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Abstract

Efficient traffic signal control is an important means to
alleviate urban traffic congestion. Reinforcement learning
(RL) has shown great potentials in devising optimal signal
plans that can adapt to dynamic traffic congestion. How-
ever, several challenges still need to be overcome. Firstly, a
paradigm of state, action, and reward design is needed, es-
pecially for an optimality-guaranteed reward function. Sec-
ondly, the generalization of the RL algorithms is hindered by
the varied topologies and physical properties of intersections.
Lastly, enhancing the cooperation between intersections is
needed for large network applications. To address these is-
sues, the Option-Action RL framework for universal Multi-
intersection control (OAM) is proposed. Based on the well-
known cell transmission model, we first define a lane-cell-
level state to better model the traffic flow propagation. Based
on this physical queuing dynamics, we propose a regularized
delay as the reward to facilitate temporal credit assignment
while maintaining the equivalence with minimizing the aver-
age travel time. We then recapitulate the phase actions as the
constrained combinations of lane options and design a univer-
sal neural network structure to realize model generalization
to any intersection with any phase definition. The multiple-
intersection cooperation is then rigorously discussed using
the potential game theory.
We test the OAM algorithm under four networks with differ-
ent settings, including a city-level scenario with 2,048 inter-
sections using synthetic and real-world datasets. The results
show that the OAM can outperform the state-of-the-art con-
trollers in reducing the average travel time.

Introduction
With rapid urbanization and increased car ownership, traf-
fic congestion has become one of the major issues for ur-
ban areas. Traffic control systems have shown effective-
ness in improving the efficiency and robustness of road net-
works. Classical examples include SCATS, SCOOT, and the
more recent max-pressure controller (Varaiya 2013). With
the development of AI technology and the growing size of
traffic data, learning-based control approaches have shown
great potential in solving traffic signal control problems. In
particular, reinforcement learning (RL) seems a promising
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solution to that in real-world scenarios (Wei et al. 2018,
2019b; Zheng et al. 2019; Chen et al. 2020; Oroojlooy et al.
2020). Although the RL methods have achieved significant
improvements in intersection control, several critical issues
still need to be addressed:
(1) A paradigmatic design of state, action, and reward
function is missing. In the literature, these three compo-
nents are generally designed manually based on experience,
which would result in difficulties in generalization. Specif-
ically, an optimality-guaranteed reward function that mini-
mizes the average travel time is still missing.
(2) A universal framework for generalization is needed.
The intersections in the real world vary in different phys-
ical capacities, topologies, and traffic flows. Besides, the
parameter-sharing approach is more realistic in application
owing to its data-efficient nature, comparing with training
the agents for each intersection separately. To this end, the
design of the RL algorithm is required to generalize to dif-
ferent real-life scenarios with one universal structure (Zheng
et al. 2019; Oroojlooy et al. 2020).
(3) Collaboration among multiple intersections should be
analyzed. Coordination between neighboring intersections
is essential for efficient traffic management. The centralized
approaches are computationally intractable for real-time de-
cision making (Kuyer et al. 2008). Oppositely, the decentral-
ized methods are more efficient by aggregating neighboring
information and by executing individually (Chen et al. 2020;
Wei et al. 2019b; Zhu et al. 2021). However, the mechanism
of coordination in different conditions under the decentral-
ized regime is still unclear.

To address the above issues, we propose the Option-
Action RL framework for universal Multiple-intersection
control (OAM). Firstly, we redesign the lane-cell-level state
representation based on cell transmission model (CTM) (Da-
ganzo 1994), which simulates the physical traffic-flow prop-
agation. The state design can better balance the learning
complexity and representation ability. We then reformulate
the phase actions as the constrained combinations of lane
options, where lane options are defined under different cur-
rent phase as shown in Fig. 1. By disentangling the phase
action into lane-level options, the action structure can gen-
eralize to any intersection topology with any phase defini-
tion. We also propose a decomposed delay with regularizer
as the reward to facilitate temporal credit assignment and
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maintain the equivalence with optimizing the average travel
time. Based on the decomposition scheme of delay, we rig-
orously discuss all possible conditions of coordination using
the potential game. We then derive a decentralized Q func-
tion based on local information which considers the down-
stream traffic flow to promote coordination. A novel neu-
ral network structure is provided to represent the phase val-
ues and lane option values. It should be highlighted that the
structure is invariant to different properties of intersections,
and thus it can generalize to any intersection. Finally, we
conduct extensive experiments to demonstrate the efficiency
of our methods comparing to other state-of-the-art RL meth-
ods.

Figure 1: Option-action illustration

In summary, the contributions of this paper are as follows:

• By dividing lane features into cell level, the designed
physic-informed state can represent the traffic flow prop-
agations and facilitate generalization ability.
• We propose regularized delay as the reward to promote

temporal credit assignment and prove its equivalence
with minimizing the average travel time.
• The coordination mechanisms are explicitly discussed

under potential game theory. In this way, the coordina-
tion is enhanced through state augmentation.
• The phase action is disentangled into lane options. By

doing so, a universal structure is proposed to evaluate
different phase values. To the best of our knowledge, it
is the first universal structure generalizing to any inter-
section topology with any phase definition.

Related Work
There are different RL-based approaches dealing with inter-
section control and some of them try to tackle with those
issues mentioned above.

Firstly, the design of state, action, and reward. The state
design includes vehicle-specific features and lane-specific
features. The aerial image of intersections or the occupa-
tion matrix captures all details of an intersection (Wei et al.
2018; Van der Pol and Oliehoek 2016). Other works se-
lect lane-level features (e.g., number of vehicles) in different
lanes of an intersection as the state representation (Wei et al.
2019a; Chen et al. 2020). However, vehicle-level features
are not data-efficient, while lane-level features omit the flow

propagation of traffic and cannot model lanes with different
lengths and speed limits.

The action of an intersection is to choose a certain
phase, which is different combinations of non-conflict lane
movements (Zheng et al. 2019). Intersections with differ-
ent topologies have different available phases. To design a
universal policy on different intersection topologies, FRAP
(Zheng et al. 2019) uses pair-wise embedding of different
phases based on the principle of phase competition. At-
tendLight (Oroojlooy et al. 2020) aggregates participating
lane movements through the attention mechanism. However,
both works only consider the participating lane movements
for phase embedding, while other stopped lane movements
are ignored. Besides, to model the next phase action under
different current phases, they directly use the embedding of
current active phase (e.g., one-hot encoding), which cannot
generalize to intersections with different phase definitions.

As for the reward design, a wide range of reward func-
tions (e.g., average speed, queue length, occupancy, etc.)
are tested in (Egea et al. 2020), and they find that the av-
erage speed adjusted by demand performs best in the empir-
ical study. Pressure is another widely-used reward function
that evaluates the imbalance of traffic flow (Varaiya 2013).
PressLight (Wei et al. 2019a) proves that the max-pressure
agent can stabilize the queue length in the system. However,
the equivalence of designed reward function with minimiz-
ing average travel time is not strictly proved.

Secondly, the generalization of RL policies deals with
different intersection topologies and traffic flows. To de-
sign a universal structure on different intersection topolo-
gies, FRAP (Zheng et al. 2019) and AttendLight (Oroojlooy
et al. 2020) use aggregation of lane movements to model dif-
ferent intersection topologies. To improve the robustness of
RL policies under different traffic flows, the meta-learning
approach is applied. MetaLight (Zang et al. 2020) trains the
meta-learner on different traffic flows based on the gradient-
based meta-learning approach. GeneraLight (Zhang et al.
2020) clusters different traffic flows and trains RL agents on
flows within the same cluster, respectively. MetaVIM (Zhu
et al. 2021) uses a latent variable that represents different
traffic flows and takes it as input of the policy. Although the
meta-learning approaches help accommodate different traf-
fic flows, the lower-level representation structure of intersec-
tions needs further improvements.

Thirdly, the collaboration of multiple intersections. To
obtain cooperative decisions of multiple intersections, cen-
tralized optimization approach (e.g., max-sum algorithm) is
adopted in (Kuyer et al. 2008; Van der Pol and Oliehoek
2016). However, they require the maximization over a com-
binatorial joint action space and lack scalability in the large-
scale road network. Decentralized approaches focus on ag-
gregating adjacent intersections’ information to learn coop-
erative policy. MPLight (Chen et al. 2020) adopts pressure-
based state and reward to coordinate adjacent intersections.
CoLight (Wei et al. 2019b) applies a graph attention net-
work to aggregate neighboring information. HiLight (Xu
et al. 2021) jointly optimizes the objective of neighboring
intersections based on a hierarchical structure. However, to
avoid the cost of frequent communication among agents, the
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circumstances under which the coordination between neigh-
boring junctions is needed should be specified.

Preliminary
Single Intersection Modeling
We first consider a single four-legged intersection i ∈ I to
illustrate basic definitions of the traffic control problem. An
intersection is defined as a junction of several roads, where
each road may have one or two directions and each direction
includes several lanes.

Figure 2: 4-legged intersection illustration (Zang et al. 2020)

• Lanes: we define the set of all lanes of the intersection i
as Li = Lin

i ∪ Lout
i , which includes incoming lanes Lin

i
and outgoing lanes Lout

i . Each lane {lij}j∈Li
has differ-

ent traffic characteristics (e.g., number of vehicles, aver-
age speed, and queue length) and physical characteristics
(e.g., road length and speed limit). Those characteristics
define the state of a lane.
• Cells: for each lane lij , cells Cij are divided according

to the speed limit as ‖lijc‖ = v∗ij ×∆t shown in Fig. 2,
where the cell length ‖lijc‖ denotes the maximum dis-
tance a vehicle can traverse within a single time step ∆t
with the maximum allowable speed v∗ij . In other words,
vehicles can at most travel across one cell within ∆t. For
each cell, according to the cell transmission model (Da-
ganzo 1994; Su, Chow, and Zhong 2021), the cell state
can be represented by the number of vehicles, the cell
density1, and the average speed.
• Movements: a traffic movement is defined as the traffic

flow moving from one incoming lane {lij}j∈Lin
i

to an-
other outgoing lane {lik}k∈Lout

i
(i.e., left turn, through,

and right turn). The movements in each intersection are
constrained by the traffic rules.
• Phases: different combinations of non-conflict traffic

movements lij form the set of available phases {lij}j∈Lp
i
,

where p ∈ Pi indicates the phase of intersection i. At
each time step t, the intersection will choose a phase and
keep it for ∆t (e.g., 10s). When switching to a new phase,
there exists an all-red phase (e.g., 5s) to clear all vehicles

1the density is defined as the number of vehicles per unit length
of the roadway

within the intersection junction. Therefore, the phase du-
ration for the switched phase is shorter (e.g., 5s) than the
kept phase (e.g., 10s).

The main goal of intersection control is to minimize the
average travel time of all vehicles when finishing their plan-
ning routes.

Method
In this section, we present our end-to-end RL framework for
the intersection control problem. To formulate it under the
RL context, the state, action, and reward of the intersection
need to be designed.

Reinforcement Learning Design
State: considering the physical propagation of traffic flow
in the incoming lanes, we divide the incoming lane into
cells according to its speed limit. The state for each cell
sijc = {mijc, kijc, vijc}j∈Lin

i ,c∈Cij
includes the number of

vehicles mijc, the density kijc and the average speed vijc of
vehicles within the cell. Different from using average fea-
tures of the whole lane or using specific features of each
vehicle, the cell-based modeling approach balances the rep-
resentation ability and learning complexity. At time step t,
the state of the intersection sti = ({stijc}j∈Lin,c∈Cij

, ai,t−1)
includes cell features and current phase information ai,t−1.
Action: from the perspective of each incoming lane, its ac-
tion has two options: aij ∈ {1, 0}, where 1 denotes the lane
movement is available and 0 otherwise. From the perspective
of an intersection, the action ai is an available phase p ∈ Pi,
which consists of options of all incoming lanes movements:

ai = {aij,1}j∈Lp
i
∪ {aij,0}j∈Lin

i \L
p
i

(1)

Pre-defined phases constrain the available combinations of
lane options. For example, there are eight pre-defined phases
in Figure 1, where each phase consists of two available
movements and the other six stopped movements. Further,
given different current phases, the effective green time is
different for switching to a new phase or keeping the same
phase. Existing studies (Wei et al. 2019a) deal with this is-
sue by embedding the current phase information, which can-
not generalize to intersections with different phase defini-
tions. To solve it, we extend the definition of lane options as
{1k, 1s, 0}. As shown in Fig. 1, option 1k refers to that the
lane movement keeps available as the current phase is kept
and option 1s refers to that the lane movement will become
available after switching to the new phase. The phase ac-
tions considering the current phase information are also ex-
tended as {ai,k, ai,s}, where the action of keeping the phase
is ai,k = {aij,1k}j∈Lp

i
∪ {aij,0}j∈Lin

i \L
p
i

and the action of
switching to a new phase is similarly defined. With the ex-
tended definitions, the option-action modeling approach can
represent any intersection topology with any phase defini-
tion.
Reward: the objective of intersection control is to minimize
the average travel time of vehicles, which is equal to min-
imize the total delay:

∑
n Tn − T ∗n , where Tn is the actual

travel time when vehicle n finishes its trip. T ∗n is the ideal

4552



travel time, where vehicle n arrives its destination with the
speed limits of each lane along its route without delay.

Proposition 1 The total delay
∑

n Tn − T ∗n of all vehicles
is equal to the total delay of all incoming lanes. Considering
the divided cells of each lane, the total delay is also equal to
the total cell delay.

min
∑
n

Tn − T ∗n (2)

=
∑
t

∑
i

∑
j

∑
c

dt,i,j,c︸ ︷︷ ︸
cell delay

(3)

Proof 1 See Appendix A.1.

Based on the decomposition form of total network delay
in Eq. 3, we naturally derive the reward definition: rti =∑

j

∑
c−dt,i,j,c, which represents the total negative delay

of intersection i within time interval [t, t + ∆t). However,
from the perspective of credit assignment (CA) in RL al-
gorithm (Sutton 1984), a good reward signal has to reflect
the contributions of different actions. The CA problem ex-
ists in intersection control scenarios. For example, when ve-
hicles travel with free-flow speed, their delay is zero. How-
ever, there are two cases for the zero-delay situation. The
first case is that when one vehicle travels in the upstream
of the incoming lane with free-flow speed, the phase action
will not affect the reward instantaneously. The second case
is that one vehicle crosses the junction of the intersection
with free-flow speed. The zero delay of the second case is
directly correlated with the chosen phase action.

Therefore, to realize better credit assignment for agents
and accelerate learning process, we extend the definition of
rewards in each lane as r∗t,i,j =

∑
c−dt,i,j,c + λmout

t,i,j ,
where mout

t,i,j is the number of outflowing vehicles of lane
lij during time [t, t + ∆t) of intersection i and λ is the co-
efficient of regularizer mout

t,i,j . The outflow term can directly
reflect the instantaneous contribution of an action.

Proposition 2 The regularizer mout
t,i,j does not affect the op-

timality of original objective function
∑

n Tn − T ∗n
Proof 2 See Appendix A.2.

Multiple Intersections Cooperation
There are two directions for promoting multiple intersec-
tions coordination: explicit planning (e.g., max-sum algo-
rithm (Kuyer et al. 2008; Van der Pol and Oliehoek 2016))
and learning-based algorithm. In comparison, explicit plan-
ning computes the optimal joint actions for all intersections
directly, while the learning-based algorithm aggregates the
neighboring information (Wei et al. 2019b) and optimizes
the weighted neighboring rewards (Xu et al. 2021; Zhu et al.
2021). However, the explicit planning approach suffers from
the computational burden, thus intractable in large-scale net-
works. The decentralized method with aggregation seems
promising, but it still requires identifying the conditions that
intersections need cooperation. To answer issues mentioned
above, we introduce the state-based potential game (PG)

(Marden 2012). Firstly, we model the multi-intersection con-
trol problem as a game G = {I,S,A,R}, where I is the set
of agents (intersections), S = {Si}i∈I is the joint state space
of all agents and si ∈ Si is the state space for each agent.
A and R are similarly defined as the joint action space and
reward space.

Definition 1 (State-based Potential Games): A game G =
{I,S,A,R} is called an (exact) state-based potential game
if there exists a measurable function φ : S × A → R such
that the following holds: ∀(ai, a−i), (a′i, a−i) ∈ A, ∀s ∈ S ,
and ∀i ∈ I:

ri (s, ai, a−i)−ri (s, a′i, a−i) = φ (s, ai, a−i)−φ (s, a′i, a−i)
(4)

Condition (4) states that the change of the reward function
ri of an individual agent i equals the change in the global
potential function φ over the joint actions. In other words,
maximizing each reward function separately can achieve the
objective of maximizing the global potential function φ in
the potential game.

We set the total reward of all intersections within a sin-
gle time step as r =

∑
i ri(s, a), where s = {si}i∈I and

a = {ai}i∈I are the joint states and actions, respectively.
Following that, we define the potential function of all inter-
sections as φ(s, a) =

∑
i ri(s, a) and denote the individual

reward function as ri(si, ai). The necessary conditions of
when the state-based potential game is formed are derived
as follows:

Proposition 3 The single step multiple intersection con-
trol forms a state-based potential game if ri(s, ai, a−i) =
ri(si, ai).

Proof 3 See Appendix A.3.

Proposition 4 The condition ri(s, ai, a−i) = ri(si, ai)
holds if there is no Queue spillback or Critical short road
in the road network. The two terms are defined as:

• Queue spillback happens when a lane lij is occupied with
vehicles. Vehicles from other lanes cannot cross the junc-
tion of an intersection and drive into lane lij in green
light.
• Critical short roads refer to those roads with a length

shorter than the cell length v∗ij ×∆t.

Proof 4 See Appendix A.4.

The proposition above clarifies under which circum-
stances coordination is needed between neighboring inter-
sections. Firstly, suppose the queueing vehicles spread to the
last cell of the outgoing lane. In this case, the control policy
should not allow any vehicle from the incoming lane to drive
into the congested outgoing lane. To guide the controller to
learn such decisions, we augment the individual state with
the outgoing lane state as si = {sin

ij}j∈Lin
i
∪ {sout

ik }k∈Lout
i

. In
this way, the single-step delay can be completely represented
given the state with both incoming and outgoing lanes.
Therefore, considering the queue spillback case, the condi-
tion becomes ri(s, a) = ri({sin

ij}j∈Lin
i
, {sout

ik }k∈Lout
i
, ai).
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Figure 3: OAM Architecture. Local observation includes cell features for both incoming lanes and outgoing lanes. They are
arranged following movement sequence and form the input cell-lane tensors. The lane option embedding component outputs
three option values for each lane movement. The combinations of lane option values form the phase embeddings, including the
embedding of switching phase and the embedding of keeping phase. Finally, according to the index of the current phase, we
output all phase values.

Second, when there are critical short roads in the network,
the reward of intersection i is directly correlated with the de-
cision of connected intersections. Therefore, the optimiza-
tion approach (e.g., max-sum algorithm) should be adopted
to jointly optimize the decisions of intersections with crit-
ical roads. However, we select the decision interval as 10
seconds, where it is rare for a vehicle to travel across two
intersections within 10 seconds in an urban road network.
Therefore, in this paper, we do not consider the critical short
roads situation.
Q Function Decomposition. To optimize the long-term
reward of intersections, we introduce the Q function as
Q(s, a) = E[

∑
t γ

tr(st, at)|s, a], which represents the
long-term discounted reward (Sutton and Barto 2018). Fol-
lowing the decomposition form of single-step total delay, we
give the decentralized Q function as:

Proposition 5 The global Q function can be decomposed as
the sum of local Q function as: Qtot(s, a) =

∑
iQi(si, ai)

Proof 5 See Appendix A.5.

Further, for each intersection, the phase actions under dif-
ferent current phase are defined as ai ∈ {ai,k, ai,s}, where
each phase action consists of a set of lane options. There-
fore, we can further decompose the intersection Q value into
the sum of lane option values as:

Qi(si, ai) =
∑
j

Qij(sij , aij) (5)

where Qij(sij , aij) = E[
∑

t γ
trtij(stij , atij)|(sij , aij)]

represents the lane option value. Since the lane options con-
sist of three choices: aij ∈ {1k, 1s, 0}, the correspond-
ing lane option values represent the value of movement un-
der keeping phase Qij,1k , movement under switching phase
Qij,1s and stopping Qij,0, respectively.

To solve the Q values for phase actions, we follow the
deep Q learning algorithm (Mnih et al. 2015) to minimize
the Bellman residues as:

L(θ) = E[(ri + γmaxa′
i
Qi(s

′
i, a
′
i, θ)−Qi(si, ai, θ))

2]

(6)

where θ denotes the parameters of neural network for Q
function approximation.

The decomposition scheme above motivates us to design
a universal neural network architecture to represent the lane
option values and phase Q values in the next section.

Neural Network Design
Different intersections consist of different roads with differ-
ent capacities and speed limits, resulting in different avail-
able movements and phases. A fixed-input-output neural
network cannot generalize to different intersections (Wei
et al. 2019a,b; Chen et al. 2020). Existing universal struc-
tures (Zheng et al. 2019; Oroojlooy et al. 2020) only model
participating lane movements of a phase. Besides, they di-
rectly use the embedding of current phase information to
model the action of switching phase. However, the phase
embedding is not universal to all intersections since phase
definitions are varied for different intersections. To deal with
the issues mentioned above, we present the neural network
architecture in Fig. 3.
• Local observation: the input state of intersection i con-

sists of the cell state in each incoming lane and outgoing
lane, and is formulated as 3-dimension tensors. For fea-
tures of each incoming lane, they follow the sequence of
each lane movement.
• Cell and lane embedding: we adopt a sharing-parameter

multilayer perceptron (MLP) to encode the cell state as
eijc. Then we concatenate all cell embedding of a lane
and gain the embedding of each lane movement as eij .
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(a) Jinan, 12 traffic signals (b) Hangzhou, 16 traffic signals (c) Manhattan, 48 traffic signals (d) Nanchang, 2,048 traffic signals

Figure 4: Experimental road networks

• Lane option value: each lane movement lij has three
options: aij ∈ {1k, 1s, 0}. We can use three differ-
ent MLP encoders to output three option values as
{Qij,1k , Qij,1s , Qij,0}, respectively. To reduce the learn-
ing complexity, motivated by the dueling structure (Wang
et al. 2016), we propose a local dueling structure for op-
tion value representation as Qij,1k = Vij,0 + Aij,1k and
Qij,1s = Vij,0 +Aij,1s , where Qij,0 = Vij,0 is the value
for default stopping option, Aij,1k is the advantage op-
tion value for keeping phase compared with stopping,
and Aij,1s is the advantage option value for switching
phase compared with stopping. Therefore, instead of out-
putting three option values separately, the lane encoder
outputs {Vij,0, Aij,1k , Aij,1s} and add them following
the dueling structure.
• Phase value: based on the specific lane-phase combina-

tions, we concatenate different option values into phase
embedding, including embedding of keeping phase and
switching phase. For example, the embedding of keeping
phase p is as eip,k = {Qij,1k}j∈Lp

i
∪{Qij,0}j∈Lin

i \L
p
i
. We

then aggregate each phase embedding to corresponding
phase value through summation. For instance, the value
of keeping phase is as:

Qip,k =
∑
j∈Lp

i

Qij,1k +
∑

j∈Lin
i \L

p
i

Qij,0 (7)

=
∑
j∈Lin

i

Vij,0 +
∑
j∈Lp

i

Aij,1k (8)

The Qmix structure (Rashid et al. 2018) and attention
mechanism (Yang et al. 2020) can also be adopted for
the phase embedding aggregation. Based on the index of
the current phase, we output corresponding phase values
at this time step.

A detailed discussion about model generalization and pa-
rameter complexity is presented in Appendix B.2.

Experiments
Experiment Setting
We conduct a series of empirical experiments on Cityflow
(Zhang et al. 2019), an open-source platform for traffic sim-
ulation. Given the configurations of the road network and

traffic flow, the simulator can provide the traffic informa-
tion accordingly and execute the chosen phases derived by
the control policy. Firstly, we conduct single-environment
and multi-environment training on three different road net-
works to evaluate the proposed OAM controller. The pub-
lic datasets2 provide the networks of Jinan (4 × 3 grids),
Hangzhou (4 × 4 grids) and Manhattan (16 × 3 grids).
To test the generalization ability of the proposed method,
we further conduct the experiments on the network of Nan-
chang city3, which consists of 2,048 intersections with vari-
ous junction topologies and properties (e.g., lane length, lane
speed limits, etc.). A detailed training scheme is presented in
Appendix B.3. Lastly, an ablation study is presented to illus-
trate the effectiveness of different components of the OAM
method.

Compared Methods
Here are the brief introductions of the benchmarks. The pro-
posed OAM method is compared with the following SOTA
RL-based approaches. We do not include the conventional
methods such as SOTL and Max-pressure, as they cannot
outperform the RL-based controllers as presented in the past
works (Zheng et al. 2019; Wei et al. 2019b; Chen et al.
2020).

• PressLight (Wei et al. 2019a): A RL controller with the
use of DQN, whose reward is defined as the pressure of
each intersection inspired by (Varaiya 2013).
• FRAP (Zheng et al. 2019): By modeling the phase com-

petition mechanisms, the green signal is more likely
given to the movements with higher demand. Besides, it
can achieve invariance to symmetries in signal controls,
thus reducing the state dimensions.
• MPLight (Chen et al. 2020): Combined FRAP structure

with pressure-based reward, MPLight conducts large-
scale experiments on Manhattan road network.
• AttendLight (Oroojlooy et al. 2020): This method adopts

the attention network to handle the different topologies
of intersections. A universal model is built up for any
network configuration, and the reward is also set as the
pressure of the intersections.

2https://traffic-signal-control.github.io/
3https://kddcup2021-citybrainchallenge.readthedocs.io/
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(a) Jinan, 12 traffic signals (b) Hangzhou, 16 traffic signals (c) Manhattan, 48 traffic signals

Figure 5: Training performance

• CoLight (Wei et al. 2019b): This method employs the
graph attention network to incorporate neighbor’s infor-
mation, thus enhancing the cooperation between neigh-
boring intersections. The reward is to minimize the queue
length of the intersections.

Hyperparameters. For the fairness of comparison, all the
RL-based methods employ the parameter-sharing scheme
and are trained by DQN (Mnih et al. 2015) with the follow-
ing parameters: the discount factor, batch size and learning
rate are set as 0.9, 256 and 1e-3, respectively. The buffer
size is limited to four episodes, the optimizer is Adam and
the exploration strategy uses ε−greedy. The input state in-
cludes the number of vehicles, lane density, average lane
speed, and phase information encoded as one-hot. For each
experiment, a parameter-sharing agent is trained with tran-
sitions collected from all intersections of the road network.
Each controller is trained under different random seeds three
times, and the average travel time is chosen as the evaluation
metric.

Single-environment Training
We start with experiments on single-environment training to
compare the OAM controller with the benchmarks. Specif-
ically, each controller is trained and tested on the same net-
works (Jinan, Hangzhou, and Manhattan), respectively. The
progressions of average travel time along training are shown
in subfigures (a), (b), and (c) in Fig. 5. Firstly, it depicts
that the convergence rates of the controllers with topology-
invariant structures (FRAP, AttendLight, and OAM) are
much faster than those with fully connected neural net-
work structures (PressLight and CoLight). This is due to the
topology-invariant framework, which efficiently utilizes the
transitions from other intersections and hence accelerates the
learning process. We then find that the proposed OAM struc-
ture presents a lower variance of reward curve than other
structures since OAM considers all lane movements instead
of only participating lanes. In comparison, FRAP and At-
tendLight fit each intersection’s Q function based on only
part of the local information, which results in higher vari-
ance and lower accuracy. Moreover, although the Attend-
Light with attention-based aggregation can outperform the
FRAP structure with summation-based aggregation, it can-
not match the performance of OAM. This again emphasizes

that the observations of the non-participating lanes play a
vital role in Q function approximation.

Multiple-environment Training
We then conduct experiments on multiple environments to
demonstrate the generalization of our proposed method.
FRAP, MPLight, and AttendLight are used for comparison
as they explicitly considered generalization in controller de-
sign. As shown in Appendix B.2, those controllers interact
with the three networks in parallel for training. The result is
presented in Fig. 6. Trained by the sharing transitions from
different road networks, OAM can still deliver a learning
curve with lower variance. On the contrary, the FRAP-based
approaches present significant variance and oscillations dur-
ing training. Although the variance given by the Attend-
Light decreases along the training process, the OAM struc-
ture can always maintain a lower variance and higher reward
even without the attention mechanism. Therefore, the multi-
environment experiments clearly demonstrate the superior
generalization ability of the proposed OAM structure.

City-level Training and Evaluation
The three gird networks above (Jinan, Hangzhou, and Man-
hattan) mainly consist of regular 4-legged intersections with
similar speed limits and road lengths. However, for a real-
world city, the intersections are more complex and irregu-
lar. For example, there are 3-, 4-, and 5-legged intersections
with different road lengths in the Nanchang network. There-
fore, we conduct city-level experiments to demonstrate the
scalability and generalization ability of the proposed OAM
method. Specifically, as shown in subfigure (d) in Fig. 4, we
select area 4 of Nanchang to train a parameter-sharing agent
with randomly generated traffic flows of different volumes.
We then test the trained agents in other areas with different
scales of traffic flows. As shown in Table 1, OAM outper-
forms MPLight and AttendLight in eight scenarios out of
nine, as the OAM delivers the least average travel time in
all areas under different traffic demands. Besides, MPLight
can handle the mild demand better as it outperforms Attend-
Light in scenarios with fewer vehicles (area 2 and area 3
with traffic volumes of 2,000 and 4,000), while AttendLight
performs better under congested situations (area 1 and area
2 with traffic volume of 6,000). To sum up, the generaliza-

4556



Area 1 Area 2 Area 3 Area 1 Area 2 Area 3 Area 1 Area 2 Area 3

traffic volume of 2,000 traffic volume of 4,000 traffic volume of 6,000

MPLight 410 323 436 463 347 554 454 381 587
AttendLight 469 422 551 407 445 546 387 415 538

OAM 371 268 403 405 327 489 392 364 513

Table 1: Average travel time (s) in testing experiments of Nanchang

Figure 6: Multiple environments training Figure 7: Ablation study of OAM

tion ability of OAM enables it to handle various intersection
topologies and demand patterns on a city-wide network.

Ablation Study
Finally, to demonstrate the efficiency of each component of
OAM, we conduct an ablation study on the Hangzhou net-
work, and the performance is shown in Fig. 7. Firstly, leav-
ing out the cell-based state representation increases the vari-
ance of the learning curve and degrades performance to the
level of MPLight and AttendLight. It reveals that the lane-
based features fail to represent the traffic flow propagation
under different traffic volumes, especially for long road seg-
ments. Furthermore, the pressure-based OAM shows higher
variance and instability in reducing the travel time, as the
pressure is a rough representation of traffic flow and cannot
provide a precise reward signal for intersections with var-
ied road lengths. Without the outflow-based regularizer, the
convergence rate of the learning process slows down signifi-
cantly. This demonstrates the efficiency of the regularizer in
alleviating the credit assignment problem. However, it still
gives a similar final performance with the complete OAM,
which empirically proves that the regularizer does not affect
the optimality of total network delay. Lastly, the lane op-
tion dueling structure accelerates the learning process while
reaching a similar performance to OAM.

Conclusion
In this paper, we propose an option-action reinforcement
learning framework for universal multi-intersection control,
which leverages a parameter-sharing training scheme and
reaches generalization to any intersection with any phase
definition. Based on three benchmarks tests and city-level

experiments, the proposed method has strong generalization
ability and outperforms existing structures.

We also acknowledge the limitations of our current ap-
proach. We assume that no vehicle can cross two intersec-
tions within a 10-seconds decision interval. Admittedly, this
assumption can not be held for all situations. The next step
is to relax the assumption and give a more generalized and
theoretically guaranteed algorithm.
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