre-
diction and beyond. In International conference on learning
representations.
Wang, Y.; Long, M.; Wang, J.; Gao, Z.; and Yu, P. S. 2017.
PredRNN: Recurrent Neural Networks for Predictive Learn-
ing using Spatiotemporal LSTMs. In Guyon, I.; Luxburg,
U. V.; Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan,
S.; and Garnett, R., eds., Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.

4404


