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Abstract

Landslides refer to occurrences of massive ground move-
ments due to geological (and meteorological) factors, and can
have disastrous impact on property, economy, and even lead
to loss of life. The advances of remote sensing provide ac-
curate and continuous terrain monitoring, enabling the study
and analysis of land deformation which, in turn, can be used
for possible landslides forecast. Prior studies either rely on in-
dependent observations for displacement prediction or model
static land characteristics without considering the subtle inter-
actions between different locations and the dynamic changes
of the surface conditions. We present DyLand – Dynamic
Manifold Learning with Normalizing Flows for Land defor-
mation prediction – a novel framework for learning dynamic
structures of terrain surface and improving the performance
of land deformation prediction. DyLand models the spatial
connections of InSAR measurements and estimates condi-
tional distributions of deformations on the terrain manifold
with a novel normalizing flow-based method. Instead of mod-
eling the stable terrains, it incorporates surface permutations
and captures the innate dynamics of the land surface while al-
lowing for tractable likelihood estimates on the manifold. Our
extensive evaluations on curated InSAR datasets from con-
tinuous monitoring of slopes prone to landslides show that
DyLand outperforms existing bechmarking models.

Introduction
Landslides are among the most common catastrophic haz-
ards occurring in various areas, resulting in fatalities and
significant economic damages every year. They occur due
to the gravity and/or elevation, and deformations of the ter-
rain surface caused by numerous factors, such as water in-
filtration, glacier melting, aquifer exploitation, rock erosion,
earthquakes, and volcanic eruptions (de Blasio 2020). The
advanced geodetic techniques in remote sensing such as In-
terferometric Synthetic Aperture Radar (InSAR) and Global
Navigation Satellite System (GNSS) enable accurate moni-
toring of slope deformations and forecasting the possibility
of landslides, which have recently been studied (Carlà et al.
2019; Dong et al. 2019; Hajimoradlou, Roberti, and Poole
2020; Zhou et al. 2021).
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Related work: Earlier works on landslide risk assessment
largely relied on influential factors such as climate, rock sta-
bility, and slope gradient, as well as expert opinions from
domain scientists (e.g., geologists and meteorologists) (Dai,
Lee, and Ngai 2002; Wan, Lei, and Chou 2012; Thiery,
Maquaire, and Fressard 2014; Zhu et al. 2014). These ap-
proaches require specific domain knowledge and are usually
limited to post hoc explanations, and therefore is difficult to
be generalized to places with different environmental condi-
tions. More recent studies (Dong et al. 2019; Gan, Yang, and
Zhou 2019; Carlà et al. 2019) have turned to modeling and
prediction of landslides with machine learning (ML) tech-
niques through leveraging the rich measurements of weather,
surface, vegetation, and geology. Various ML models have
been exploited in the literature, including analytical hierar-
chy process (AHP) (Kayastha, Dhital, and De Smedt 2013),
Bayesian networks (Shirzadi et al. 2017), logistic regres-
sion (Kalantar et al. 2018), ensemble learning (Chen et al.
2017), and statistical learning (Hong et al. 2016).

The advances of neural networks have inspired several
deep learning-based landslide prediction models. Convolu-
tional Neural Networks (CNNs) are widely used for land-
slide susceptibility mapping (Lei et al. 2019; Hajimorad-
lou, Roberti, and Poole 2020), which generally rely on in-
ventory mapping from the InSAR data to outline the land-
slide boundaries and deformation features. For example,
LACNN (Hajimoradlou, Roberti, and Poole 2020) is a lo-
cally aligned CNN model that takes the orientation of each
pixel at multiple scales to capture hidden features, and as-
sess the landslide susceptibility at a specific point. SA-
GNN (Zhou et al. 2021) embeds the 3D surface into a
2D graph with locally linear embedding (Roweis and Saul
2000), while preserving the relative positions and slopes
of adjacent points on the surface. It then uses a Spatial-
Temporal Graph Neural Network (ST-GNN) to capture the
characteristics of neighboring points and predict the terrain
deformations.
Challenges: Despite achieved promising results, existing
land deformation models still confront several challenges.
First, they either exploit 2D CNNs to extract the feature
maps (Hajimoradlou, Roberti, and Poole 2020) or project
the surface into a plain graph (Zhou et al. 2021) – inevitably
introducing errors and, most importantly, ignoring vital in-
formation (e.g., azimuth, orientations, slopes) for assessing
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the stability of the surface. Second, the InSAR observations,
represented as point cloud data, are associated with tempo-
ral deformations beyond the geographical positions of the
monitored areas. Therefore, directly applying methods for
modeling point cloud or manifold (Wang et al. 2019; Shi
and Rajkumar 2020) cannot capture the deformations of the
surface. Lastly, prior studies are inadequate for probabilis-
tic modeling and inference on the surface, which is essen-
tial for land stability estimation (inferring the distribution of
deformations and understanding the mechanisms behind the
deformations). While some recent works (Gemici, Rezende,
and Mohamed 2016; Rezende et al. 2020; Kim et al. 2020;
Brehmer and Cranmer 2020) estimate the distribution on
the low-dimensional manifold, they focus on static surfaces.
Thus, estimating the density on a dynamic manifold remains
a challenge.
Present work: We propose a novel probabilistic manifold
learning model called DyLand for terrain deformation pre-
diction. Instead of projecting 3D point clouds to 2D space as
previous methods (Hajimoradlou, Roberti, and Poole 2020;
Shi and Rajkumar 2020; Zhou et al. 2021) did, we directly
model the spatial structures on the manifold without impor-
tant geometric information loss caused by dimensionality re-
duction. We also present a new generative model to simul-
taneously capture the topological dependencies and tempo-
ral deformations. DyLand considers the dynamics of surface
and collective deformation trend in unison, rather than learn-
ing them separately, as in existing studies. As a principled
dynamic manifold learning framework, DyLand generalizes
normalizing flows (Papamakarios et al. 2021) for density es-
timation on the manifold surface while preserving the intri-
cate dynamics of the continuously changed terrains. In sum,
our contributions are three-fold:
• We explicitly explore the temporal dynamics of land sur-
face and topological dependencies between monitored lo-
cations to study the land deformation prediction. We il-
lustrate the conceptual limitations of existing methods and
present a new framework to tackle two fundamental draw-
backs by learning the dynamics of manifold and unifying
the co-evolution of surface deformation and spatio-temporal
representation.
•We propose a method for density estimation on a dynamic
manifold that has not been studied before. Our method gen-
eralizes flow-based generative models to learn a probability
density over the manifold, while preserving the dynamics
via a local deformation perturbation strategy. This procedure
not only enables the model to pay attention to the global dy-
namics of the surface beyond Euclidean positions, but also
allows learning a conditional density that can substantially
facilitate the deformation prediction.
•We consider the temporal deformation and spatio-temporal
representation learning as a dynamic system, and introduce
a method based on neural ordinary differentiable equations
to unify the learning of spatial embedding and surface de-
formation. This design emphasizes the importance of terrain
dynamics in the forecasts while better approximating the op-
timal posterior of land deformations.

We collected real-world InSAR point cloud data of slopes
evolution and conducted extensive experiments to evaluate

the effectiveness of our proposed model. The results show
that DyLand significantly outperforms other state-of-the-art
models in forecasting land deformation, learning dynamic
manifold and providing interpretable predictions.

Preliminaries
Problem Definition: The InSAR point cloud data corre-
sponds to a collection of N monitored locations, each with
a unique d = 3 coordinates (longitude, latitude, elevation),
represented as a vector of triplets V ∈ RN×d. Each loca-
tion has an associated sequence of deformation observations
of length T , denoted as S ∈ RN×T . The land deformations
at τ -th timestamp are denoted as Sτ ∈ RN×1. The main
goal of land deformation prediction is to forecast the sur-
face displacement Y ∈ RN×T ′

of all N locations in future
timestamps T ′, which is a typical spatio-temporal prediction
problem:

p(Y|V,S). (1)

Spatio-Temporal GNNs: To explicitly model the spatio-
temporal dependencies between locations, GNNs are the
widely used architectures. They introduce an adjacency ma-
trix A to learn a spatio-temporal embeddings W of points
V, i.e., requiring an alternative implementation of Eq. (1)
according to Bayes’ rules:

p(Y,W,A|V,S) = p(A|V,S)p(Y,W|A,V,S) (2)
= p(A|V,S)︸ ︷︷ ︸

Adjacency

p(W|A,V,S)︸ ︷︷ ︸
GNN learning

p(Y|W,A,V,S)︸ ︷︷ ︸
Prediction

, (3)

where the first term p(A|V,S) denotes the adjacency matrix
construction; the second term p(W|A,V,S) is the spatio-
temporal representation learning generally implemented by
a specific GNN (e.g., GCN or GAT); and the last term is
the future temporal prediction (e.g., traffic (Li et al. 2018) or
land deformation in this work) that can be realized by any
time series models, such as recurrent neural networks (Li
et al. 2018; Wang et al. 2020).

Methodology: DyLand
The basic idea. In existing spatio-temporal GNNs (ST-
GNNs), the adjacency matrix A can be directly built by
p(A|V) as the locations V are generally fixed, e.g., the sen-
sors in traffic forecasting (Li et al. 2018). This, however,
may not fully capture the complex interactions between dif-
ferent locations, because the land surfaces are continuously
deformed.

In addition, the original spatio-temporal learning re-
quires to model the joint distribution p(Y,W|A,V,S) (cf.

(a) Existing ST-GNN (b) DyLand

Figure 1: Graphical models of (a) the existing ST-GNNs and
(b) our DyLand presented in this work.
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Figure 2: Framework of the proposed DyLand. (a) The prob-
abilistic learning of DyLand. (b) The dynamic manifold
learning. (c) The surface deformation prediction with ODEs.

Eq.(2)). In existing works, W is usually learned from Ω
(here we let Ω = {A,V,S} for simplicity), and Ω is there-
fore considered conditionally independent of Y (cf. Fig-
ure 1(a)), i.e., Ω ⊥⊥ Y|W. In this way, the spatio-temporal
joint distribution is decomposed to a two-step learning as:

p(Y,W|Ω) = p(W|Ω)p(Y|W), (4)

where the prediction p(Y|W) is made without considering
the dynamics of nodes.
Overview of DyLand. Figure 2 illustrates the framework
of DyLand. Specifically, we tackle two fundamental draw-
backs of previous methods. First, we emphasize the impor-
tance of temporal features S beyond Euclidean positions in
learning p(A|V,S) through mapping both S and V into
the manifold space, where the similarity among nodes and
corresponding deformations can be better measured. Here,
we propose a generative model based on normalizing flows
(NFs) (Rezende et al. 2020; Brehmer and Cranmer 2020)
to model p(A|V,S) by learning the dynamics of the sur-
face. Second, we model S and W jointly, i.e., p(Y|W,S),
rather than solely relying on W (e.g., p(Y|W)) as in pre-
vious works. In this way, DyLand is able to better approxi-
mate the optimal prediction (cf. Eq.(3)), as V is given and
the dynamics of A has been modeled in p(A|V,S), as il-
lustrated in Figure 1(b). Towards this goal, we consider the
surface deformation as a dynamic system, and present an
approach based on neural ordinary differential equations
(ODEs) (Chen et al. 2018b) to predict and extrapolate the
temporal deformations as p(Y|W,S).

Dynamic Manifold Learning

Figure 3: Deformation heat maps (real terrain).

As illustrated in Figure 3, neighboring areas on the sur-
face exhibit similar displacement trend, which has inspired
GNN-based models to aggregate the deformations from
neighboring nodes (Zhou et al. 2021). However, the adja-
cency matrix A is static, ignoring the continuous displace-
ment of the land surface. Besides, the influence of points
with the same distance may not be consistent, because the
relative positions (e.g., slope and azimuth) of neighboring
points are of great importance for informing the trend of sur-
face deformation (Hajimoradlou, Roberti, and Poole 2020;
Zhou et al. 2021).

Towards that, we train a stochastic model to estimate the
distribution of land deformations and model the dynamical
adjacency according to the temporal evolution of S. To en-
code the spatial correlations and mutual influence, we in-
troduce a latent factor u ∈ U and assume a deterministic
mapping p(A|U) as:

p(A|V,S) =
∑
U

p(A|U)p(U|V,S), (5)

which is a dynamic adjacency generative model given the
geographical locations of points V and their corresponding
deformations S.

At a specific time step τ ∈ [1, T ], the latent embedding is
estimated by a stochastic model f as Uτ = f(Vτ ,Sτ |Sτ ).
The basic idea is to generalize the geographical similarity
and local deformation trend into the latent factors U, and
for the i-th location, the latent embedding ui ∈ U encodes
the Euclidean spatial dependencies and the temporal defor-
mations of adjacent areas.

Since the land surface is a typical manifold (i.e., 2D man-
ifold data scattered over 3D space) and is continuously dis-
placed, we need a technique to estimate the distribution of
data points on the surface. Nevertheless, V is in Euclidean
but the manifold is defined in non-Euclidean space in gen-
eral, i.e., without affine properties. More importantly, we
need a density estimation method for probability inference
on the surface directly, instead of embedding the manifold
into a 2D space that would inevitably result in information
loss. A few efforts have studied how to learn a probability
density over the manifold. For example, (Gemici, Rezende,
and Mohamed 2016) first defines NF and estimate probabil-
ity density on a Riemannian manifold embedded in the high-
dimensional data space, and (Rezende et al. 2020; Brehmer
and Cranmer 2020) investigates the expressiveness and sta-
bility of tractable density on the space that are not diffeo-
morphic to Euclidean such as tori and sphere. Unfortunately,
these works define NF on a static manifold, which cannot be
directly applied to model the dynamic surface.

Here we present an NF model to capture the interactions
and dynamics of land surface through estimating the density
on the manifold. Specifically, we add the deformation sτi to
the i−th monitored location vi, and estimate the distribu-
tion of perturbed vector as v′

i = f−1(uτ
i |sτi ). Then we can

exploit a NF as the generative model to learn the transfor-
mation from latent space uτ

i to the perturbed location v′
i:

log p(v′
i|sτi ) = log p(uτ

i )− log

∣∣∣∣det ∂f−1(uτ
i |sτi )

∂uτ
i

∣∣∣∣ ,
(6)
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where a series of invertible mappings from uniform distribu-
tion p(uτ

i ) is used to approximate the complex distribution
log p(v′

i|sτi ) conditioned on the deformation sτi . There are
many choices of the NF models (cf. (Papamakarios et al.
2021) for a comprehensive review). In our DyLand, we
choose the continuous normalizing flows (Chen et al. 2018a;
Grathwohl et al. 2018) as it imposes no restrictions on model
architecture and the log-density follows the instantaneous
change of variables formula, which can be described as:

ut1 = ut0+

∫ t1

t0

f−1(ut, t, sτi )dt,

log p(ut1 |sτi ) = log p(ut0)−
∫ t1

t0

Tr
(df−1

dut

)
dt,

(7)

where ut1 = v′
i and ut0 = uτ

i , and the trace can be ef-
ficiently computed by Hutchinson’s estimator (Hutchinson
1989).

Note that the dimensions of input and output must be ex-
actly the same as restricted by Eqs.(6) and (7). As a result,
the transformations may be prevented at high dimensional
space with lower information density embeddings. Recent
studies (Kim et al. 2020; Dupont, Doucet, and Teh 2019)
suggest to bridge the gap between different dimension scales
by appending additional fully connected (FC) layers. Such
dimension transformation is difficult when the dimensions
of the original space are very high, but in our case, the trans-
formation of 3D surface of U is feasible and easy to train.

Above we have exploited NF to capture the dynamics and
spatial correlations of surface, i.e., p(U|V,S). Then, for any
two points with learned embeddings ui and uj , the mapping
p(A|U) can be directly computed as:

p(Aτ |Uτ ) =
N∏
i=1

N∏
j=1

p(Aτ
ij |uτ

i ,u
τ
j ), (8)

with p(Aτ
ij = 0|uτ

i ,u
τ
j ) = sigmoid(∥uτ

i − uτ
j ∥2), (9)

where Aτ
ij ∈ Aτ (similarity between the two points in the

latent space is estimated with a logistic sigmoid function).

Unifying Deformation and Representation
Learning
Recall that the spatio-temporal representation learning in
Eq.(3) is usually learned by graph aggregations using, for
example, a GNN – and we denote the representation as
W ∈ RN×M . However, GNNs suffer from over-smoothing
problem in general due to the underlying aggregation mech-
anisms especially when they are going deeper (Wu et al.
2020). Although (Zhao and Akoglu 2020) suggests to add
an extra normalization layer to prevent node embeddings
from becoming too similar, it may disturb the regular fea-
ture aggregation important for learning the trending of lo-
cal deformations and thus deteriorates the prediction perfor-
mance. Meanwhile, existing spatio-temporal GNNs (Zhou
et al. 2021; Wu et al. 2020; Li et al. 2018; Wang et al. 2020)
make temporal predictions based on p(Y|W), which im-
plicitly assuming Ω ⊥⊥ Y|W (cf. Eq.(4)). However, we ar-
gue that S is indispensable for making predictions.

Specifically, we consider the co-evolution of S and W as
a dynamic system as:[

St1

Wt1

]
=

[
St0

Wt0

]
+

∫ t1

t0

g

([
St

Wt

]
, t

)
dt, (10)

where t0 ∈ [1, T ], t1 ∈ [T + 1, T ′], and St1 = Ỹ is exactly
the prediction at time t1. Function g is parameterized by a
neural network to model the hidden dynamics. Note that the
dynamic g is a homeomorphism, and the prediction preserve
the topology of the W. We solve the ODEs with the adaptive
Runge–Kutta 4 (5) scheme of Dormand–Prince (Dormand
and Prince 1980). Let z0 = [St0 ,Wt0 ]⊺, at the step n + 1,
the p-order approximation of zn+1 is given by:

zpn+1 = zpn + h
l∑

i=1

bpiki, n = 0, 1, 2, · · · , (11)

with ki = g
(
zpn + h

i−1∑
j=1

ai,jkj , tn + cih
)
, (12)

where h is adaptive step size; vector k denotes the slopes of
g; parameters l, a, b and c are all arranged in a mnemonic
device – a.k.a. Butcher tableau. The local truncation error is
on the order of O(h5), and is calculated as:

en+1 = z5n+1 − z4n+1 = h
l∑

i=1

(
b5i − b4i

)
ki, (13)

which is used to tune h: given a maximum error emax, if
en+1 ≥ emax, we reduce the step size (e.g., h = h/2) to re-
duce error; otherwise, it increases h (e.g., h← 2h) to accel-
erate the approximation. In other words, smaller emax takes
more steps n to compute the predictions.

Optimization & Training
Given historical T pairs of inputs Sτ and Wτ , each of
which has T ′ predictions made by the ODE-based model
as presented in Eq.(10), we can obtain the final predictions
Ŷ ∈ RN×T ′

by aggregating Ỹ ∈ RN×T×T ′
via additional

FC layers. Besides, the deformations Yτ at a specific time
should follow the prior distribution of deformations, i.e., a
Gaussian N (µ,σ2). This goal can be attained via approxi-
mating the optimal p(Yτ |Wτ ,Sτ ) with a proposal distribu-
tion qϕ(Y

τ |Wτ ,Sτ ), which equals to minimize the follow-
ing KL divergence:

DKL (qϕ (Y
τ |Wτ ,Ωτ ) ∥p (Yτ |Wτ ,Ωτ ))

≃DKL (qϕ (Y
τ |Wτ ,Sτ ) ∥p (Yτ ))

=−H[qϕ (Y
τ |Wτ ,Sτ )]− Eqϕ [log p (Y

τ )], (14)
where H is the entropy and the expectation is estimated by
Monte Carlo method. The first approximation holds because
the mapping from Wτ ,Sτ to Yτ is a bijection. In imple-
mentation, the objective of Eq.(14) is implemented by ag-
gregating the all predictions of all N monitored locations:

L =
1

N∆T

T ′∑
τ=T+1

N∑
i=1

(yτ
i − ŷτ

i )
2 +

T ′∑
τ=T+1

N∑
i=1

p (ŷτ
i ) log p (ŷ

τ
i )

− 1

N

T ′∑
τ=T+1

N∑
i=1

logN
(
ŷτ
i |µτ

i , σ
τ
i
2
)
, (15)
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Dataset HZY-West HZY-East

Time 11/30/2018 – 09/08/2019
# nodes 4,569 2,164
Longitude (E102◦) [1’50”, 3’2”] [2’35”, 3’46”]
Latitude (N30◦) [39’12”, 41’25”] [39’38”, 40’48”]
Elevation [1671.2, 2527.4] [1470.2, 2899.6]
Displacement [-27.58, 28.03] [-29.06, 30.50]

PBG-West PBG-East

Time 11/17/2017 – 01/04/2020
# nodes 5,886 8,671
Longitude (E102◦) [46’36”, 48’11”] [52’31”, 54’17”]
Latitude (N29◦) [14’26”, 15’50”] [12’41”, 14’3”]
Elevation [1013.8, 2101.0] [661.3, 1907.8]
Displacement [-60.45, 110.57] [-58.87, 49.51]

Table 1: Descriptive statistics of datasets.

where ∆T = T ′ − T is the length of prediction, yτi and ŷτi
denote the true and predictions of i-th point at time τ , and
the mean square error (MSE) of the deformations is used for
training.

Experiments
We now describe the experimental settings and our main ob-
servations.
Datasets: The studied areas used for experimental evalu-
ations are two landslide-prone slopes in the southwest of
Sichuan, China. We collect the InSAR measurements of the
monitored slopes, recording surface deformations over time.
The HZY data is composed of the observations of the slopes
on both sides (East and West) of the Dadu River, between
Nov 30, 2018, to Sep 8, 2019. The PBG data has more than
two years of InSAR measurements (Nov 17, 2017 – Jan 04,
2020) of both sides of the river. Table 1 summarizes the
statistics of the two study areas.
Baselines: We compare DyLand with the following ap-
proaches: (1) Historical Average (HA). It calculates the his-
torical data average of time period T as basic predictive
capabilities for contrast. We have T = 1 and T = 3
marked as HA(1) and HA(3) respectively. (2) SVR is a
regression version of support-vector machine. (3) Autore-
gressive Integrated Moving Average model (ARIMA), com-
bines autoregressive and moving average for prediction. (4)
GRU (Cho et al. 2014) captures the long-short term depen-
dency which has been wildly used for time-series forecast-
ing. (5) NODE (Chen et al. 2018b) is a continuous normal-
izing flow model that learns the time series by solving the
ordinary differential equations. (6) GCN (Kipf and Welling
2017) models spatial dependencies via graph convolution.
(7) VGAE (Kipf and Welling 2016) is an unsupervised vari-
ational framework making use of latent variables learned
from the GCN autoencoder. (8) SIG-VAE (Hasanzadeh et al.
2019) is similar to VGAE but has more flexible and com-
plex posterior approximation. (9) STGCN (Wu et al. 2020)
filters inputs and hidden states passed to a recurrent unit
using graph convolutions. (10)P-GNN (Shi and Rajkumar
2020) is a point cloud graph convolution method, and we

adapt it to deformation prediction by adding GRUs. (11)SA-
GNN (Zhou et al. 2021) learns the embeddings of the sur-
face manifold and uses GCNs and GRUs to model spatio-
temporal dependencies.
Settings, parameters & metrics: We split all datasets into
three parts: 50% for training, 30% for validation, and the re-
maining 20% for testing. Geographical coordinates are max-
min normalized. All deep learning methods are optimized by
Adam optimizer (Kingma and Ba 2017) with learning rate
of 10−3 and weight decay of 10−5. Early stop is triggered
when the loss has not declined for 100 consecutive epochs.
All experimental results are the best in 20 runs without other
specified and the statistical significance of the results is less
than 0.05, i.e., p < 0.05.

In our DyLand, the latent manifold U is 3D for evaluation
and 2D for visualization. The dimension of spatio-temporal
representation W is 5. The deformation for each location sτi
is scaled up by multiplying 10 and then passed to NF for
conditioning, since the scale of sτi is too small compared to
V. The NF and neural ODEs have 3 layers and 64 dimen-
sions, while both FC and GNN have 3 layers.

We use five standard evaluation metrics for the model per-
formance: RMSE, MAE, ACC, R2 and EVS.

Performance Comparisons
Table 2 reports the performance of different models on de-
formation prediction, where the best are in bold. First, mod-
els simply relying on temporal observations (e.g., HA, SVR,
ARIMA, GRU, and NODE) is not enough to predict the land
deformation as they ignore important spatial correlations of
the monitored locations. In contrast, GNN-based approaches
generally achieve better results, which demonstrates that
modeling spatial relations and collective deformation trends
can improve prediction performance. When comparing dif-
ferent GNN-based models, we can find that P-GNN and SA-
GNN perform better than other spatial and temporal GNNs
defined on the Euclidean space due to the ability to capture
the complex correlations on the surface manifold. SA-GNN
slightly outperforms P-GNN because the relative positions
such as slope and azimuth are explicitly embedded, which
can partially discriminate the importance of adjacent points.

Finally, our DyLand shows superior performance than all
other models in terms of all metrics on four datasets. Com-
pared to the best baseline model SA-GNN, DyLand is ca-
pable of modeling manifold dynamics instead of static sur-
face embedding in SA-GNN, thus alleviating the bias caused
by the surface deformation. Besides, DyLand considers the
deformation learning and spatio-temporal embedding as a
dynamic system that bridges the gap between the separate
steps modeled in previous GNN-models – as a result, it is
more accurate for deformation prediction.
Why Modeling Dynamic Manifold? Dynamic manifold
learning plays an important role in our DyLand. To
test its effect, we replace it with representative mani-
fold learning methods, including LLE (Roweis and Saul
2000), MLLE (Zhang and Wang 2007), HLLE (Donoho
and Grimes 2003), LTSA (Zhang and Zha 2004), t-
SNE (Maaten and Hinton 2008), WLLE (Zhou et al. 2021),
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HZY-West HZY-East PBG-West PBG-East

Method RMSE MAE ACC R2 EVS RMSE MAE ACC R2 EVS RMSE MAE ACC R2 EVS RMSE MAE ACC R2 EVS

HA(1) 4.190 2.799 0.072 0.054 0.161 4.973 3.427 0.056 0.065 0.178 8.348 5.114 0.044 0.062 0.120 6.944 4.194 0.046 0.061 0.117
HA(3) 3.992 2.889 0.052 0.066 0.122 4.645 3.352 0.045 0.094 0.158 7.535 5.186 0.040 0.092 0.142 6.067 4.010 0.050 0.097 0.164
SVR 3.956 3.209 0.030 0.108 0.274 4.750 3.693 0.032 0.135 0.262 6.612 4.199 0.059 0.195 0.291 5.955 3.546 0.076 0.191 0.282
ARIMA 4.888 4.088 0.053 0.265 0.215 6.704 5.395 0.031 0.271 0.204 6.242 4.098 0.035 0.190 0.212 5.325 3.200 0.055 0.175 0.228
GRU 0.250 0.204 0.421 0.223 0.315 0.197 0.170 0.456 0.207 0.290 0.249 0.197 0.460 0.120 0.163 0.200 0.160 0.540 0.215 0.137
NODE 0.076 0.057 0.527 0.407 0.458 0.101 0.075 0.506 0.469 0.417 0.052 0.044 0.584 0.283 0.291 0.053 0.041 0.710 0.401 0.412
GCN 0.100 0.076 0.442 0.365 0.332 0.103 0.078 0.440 0.399 0.343 0.063 0.050 0.574 0.204 0.208 0.089 0.056 0.662 0.385 0.345
VGAE 0.091 0.068 0.483 0.390 0.391 0.104 0.077 0.465 0.392 0.313 0.051 0.040 0.601 0.375 0.332 0.083 0.052 0.712 0.355 0.348
SIG-VAE 0.088 0.065 0.525 0.374 0.422 0.096 0.071 0.513 0.499 0.440 0.045 0.037 0.734 0.405 0.426 0.079 0.050 0.775 0.408 0.393
STGCN 0.069 0.055 0.533 0.456 0.451 0.078 0.057 0.562 0.563 0.573 0.040 0.029 0.815 0.447 0.488 0.041 0.027 0.854 0.437 0.426
P-GNN 0.065 0.048 0.628 0.423 0.466 0.071 0.051 0.637 0.507 0.516 0.031 0.020 0.908 0.474 0.491 0.032 0.026 0.911 0.441 0.449
SA-GNN 0.058 0.037 0.718 0.488 0.483 0.062 0.048 0.698 0.497 0.501 0.021 0.015 0.964 0.492 0.480 0.024 0.018 0.956 0.470 0.478

DyLand 0.052 0.035 0.742 0.492 0.492 0.060 0.043 0.700 0.583 0.590 0.013 0.010 0.993 0.538 0.540 0.016 0.013 0.978 0.487 0.496

Table 2: Overall performance comparisons on land deformation prediction.

(a) Original surface (b) UMAP (c) t-SNE

(d) MLLE (e) Isomap (f) LLE

(g) LTSA (h) WLLE (i) DyLand

Figure 4: Learned latent manifolds on PBG-West.

Isomap (Tenenbaum, De Silva, and Langford 2000), and
UMAP (McInnes, Healy, and Melville 2020).

Recall that DyLand models p(A|V,S) which explicitly
considers the temporal deformation S. To ensure a fair com-
parison, we take S as another temporal channel in addition to
the spatial 3D channels for other models. Figure 4 plots the
2D representations learned by different models, colored by
their geographical coordinates in original space. As typical
dimension reduction algorithms, UMAP and t-SNE gener-
ally obtain clustered and scattered embeddings, and there-
fore lose continuous spatial correlations essential for defor-
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Figure 5: Quantitative comparisons between dynamic mani-
fold and static manifold learning (“Euclid” takes the original
surface as input directly; red lines present the quartiles).

mation prediction. Other static manifold learning methods
such as MLLE, Isomap, LLE, and LTSA can preserve the
original manifold due to their ability of capturing local Eu-
clidean topology. However, they model the static manifold
in general and cannot discriminate the influence of neigh-
boring nodes. WLLE, in contrast, takes the slope and az-
imuth information into account, but it significantly distorts
the latent representations where local manifold structure is
disregarded.

DyLand overcomes the above issues by jointly preserv-
ing local manifold structure and temporal evolution of de-
formations. To quantify the benefits, we compare its predic-
tion results with the variants with alternative manifold learn-
ing, and show them as violin plot in Figure 5. Clearly, Dy-
Land outperforms other manifold learning methods which
validates our motivation of modeling dynamic surface in
land deformation prediction. Although the local topology
patterns on the point cloud surface can be preserved in other
manifold-based variants, land deformations are not explic-
itly considered, resulting in fixed adjacency and thus deter-
mined neighboring feature aggregation (as they cannot cap-
ture the intricate correlations beyond Euclidean space).

To understand the dynamic adjacency modeled in Dy-
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(a) U (τ = 5) (b) U (τ = 6) (c) U (τ = 7)

(d) A (τ = 5) (e) A (τ = 6) (f) A (τ = 7)

Figure 6: Comparisons of manifold and sampled relevant ad-
jacency matrix at different time stamps on PBG-West.

Land intuitively, we show the manifold embeddings at dif-
ferent time stamps in Figure 6, as well as the adjacency
matrices of the sampled nodes (framed by the red rectan-
gle in top row). The results illustrate how embeddings and
corresponding adjacency are changing over time, which is
more obvious when observing adjacency matrices. Since
DyLand can learn dynamic manifold from deformations and
construct the adjacency matrices (i.e., interactions among
nodes) accordingly, this property allows us to capture the
interactions of nodes adaptively without the efforts of hyper-
parameter tuning. In contrast, previous static manifold learn-
ing approaches are parameter sensitive, e.g., presumed near
neighbor specification. More importantly, DyLand generates
adjacency A considering both geographical locations V and
temporal features S, enabling the model to aggregate the de-
formations of locations dynamically for adaptive prediction.
Effect of Co-Training W and S: Recall that we consider
the evolution of W and S as a dynamic system solved by a
neural ODEs, where W ∈ RN×M is the aggregated spatio-
temporal features output by a GNN. Now we investigate the
effect of co-training and its influence on the final prediction.
We generate two variants of DyLand : (1) DyLand-S, which
removes the learning of W and makes prediction based on
the historical observations – i.e., it degenerates to a typical
ODE-based time series method (Chen et al. 2018b) through
modeling p(Y|S); and (2) DyLand-W, which only utilizes
the learned spatio-temporal representation to make predic-
tion, i.e., p(Y|W), as most existing spatio-temporal GNNs.
As summarized in Table 3, modeling the co-evolution of S
and W as a holistic dynamic system significantly improves
the performance. DyLand-S performs worst due to ignoring
the spatial dependencies, although it also uses neural ODEs
to learn the dynamic system.

Co-training S and W with neural ODEs can be consid-
ered as an augmentation to the dynamic system of S, since
representation W is also conditioned on the evolution of de-
formations S. In other words, it solves the ODEs regarding
S in an augmented space, which lifts the points into an ad-
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Figure 7: Training of DyLand in the first 50 epochs.

Model RMSE MAE ACC R2 EVS

PB
G

-W DyLand-S 0.052 0.044 0.584 0.283 0.291
DyLand-W 0.019 0.015 0.983 0.497 0.500

DyLand 0.013 0.010 0.993 0.538 0.540

H
Z

Y-
W DyLand-S 0.076 0.057 0.527 0.407 0.458

DyLand-W 0.064 0.045 0.684 0.482 0.464
DyLand 0.052 0.035 0.742 0.492 0.492

Table 3: Ablation results of DyLand on W and S co-training.

ditional space for smoother learning. Therefore, the dimen-
sions M of W is an important hyperparameter, as it controls
the output shape of the spatio-temporal representation learn-
ing that should be preserved for prediction. Figure 7 plots the
training process of DyLand by varying the values of M from
0 to 5 – note that M = 0 means DyLand only model the dy-
namics of S for prediction. Increasing M can explore higher
additional space of W to capture complex dependencies and
mappings while preserving the topology of W, allowing for
lower losses and fewer function evaluations. However, M is
restricted by the dimensions of S, and become unstable for
a larger value (e.g., 5) caused by increasing the complexity
of functions required to be approximated in ODEs.

Conclusion
We presented DyLand, a general manifold learning model
with application to forecasting land deformations, address-
ing the fundamental limitations of existing approaches in
learning the spatio-temporal characteristics of InSAR point
cloud data. Our novel dynamic manifold learning model
for deformation distribution on the manifold surface with
tractable density estimation, enables preserving both topol-
ogy structure and deformation sensitivity for highly accu-
rate land displacement prediction. DyLand also generalizes
the dynamic process of learning deformation and represen-
tation through solving the ODEs of the co-evolution dy-
namic system. Extensive evaluations demonstrated the supe-
rior performance of DyLand over existing spatio-temporal
GNN and static manifold models. In our future work, we
will attempt to extend DyLand by incorporating meteoro-
logical data.

4731



Acknowledgements
This work was supported by National Natural Sci-
ence Foundation of China (Grant No.62176043 and
No.62072077), Sichuan Science and Technology Pro-
gram (No.2020YFG0053), and National Science Foundation
SWIFT (Grant No.2030249).

References
Brehmer, J.; and Cranmer, K. 2020. Flows for simultaneous
manifold learning and density estimation. In NeurIPS, 442–
453.
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