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Abstract

We present a machine learning system that can quantify fine
art paintings with a set of visual elements and principles
of art. The formal analysis is fundamental for understand-
ing art, but developing such a system is challenging. Paint-
ings have high visual complexities, but it is also difficult to
collect enough training data with direct labels. To resolve
these practical limitations, we introduce a novel mechanism,
called proxy learning, which learns visual concepts in paint-
ings through their general relation to styles. This framework
does not require any visual annotation, but only uses style la-
bels and a general relationship between visual concepts and
style. In this paper, we propose a novel proxy model and re-
formulate four pre-existing methods in the context of proxy
learning. Through quantitative and qualitative comparison,
we evaluate these methods and compare their effectiveness in
quantifying the artistic visual concepts, where the general re-
lationship is estimated by language models; GloVe or BERT.
The language modeling is a practical and scalable solution re-
quiring no labeling, but it is inevitably imperfect. We demon-
strate how the new proxy model is robust to the imperfection,
while the other methods are sensitively affected by it.

Introduction
Artists and art historians usually use elements of art, such as
line, texture, color, and shape (Fichner-Rathus 2011), and
principles of art, such as balance, variety, symmetry, and
proportion (Ocvirk et al. 2002) to visually describe artworks.
These elements and principles provide structured grounds
for effectively communicating about art, especially the first
principle of art, which is “visual form” (Van Dyke 1887).

However, in the area of AI, understanding art has mainly
focused on a limited version of the principle, through de-
veloping systems such as predicting styles (Elgammal et al.
2018; Kim et al. 2018), finding non-semantic features for
style (Mao, Cheung, and She 2017), or designing digital
filters to extract some visual properties like brush strokes,
color, textures, and so on (Berezhnoy, Postma, and van den
Herik 2005; Johnson et al. 2008). While they are useful, the
concepts do not reveal much about the visual properties of
paintings in depth. Kim et al. (2018) suggested a list of 58

concepts that break down the elements and principles of art.
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We focus on developing an AI system that can quantify such
concepts in this paper, and the concepts for art will be re-
ferred to as “visual elements”.

The main challenge is that it is not easy to deploy su-
pervised methodology. Art is typically annotated with artist
information (name, dates, bio), style, and genre attributes
only, but annotating elements of art requires high special-
ties to identify the visual proprieties of artworks. To resolve
the issue, we propose a novel method to learn the visual ele-
ments of art through their general relations to styles (period
style). While it is difficult to obtain the labels for the visual
concepts, there are plenty of available paintings labeled by
styles and language resources relating styles to visual con-
cepts, such as online encyclopedia and museum websites. In
general, knowing the dominant visual features of a painting
enables us to identify its plausible styles. So we have the
following questions; (1) what if we can take multiple styles
as proxy components to encode visual information of paint-
ings? (2) can a deep Convolutional Neural Network (deep-
CNN) help to retrace visual semantics from a proxy repre-
sentation of multiple styles?

In these previous studies (Elgammal et al. 2018; Kim et al.
2018), existence of the conceptual ties between visual el-
ements and styles is demonstrated by using a hierarchical
structure in the deep-CNN. They showed the machine can
learn underlying semantic factors of styles from its hidden
layers. Inspired by the studies, we hypothetically set a linear
relation between visual elements and style. Next, we con-
strain a deep-CNN by the linear relation to make the ma-
chine learn visual concepts from its last hidden layer, while
it is trained as a style classifier only.

To explain the methodology, a new concept—proxy learn-
ing—is defined first. It refers to all possible learning meth-
ods aiming to quantify paintings with a set of finite visual
elements, which has no available label, by correlating it to
another concept that has abundant labeled data. In this pa-
per, we reformulate four pre-existing methods in the context
of proxy learning and introduce a novel approach that uti-
lizes a deep-CNN to learn visual concepts from styles labels
and language models. We propose to name it deep-proxy.

In the experiment, deep-proxy and four methods in at-
tribute learning—sparse coding (Efron et al. 2004), lo-
gistic regression (LGT) (Danaci and Ikizler-Cinbis 2016),
Principal Component Analysis method (PCA) (Kim et al.
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2018), and an Embarrassingly Simple approach to Zero-Shot
Learning (ESZSL) (Romera-Paredes and Torr 2015)—are
quantitatively compared with each other. We analyze their
effectiveness depending two practical solutions to estimate
a general relationship: (1) language models—GloVe (Pen-
nington, Socher, and Manning 2014) and BERT (Vaswani
et al. 2017; Devlin et al. 2018)—and (2) sample means of a
few ground truth values. The language modeling is a practi-
cal and scalable solution requiring no labeling, but it is in-
evitably imperfect. Finally, we demonstrate how the deep-
proxy’s cooperative structure learning with styles creates
strong resilience to the imperfection from the language mod-
els, while PCA and ESZSL are significantly affected by it.
On the other hand, as a general relation is estimated by some
ground truth samples, PCA performs best in various experi-
ments. Our contributions are as follows.

1. Formulating the proxy learning methodology and apply-
ing it to learn visual artistic concepts.

2. A novel and end-to-end method to learn visual elements
from fine art paintings without any direct annotation.

3. A new word embedding trained by BERT and a huge art
corpus (∼ 2, 400, 000 sentences). This is the first BERT
model for art trained by art-related texts.

4. A ground truth set of 58 visual semantics for 120 fine art
paintings completed by seven art historians.

Related Work
Attribute Classification For learning semantic attributes,
mainstream literature has been based on simple binary clas-
sification and fully (Farhadi et al. 2009; Lampert, Nick-
isch, and Harmeling 2013) or weakly supervision methods
(Ferrari and Zisserman 2007; Shankar, Garg, and Cipolla
2015). Support Vector Machine (Farhadi et al. 2009; Lam-
pert, Nickisch, and Harmeling 2013; Patterson et al. 2014)
and logistic regression (Farhadi et al. 2009; Danaci and
Ikizler-Cinbis 2016) are used to recognize the presence or
absence of targeted semantic attributes.

Descriptions by Visual Semantics This paper’s method is
not designed using a classification problem, but rather it gen-
erates real-valued vectors. Each dimension of each vector is
aligned with a certain visual concept, so the vectors natu-
rally indicate which paintings are more or less relevant to
the concept. As is the case with most similar formats, Parikh
et al. (Parikh and Grauman 2011; Ma, Sclaroff, and Ikizler-
Cinbis 2012) proposed to predict the relative strength of the
presence of attributes through real-valued ranks.

For attribute learning, recently its practical merits have
been rather emphasized, such as zero-shot learning (Xian
et al. 2018) and semantic (Li et al. 2010) or non-semantic
attributes (Huang, Change Loy, and Tang 2016) to boost
object recognition. However, in this paper, we focus on at-
tribute learning itself and pursue its descriptive and human
understandable advantages, in the same way that Chen et al.
(2012) focused on describing clothes with some words un-
derstandable to humans.

Incorporating Classes as Learning Attributes Informa-
tive dependencies between semantic attributes and objects
(classes) are useful; in fact, they have co-appeared in many
papers. Lampert et al. (2013) assign attributes to images on
a per-class basis and train attribute classifiers in a super-
vised way. On the other hand, Yu et al. (2014) model at-
tributes based on their generalized properties—such as their
proportions and relative strength—with a set of categories
and make learning algorithms satisfy them as necessary con-
ditions. The methods do not require any instance-level at-
tributes for training like this paper method, but learning vi-
sual elements satisfying the constraints of relative propor-
tions among classes is not related to our goal or methodol-
ogy. Some researchers (Mahajan, Sellamanickam, and Nair
2011; Wang and Ji 2013) propose joint learning frameworks
to more actively incorporate class information into attribute
learning. In particular, Akata et al. (2013) and Romera-
Paredes et al. (2015) hierarchically treat attributes as inter-
mediate features, which serve to describe classes. The sys-
tems are designed to learn attributes by bi-directional influ-
ences from class to attributes (top-down) and from image
features to attributes (bottom-up) like deep-proxy. However,
their single and linear layering, from image features to their
intermediate attributes, are different from the multiple and
non-liner layering in deep-proxy.

Learning Visual Concepts from Styles Elgammal et al.
(Elgammal et al. 2018; Kim et al. 2018) show that a deep-
CNN can learn semantic factors of styles from its last
hidden layers by using a hierarchical structure of deep-
CNN. They interpret deep-CNN’s last hidden layer with pre-
defined visual concepts through multiple and separated post-
procedures, but deep-proxy simultaneously learns visual el-
ements while machines are trained for style classification. In
the experiment, the method proposed by Kim et al. (2018) is
compared with deep-proxy as the name of PCA.

Methodology
Linear Relation
Two Conceptual Spaces Styles are seldom completely
uniform and cohesive, and often carry forward within them
former styles and other influences that are still operating
within the work. As explained in The Concept of Style (Lang
1987), a style can be both a possibility and an interpretation.
It is not a definite quality that inherently belongs to objects,
although each of the training samples are artificially labeled
with a unique style. Due to the complex variations of the vi-
sual properties of art pieces in sequential arrangements of
times, styles can be overlapped, blended, and merged.

Based on the idea, this research begins with representing
paintings with the two entities: a set of m visual elements
and a set of n styles. Two conceptual vector spaces S and
A for style and visual elements are introduced, whose each
dimension is aligned with their semantic. Two vector func-
tions, fA(·) and fS(·), are defined to transform input image x

into the conceptual spaces in equation (1) below.

fA(x) : x → a⃗(x) = [a1(x), a2(x), ..., am(x)]t ∈ A

fS(x) : x → s⃗(x) = [s1(x), s2(x), ..., sn(x)]
t ∈ S

(1)
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Figure 1: Summary of Proxy Learning: (a) The paintings of three styles (Pop art, Post-impressionism, and Expressionism)
are scattered in the space of three visual elements (abstract, gestural, and linear). The red vectors represent typical vectors
of the three styles. (b) A painting X, originally positioned in the visual space, can be transformed to the three-style (proxy)
representation by computing inner products with each of the typical vectors. (c) Proxy learning aims to estimate or learn its
original visual coordinates from a proxy representation and a set of typical vectors.

Category-Attribute Matrix Inspired by a prototype the-
ory (Murphy 2004) in cognitive science, we posit that a set
of pre-defined visual elements of art is sufficient for char-
acterizing styles. According to this theory, once a set of
attributes are arranged to construct a vector space, a vec-
tor point can summarize each of categories. Mathematically
modeling the principles, xs∗

i
is set to be the typical (best) ex-

ample for the style si, where i ∈ {1, 2, ...n} and n is the num-
ber of styles. This is represented by fA(x∗

si
) = x → a⃗(x∗

si
). By

accumulating the a⃗(x∗
si
) ∈ Rm as columns for all different n

styles, a matrix G ∈ Rm×n is formed. Matrix G becomes a
category-attribute matrix.

Linear System Matrix G ideally defines n typical points
for n styles in the attribute space of A. However, as afore-
mentioned, images that belong to a specific style show intra-
class variations. In this sense, for a painting x that belongs
to style si, the fA(x∗

si
) is likely to be the closest to the fA(x),

and its similarities to other styles’ typical points can be cal-
culated by the inner products between fA(x) and fA(x∗

si
) for

all n styles, i ∈ {1, 2, ...n}. All computations are expressed
by fA(x)t · G and its output fS(x)

t. This results in the linear
equation (2) below.

fA(x)t ·G = fS(x)
t (2)

Definition of Proxy Learning
In equation (2), knowing fS(·) becomes linearly tied with
knowing fA(·), so we have the following questions: (1)
given G and fS(·), how can we learn the function fA(·)? (2)
before doing that, how can we properly encode G and fS(·)
first? This paper aims to answer these questions. We first
re-define them by a new concept of learning, named proxy
learning. Fig. 1 is an illustrative example to describe it.

Proxy learning: a computational framework that learns
the function fA(·) from fS(·) through a linear relationship G.
G is estimated by language models or human survey.

Language Modeling
The G matrix is estimated by using distributed word em-
beddings in NLP. Two embeddings were considered: GloVe

(Pennington, Socher, and Manning 2014) and BERT (De-
vlin et al. 2018; Vaswani et al. 2017). However, their orig-
inal dictionaries do not provide all the necessary art terms.
Especially for BERT, it holds a relatively smaller dictionary
than GloVe. In the original BERT, vocabulary words are rep-
resented by several word-pieces (Wu et al. 2016), so it is un-
necessary to hold a large set of words. However, the token-
level vocabulary words could lose their original meanings,
so a new BERT model had to be trained from scratch on a
suitable art corpus in order to compensate for the deficient
dictionaries.

A Large Corpus of Art To prepare a large corpus of art,
we first gathered all the descendent categories (about 6, 500)
linked with the parent categories of ‘‘Painting’’ and
‘‘Art Movement’’ in Wikipedia and scrawled all the
texts under the categories by using a library available in pub-
lic. Some art terms and their definitions presented in TATE
museum (http://tate.org.uk/art/art-terms) were also added,
so finally, with ∼ 2, 400, 000 sentences, a set word embedding
set —BERT— is newly trained for art.

Training BERT For a new BERT model for art, the
BERT-BASE model (12-layer, 768-hidden, 12-heads, and not
using cased letters) was selected and trained from scratch
with the collected art corpus. For training, the original vo-
cabulary set is updated by adding some words which are
missed in the original framework. We averaged all 12 (lay-
ers) embeddings to compute each of final word embeddings.

Estimation of Category-Attribute Matrix G To estimate
a matrix G, vector representations were collected and the fol-
lowing over-determined system of equations was set. Let the
WA ∈ Rd×m denote a matrix of which each column implies
a d-dimensional word embedding to encode one of m visual
elements, and the wsi ∈ Rd be a word embedding that repre-
sents style si among n styles.

WA · a⃗(x∗
si
) = wsi (3)

By solving the equation (3) for i ∈ {1, 2, ..., n}, the vec-
tor a⃗(x∗

si
) ∈ Rm was estimated, which becomes each col-

umn vector of G. It quantifies how the visual elements are
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Figure 2: Deep-Proxy Architecture.

positively or negatively related to a certain style in a dis-
tributed vector space. In general, word embedding geomet-
rically captures semantic or syntactical relations between
words, so this paper postulates that the general relationship
among the concepts can be reflected by the linear formula-
tion (3).

Deep-Proxy
We propose a novel method to jointly learn the two multi-
modal functions, fS(x) and fA(x), through a pre-estimated
general matrix (G). Its principal mechanism is a category-
attribute matrix (G) is hard-coded into the last fully con-
nected (FC) parameters of a deep-CNN, so it is enforced to
learn visual elements (fA(x)) indirectly from its last hidden
layers, while it is outwardly trained to learn multiple styles
(fS(x)). We propose to name this framework deep-proxy. In
this paper, the original VGG-16 (Simonyan and Zisserman
2015) is adapted for its popularity and modified as a style
classifier, as shown in Fig. 2.

Implementation of Deep-Proxy All convolution layers
are transferred from the ImageNet as is and frozen, but
the original FC layers, (4096 − 4096 − 1000), are expanded
to the five layers (2048 − 2048 − 1024 − 58 − G∗(58 × n) −
n number of styles). These FC parameters (cyan colored and
dashed box) are updated during training. We also tried
to fine-tune convolution parts, but they showed slightly
degraded performance compared to the FC-only training.
Therefore, all the results presented in the later sections are
FC-only trained for 200, 000 steps at 32 batch size by the mo-
mentum optimizer (momentum = 0.9). The learning rate is
initially set as 1.0e − 3 and degraded at the factor of 0.94 ev-
ery 2 epochs. The final soft-max output is designed to encode
the fS(x), and the last hidden layer (58-D) is set to encode the
fA(x). The two layers are interconnected by the FC block G∗

(magenta colored and dashed box) to impose a linear con-
straint between the two modalities. For the fA(x), the hidden
layer’s Rectified Linear Units (ReLU) is removed, so it can
have both positive and negative values.

Objective Function of Deep-Proxy Let I(q, k) be an indi-
cator function stating whether or not the k-th sample belongs
to style class q. Let sq(x|w) be the q-th style component of
the soft-max simulating fS(x). Let fA(x|w) be the last hid-
den activation vector, where x is an input image and ω is the
network’s parameters. Then, an objective for multiple style
classification is set as in equation (4) below. The λ is added
to regularize the magnitudes of the last hidden layer.

min
ω

K∑
k

Q∑
q

−I(q, k) · loge(sq(x|ω)) + λ · ∥fA(x|ω)∥1 (4)

In the next subsections, three versions of deep-proxy are de-
fined depending on how G∗ matrix is formulated.

(1) Plain Method (G∗ = G) A G matrix is estimated and
plugged into the network as it is. Two practical solutions
are considered to estimate G, language models and sample
means of a few ground truth values. In training for Plain, the
G∗ is fixed as the G matrix, while the other FC layers are
updated. This modeling is exactly aligned with equation (2).

(2) SVD Method A structural disadvantage of Plain
method is noted and resolved by using Singular Vector De-
composition (SVD).

It is natural that the columns of a G matrix are corre-
lated because a considerable number of visual properties
are shared among the typical styles. Thus, if the machine
learns visual space properly, the multiplication of fA(x)t

with G necessarily produces fS(x)
t, highly valued on multi-

ple styles. On the other hand, deep-proxy is trained by one-
hot vectors promoting orthogonality among style and a sharp
high value on a specific style component. Hence, learning
with one-hot vectors can cause interference on learning vi-
sual semantics if we simply adopt the plain method above.

For example, suppose there is a typical Expressionism
painting x∗. Then, it is likely to be highly valued both in
terms of Expressionism and Abstract-Expressionism under
equation (2) because the two styles are correlated visually.
But if one hot-vector encourages the machine to value fS(x∗)

highly on the Expressionism axis only, then the machine
might not be able to learn visual concepts well, such as ges-
tural brush-strokes or mark-making, and the impression of
spontaneity, for those concepts are supposed to be high on
both styles. To fix this discordant structure, the G and fA(x)

are transformed to the space where typical style representa-
tions are orthogonal to one another. It reformulates equation
(2) by equation (5), where T is a transform matrix to the
space.

[fA(x)t · T t] · [T ·G] = fS(x)
t (5)

To compute the transform matrix T , G is decomposed by
SVD. As the number of attributes (m) is greater than the
number of classes (n) and its rank is n, the G is decomposed
by U · Σ · V t, where U(m × n) and V (n × n) are the matrices
whose columns are orthogonal and the Σ (n×n) is a diagonal
matrix. From the decomposition, V t = Σ−1 · U t · G, we can
use Σ−1 ·U t as the transform matrix T . The T = Σ−1 ·U t trans-
forms each column of G to each orthogonal column of V t.
In this deep-proxy SVD method, the G∗ is reformulated by
these SVD components as presented in equation (6) below.

G∗ = T t · T ·G = U · Σ−2 · U t ·G (6)

(3) Offset Method A positive offset vector o⃗ ∈ R+m is in-
troduced to learn a threshold to determine a visual concept
as relevant or not. Each component of o⃗ implies an individ-
ual threshold for each element, so when it is subtracted from
a column of a G matrix, we can take zero as an absolute
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threshold to interpret whether or not visual concepts are rel-
evant to a style class. Since G is often encoded by the values
between zero and one, especially when it is created by hu-
man survey (ground truth values), we need a proper offset to
shift G matrix. Hence, the vector o⃗ ∈ R+m is set as learnable
parameters in the third version of deep-proxy. It sets the G∗

as U · Σ−2 · U t · (G− µ), where µ = [o⃗|o⃗|...|o⃗] is the tiling ma-
trix of the vector o⃗. In Offset method, the SVD components
U and Σ are newly calculated for the new (G − µ) at every
batch in training.

Experiments
In this section, we quantitatively evaluate five proxy meth-
ods and compare their effectiveness in quantifying artistic
visual concepts.

Four Proxy Methods
Four pre-existing methods—sparse coding (Efron et al.
2004), logistic regression (LGT) (Danaci and Ikizler-Cinbis
2016), Principal Component Analysis (PCA) method (Kim
et al. 2018), and an Embarrassingly Simple approach to
Zero-Shot Learning (ESZSL) (Romera-Paredes and Torr
2015)—are reformulated in the context of proxy learning
and quantitatively compared with each other. We demon-
strate how LGT and deep-proxy based on deep-learning are
more robust than others when the general relationship (G
matrix) is estimated by language models; GloVe (Penning-
ton, Socher, and Manning 2014) or BERT (Devlin et al.
2018; Vaswani et al. 2017). We also show LGT performance
is degraded sensitively when G matrix is too sparse.

Logistic Regression (LGT) Each column of G was used
to assign attributes to images on a per class basis. When G

matrix is not a probabilistic representation, without shifting
zero points, the positives were put into the range of 0.5 to 1.0

and the negatives were put into the range of 0.0 to 0.5.

PCA The last hidden feature of a deep-CNN style classi-
fier is encoded by styles and then multiplied with the trans-
pose of G matrix to finally compute each degree of the visual
elements.

ESZSL This can be regarded as a special case of the deep-
proxy Plain by setting a single FC layer between visual fea-
tures and fA(x), replacing the softmax loss with Frobenius
norm ∥·∥2Fro, and encoding styles with {−1,+1}. To compute
the single layer, a global optimum is found through a closed-
form formula proposed by Romera-Paredes et al. (2015).

Sparse Coding It estimates fA(·) directly from the style
encodings fS(·) and G matrix by solving a sparse coding
equation without seeing input images. Its better performance
versus random cases proves our hypothetical modeling as-
suming informative ties between style and visual elements.

WikiArt Data Set and Visual Elements
This paper used the 76, 921 paintings in WikiArt’s data set
(WikiArt 2010) and merged their original 27 styles into
20 styles, the same as those presented by Elgammal et al.
(2018). 120 paintings were separated for evaluation, and the

remaining samples were randomly split into 85% for training
and 15% for validation. This paper adopts the pre-selected vi-
sual concepts proposed by Kim et al. (2018). In the paper, 59
visual words are suggested, but we used 58 words, excluding
the “medium” because it is not descriptive.

Evaluation Methods
Human Survey A binary ground truth set was completed
by seven art historians. The subjects were asked to choose
between one of the following three choices: (1) yes, the
shown attribute and painting are related. (2) they are some-
what relevant. (3) no, they are not related. Six paintings were
randomly selected from each of 20 styles, and art historians
made three sets of ground truths of 58 visual elements for
the 120 paintings first. From the three sets, a set was deter-
mined based on the majority vote. For example, if a question
is marked by three different answers, the (2) ‘somewhat rel-
evant’ is determined as the final answer. The results show
1, 652 (24%) as relevant, 782 (11%) as somewhat, and 4, 526

(65%) as irrelevant. In order to balance positive and negative
values, this paper considered the somewhat answers as rele-
vant and created a binary ground truth set. The 120 paintings
will be called “eval” throughout this paper.

AUC Metric The Area Under the receiver operating char-
acteristic Curve (AUC) was used for evaluation. When we
say AUC@K, it means an averaged AUC score, where the K

denotes the number of attributes to be averaged. A random
case is simulated and drawn in every plot as a comparable
baseline. Images are sorted randomly without the consider-
ation of the machine’s out values and then AUCs are com-
puted.

Plots To draw a plot, we measured 58 AUC scores for all 58
visual elements. The scores were sorted in descending order,
every three scores were grouped, and 19 (⌊58/3⌋) points of
AUC@3 were computed. Since many of the visual concepts
were not learnable (AUC ≤ 0.5), a single averaged AUC@58

value did not differentiate performance clearly. Hence, the
descending scores were used, but averaged at every three
points for simplicity. Regularization parameters were writ-
ten in the legend boxes of plots if necessary.

SUN and CUB SUN (Patterson et al. 2014) and CUB
(Wah et al. 2011) are adopted to understand the models in
general situations. All experiments are based on the stan-
dard splits, proposed by Xian et al. (2018). For evaluation,
mean Average Precision (AP) is used because the ground
truth of the data sets is imbalanced by very large negative
samples (the mean of all the samples is 0.065 for SUN and
0.1 for CUB at the binary threshold of 0.5). For G matrix,
their ground truth samples are averaged.

Estimation of Category-Attribute Matrix
Two ways to estimate G matrix are considered. First, from
the two sets of word embeddings—GloVe and BERT—two
G matrices are computed by equation (3). This paper will
refer to the BERT matrix as GB and to the GloVe matrix
as GG. The GG is used only for 12-style experiments in a
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Figure 3: (a) Three deep-proxy models by GGT20
are compared on “eval”. SVD is selected as the best model for art. (b) Proxy

models by GGT20
are compared. The solid-lines are evaluated by “eval-G”, and the dotted-lines are evaluated by “eval-NG”. (c)

Five proxy models by GB20
are evaluated by “eval”. (d) SVD and LGT by GB12

and GG12
are compared by “eval-VAL”.

section later because the vocabulary of GloVe does not con-
tain the all terms for the 20-style. As necessary, they will be
written with the number of styles involved in experiments
like GB20

or GB12
. Second, 58-D ground truths of the three

paintings, randomly selected among six paintings of each
style, were averaged and accumulated into columns, and the
ground truth matrix GGT was also established. To do so, we
first mapped the three answers of the survey with integers:
“relevant” = +1; “somewhat” = 0; and “irrelevant” = –1. The
60 paintings of “eval” used to compute GGT will be called
“eval-G” and the others will be called “eval-NG”.

Figure 4: SUN experiment: (a) Validation results for all
models are shown. (b) The relationship between validation-
AP (y-axis) and intra-class µ (x-axis) for LGT is presented
for each attribute (each red dot). Points of Offset (two green
dots) are drawn only when the AP-gap between Offset and
LGT is more than 0.2. The higher scores on the green dots
show that Offset is less affected by the sparsity of G ma-
trix than LGT. As the AP-gap gets lower to 0.15, 19 words
were found, and Offset worked better than LGT for all the
19 words.

Model Selection for Deep-Proxy
To select the best deep-proxy for art, the three versions of
Plain, SVD, Offset by GGT20

are compared. For Offset, the
GGT20

is pre-shifted by +1.0 to make all components of
GGT20

matrix positive, and let machines learn a new off-
set from it. For the regularization λ in equation (4), 1e−4,
5e−4, 1e−3, and 5e−3 are tested. In Fig. 3 (a), SVD achieved
the best rates and outperformed the Plain model. Offset was
not as effective as SVD. Since GGT20

was computed from
the ground truth values, its zero point was originally aligned

with “somewhat”, so offset learning may not be needed.
For a comparable result with SUN data, and Offset is

shown as the best in Fig. 4 (a). SUN’s G matrix is computed
by “binary” ground truths, so it is impossible to gauge the
right offset. Hence, Offset learning becomes advantageous
for SUN. However, for CUB, SVD and Offset were not
learnable (converged to a local minimum, whose recognition
is the random choice of equal probabilities). Since CUB’s
G matrix has smaller eigenvalues than other data sets, im-
plying subtle visual difference among bird classes, the two
deep-proxy methods happen to be infeasible by demanding
a neural net to capture fine and local visual differences of
birds first, in order to discern the birds as orthogonal vectors.
However, for the neural net especially in the initial stage
of learning, finding the right direction to the high goal is
far more challenging compared to the case of art and SUN,
whose attributes can be found rather distinctively and glob-
ally in different class images.

Analysis of Proxy Models
Proxy models by GGT20

and GB20
are evaluated in Fig. 3

(b) and (c). To avoid the bias by the samples used in com-
puting G matrix, for the models by GGT20

, validation (solid-
line) and test (dotted-line) are separately computed based on
“eval-G” and “eval-NG ” each.

Sensitive Methods to Language Models High sensitiv-
ity to GB20

is observed for PCA and ESZSL. In Fig. 3 (b),
PCA and LGT show similar performance on “eval-NG”, but
on “eval-G”, PCA performs better than LGT. The same phe-
nomenon is observed between ESZSL and SVD again. The
better performance on “eval-G” indicates somewhat direct
replication of G matrix into outcomes. This hints that ESZSL
and PCA can suffer more degradation than other models if G
matrix is estimated by language models, so its imperfection
straightly act on their results, as shown in Fig. 3 (c). Since
they compute visual elements through direct multiplications
between processed features and G matrix, and particularly
for ESZSL, it finds a global optimum given a G matrix, they
showed the highest sensitivity to the condition of G matrix.

Robust Methods to Language Models Deep-learning
makes LGT and deep-proxy slowly adapt to the informa-
tion given by G matrix, so the models are less affected by
language models than ESZSL and PCA, as shown in Fig. 3
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Figure 5: (a) The relationship between test-AUC (y-axis) and σstd (x-axis) and µ (size of dots) for LGT (by GGT20
and “eval-

NG”) is shown for each attribute (each red dot). Offset points (four green dots) are drawn only when the AUC-gap between the
SVD and LGT is more than 0.2. Each performance gap is traced by the blue dotted-lines. (b) Visual elements scored more than
0.65 AUC by SVD or LGT (by GB20

and “eval”) are presented. (c) Style Encoding of BERT and GloVe for the word “planar”.

(c). LGT can learn some visual elements through BERT or
GloVe, even when not all style relations for the elements are
correct in the models. For example, for GB , ‘expressionism’
is encoded as more related with “abstract” than ‘cubism’
or ‘abstract-expressionism’, which is false. But despite the
partial incorrectness, LGT gradually learns the semantic of
“abstract” at the rate of 0.84 AUC using the training data
in a larger range of styles, correctly encoded; northern-
renaissance (least related to “abstract”) < rococo < cubism <

abstract-expressionism (most related to “abstract”) etc (ab-
stract AUCs of SVD, PCA, and ESZSL by GB20

: 0.9, 0.8, 0.7).
Deep-proxy more actively adjusts some portion of G ma-

trix. Suppose there is a neural net trained with G′ = (G+∆G)

distorted by ∆G. By equation (2), this f ′
A(x)t · (G + ∆G) =

f t
S(x) is a valid convergent point of the net, and we also can

see this (f ′
A(x)t+bt(x)) ·G = fS(x)

t as another possible point,
where b(x)t · G = f ′

A(x)t · ∆G. If the bottom of the neural
net approximately learns f ′

A(x)t + bt(x), it would work as if
a better G is given, absorbing some errors. This adjustment
could explain the robustness to the imperfection of language
models than others, and also the flexibility to the sparse G

matrix that is shown to be directly harmful for LGT. This
will be discussed in the next section.

Logistic and Deep-Proxy on GGT Two factors are ana-
lyzed with LGT and SVD performance: intra-class’s stan-
dard deviation (σstd) and mean (µ). The intra-statistics of
each style are computed with “eval” and averaged across the
styles to estimate σstd and µ for 58 visual elements. For LGT
and SVD by GGT20

, AUC is moderately related with σstd

(Pearson correlation coefficient rLGT = −0.65 and rSV D =
−0.51), but their performance is not explained solely by σstd.
As shown in Fig. 5 (a), “monochromatic” (AUC of LGT and
SVD: 0.49 and 0.58) scored far less than “flat” (AUC of LGT
and SVD : 0.94 and 0.92) even if both words’ σstd are simi-
lar and small. Since the element of monochromatic was not
a relevant feature for most of styles, it was consistently en-
coded as very small values across the styles in GGT matrix.
The element has small variance within a style, but does not
have enough power to discriminate styles so failed to learn.
LGT can be more degraded with the sparsity because the in-

formation encoded that is close to zero for all styles cannot
be back-propagated properly. As shown in Fig. 4 (b), intra-
class µ of 102 attributes in SUN are densely distributed be-
tween 0.0 and 0.1, so LGT is lower ranked compared to art.
LGT AP is most tied in the sparse µ to others (rLGT = 0.43,
rOffset = 0.36, rPCA = 0.33, rESZSL = −0.15 at µ < 0.3).

For SVD by GGT20
, its overall performance is lower than

LGT by GGT20
. When the words “diagonal”, “parallel”,

“straight”, and “gestural” (four green dots in Fig. 5 (a)) were
found by the condition of |AUC(SV D) − AUC(LGT )| > 0.2,
LGT scored higher than SVD for all the words. Since SVD
is trained by an objective function for multiple style classifi-
cation, the learning visual elements can be restricted by the
following cases. Some hidden axes could be used to learn
non-semantic features to promote learning styles. Or, some
necessary semantics for styles could be strewn throughout
multiple axes. Hence, LGT generally learns more words than
SVD when G matrix is estimated by some ground truths as
shown in Fig. 3 (b), but G matrix should not be too sparse
for LGT.

Logistic and Deep-Proxy on BERT and GloVe For lan-
guage models, it is a bit hard to generalize the performance
of LGT and SVD. As shown in Fig. 5 (b), it was not clear
which is better with BERT. We needed another comparable
language model to understand their performance. GloVe is
tested after dividing 20 styles into train (12 styles) 1 and test
(8 styles). Aligned with the split, the “eval” was also sep-
arated into “eval-VAL” and “eval-TEST ” (8 unseen styles
in training). Here, the “eval-VAL” was used to select hyper
parameters. On the same split, the models by BERT GB12

were compared, too. Depending on each language model,
the ranking relations were differently shown. In Fig. 3 (d),
SVD by GB12

scored better than LGT at all AUC@3 points.
However, LGT by GG12

was better than SVD for the first top
15 words, but for second 15 words, SVD scored better than
LGT. To figure out a key factor of the different performance,

1Baroque, Cubism, Expressionism, Fauvism, High-
Renaissance, Impressionism, Mannerism, Minimalism, Pop-Art,
Ukiyo-e
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Figure 6: Correlation analysis between AUCs and matrix
scores. The BERT plots (a-1) and (a-2) are drawn based on
the 22 visual elements which scored more than AUC 0.6 by
any of SVD or LGT (by GB12

). The GloVe plots (b-1) and
(b-2) are drawn based on the 28 visual elements which scored
more than AUC 0.6 by any of SVD or LGT (by GG12

). This
shows LGT is more sensitively affected by the quality of lan-
guage models.

we scored the quality of BERT and GloVe with {−1,+1} for
each visual element and conducted correlation analysis be-
tween the scores and the AUC results. Pearson correlation
coefficient r between AUCs and the scores are computed.
The results are shown in Fig. 6.

In the analysis, GloVe scored higher than BERT, and LGT
showed the stronger correlation than SVD between AUCs
and scores. This proves the robustness of SVD to the imper-
fection of language models along with the results of Fig 3
(d). As a specific example, the word “planar” is incorrectly
encoded by BERT, quantifying some negatives on expres-
sionism, impressionism, and post-impressionism as shown
by Fig. 5 (c). The wrong information influenced more on
LGT, so its AUC scored 0.38 (eval-TEST: 0.47) by BERT but
0.77 (eval-TEST: 0.76) by GloVe, while SVD learned “pla-
nar” by the similar rates of 0.73 (eval-TEST: 0.58) by BERT
and 0.78 (eval-TEST: 0.68) by GloVe on “eval-VAL”. For
LGT, the defective information is directly provided through
training data, so it is more sensitively affected by noisy lan-
guage models. However, SVD can learn some elements even
when it is trained by a G matrix that is not perfect if the el-
ements are essential for style classification possibly through
the adjustment operation, as aforementioned.

Descending Ranking Results of SVD by GB20
To present

some example results, 120 paintings of “eval” are sorted
based on the activation values fA(x) of SVD by GB20

. Table
1 presents some results of words that achieved more than

abstract chromatic planar representational perspective

0.90 0.79 0.71 0.67 0.46

Table 1: Descending ranking results (top to bottom) based
on the prediction fA(x) of SVD (GB20

and λ = 0.0). The
three most (1 − 3 rows) and three least (4 − 6 rows) relevant
paintings are shown as the machine predicted. The last row
indicates the AUC score of each visual element.

0.65 or less than 0.65 with BERT model. This shows how
the “eval” paintings are visually different according to each
output-value of SVD by GB for the selected five visual ele-
ments (abstract, chromatic, planar, representational, and per-
spective).

Conclusion and Future Work
Quantifying fine art paintings based on visual elements is
a fundamental part of developing AI systems for art, but
their direct annotations are very scarce. In this paper, we pre-
sented several proxy methods to learn the valuable informa-
tion through its general and linear relations to style, which
can be estimated by language models or human survey. They
are quantitatively analyzed to reveal how the inherent struc-
tures of the methods make them robust or weak on the prac-
tical estimation scenarios. The robustness of deep-proxy to
the imperfection of language models is a key finding. For fu-
ture work, we will look at more complex systems. For exam-
ple, a non-linear relation block learned by language models
could be transferred or transplanted to a neural network to
learn visual elements through the deeper relation with styles.
Furthermore, direct applications for finding acoustic seman-
tics for music genres or learning principle elements for fash-
ion designs would be interesting subjects for proxy learning.
Their attributes are visually or acoustically shared to define
higher level of categories, but their class boundaries could
be softened as proxy representations.
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