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Abstract

We study fair and efficient allocation of divisible goods, in an
online manner, among n agents. The goods arrive online in a
sequence of T time periods. The agents’ values for a good are
revealed only after its arrival, and the online algorithm needs
to fractionally allocate the good, immediately and irrevoca-
bly, among the agents. Towards a unifying treatment of fair-
ness and economic efficiency objectives, we develop an algo-
rithmic framework for finding online allocations to maximize
the generalized mean of the values received by the agents.
In particular, working with the assumption that each agent’s
value for the grand bundle of goods is appropriately scaled,
we address online maximization of p-mean welfare. Parame-
terized by an exponent term p ∈ (−∞, 1], these means en-
capsulate a range of welfare functions, including social wel-
fare (p = 1), egalitarian welfare (p→ −∞), and Nash social
welfare (p→ 0).
We present a simple algorithmic template that takes a thresh-
old as input and, with judicious choices for this threshold,
leads to both universal and tailored competitive guarantees.
First, we show that one can compute online a single alloca-
tion that O(

√
n log n)-approximates the optimal p-mean wel-

fare for all p ≤ 1. The existence of such a universal allocation
is interesting in and of itself. Moreover, this universal guar-
antee achieves essentially tight competitive ratios for specific
values of p.
Next, we obtain improved competitive ratios for different
ranges of p by executing our algorithm with p-specific thresh-
olds, e.g., we provide O(log3 n)-competitive ratio for all
p ∈ ( −1

log 2n
, 1).

We complement our positive results by establishing lower
bounds to show that our guarantees are essentially tight for
a wide range of the exponent parameter.

1 Introduction
Resource-allocation settings are ubiquitous and often re-
quire the assignment of resources (goods) that arrive over
time. In particular, these settings require that each good
gets allocated (among the participating agents) as it arrives,
and one needs to make these allocative decisions without
knowing the values of the pending goods. Consider, as an
example, a food bank that distributes food donations (es-
sentially a divisible good) every day among soup kitchens
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(agents) (Prendergast 2017; Aleksandrov et al. 2015). Here,
the perishable nature of the good (food) mandates online
allocations, and supply (and demand) variability leads to
limited information about the future. The online model is
also applicable in scheduling contexts wherein computa-
tional resources, which become available over time, have to
be shared among users (Blazewicz et al. 2019; Pinedo 2012;
Leung 2004).

In such settings—and resource-allocation contexts, in
general—economic efficiency and fairness are fundamental
objectives. Motivated by these considerations and applica-
tion domains, such as the ones mentioned above, a growing
body of work in recent years has been directed towards the
study of online fair division (Aleksandrov and Walsh 2020).
The current paper contributes to this thread of research with
a welfarist perspective.

Specifically, we provide a unified treatment of fairness
and efficiency objectives by developing an online algorithm
for finding allocations that maximize the generalized mean
of the values achieved by the agents. Formally, for exponent
parameter p ∈ R, the pth generalized mean of n nonnegative
values ν1, ν2, . . . , νn is defined as

(
1
n

∑n
i=1 ν

p
i

)1/p
. As a

family of objective functions (parameterized by p), general-
ized means encapsulate well-studied measures of economic
efficiency as well as fairness: the p = 1 case corresponds
to average social welfare (arithmetic mean), which is a stan-
dard measure of economic efficiency. At the other end of
the spectrum with p → −∞, the pth generalized mean cor-
responds to egalitarian welfare (the minimum value across
the agents), a fundamental measure of fairness. Furthermore,
when p tends to zero, the generalized mean reduces to Nash
social welfare (specifically, the geometric mean)–a promi-
nent objective which achieves a balance between the ex-
tremes of social and egalitarian welfare. Notably, p-means,
with p ∈ (−∞, 1], exactly constitute a family of functions
characterized by a set of natural, fairness axioms, includ-
ing the Pigou-Dalton principle (Moulin 2004). Therefore, p-
mean welfare, with p ≤ 1, provides us with an important
and axiomatically justified family of objectives.

The current work focuses on the online allocation of di-
visible goods, i.e., goods that can be assigned fractionally
among the n participating agents. The divisible goods arrive
online, one by one, and upon the arrival of each good t, ev-
ery agent i reports her (nonnegative) value, vti , for the good.
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At this point the online algorithm fractionally distributes the
good t among the agents–if agent i receives xti ∈ [0, 1] frac-
tion of the good, then her value increases by xti v

t
i . We have

T goods overall and after the goods have been allocated,
each agent i achieves a value

∑T
t=1 x

t
iv
t
i . Considering ex-

ponent parameters p ≤ 1, the online algorithm’s objective
is to compute allocations that (approximately) maximize the
p-mean of the agents’ values. Recall that the performance of
online algorithms is established in terms of their competitive
ratio; in the current context, it is the worst case ratio (over
all instances) between the optimal (offline) p-mean welfare
and the welfare of the allocation computed online.

Along with this standard model and performance metric,
we work with a scaling assumption utilized in prior work in
online fair division (see, e.g., (Gkatzelis, Psomas, and Tan
2020), (Bogomolnaia, Moulin, and Sandomirskiy 2019),
(Banerjee et al. 2021)); in particular, we assume throughout
that, for every agent, the cumulative value of the entire set
of goods is equal to one. Note that if the agents’ valuations
are arbitrarily scaled, then a sub-linear competitive ratio
is not possible, even for specific values of the parameter
p < 1; for unscaled valuations, Banerjee et al. (2021)
provide an example that rules out a sub-linear competitive
ratio specifically for Nash social welfare. To circumvent
such overly pessimistic negative results, prior work has
worked with this scaling assumption (

∑T
t=1 v

t
i = 1 for

all agents i) and we conform to it as well. It is relevant to
note that Banerjee et al. (2021) view this assumption in the
framework of algorithms with predictions; see (Mitzen-
macher and Vassilvitskii 2021) for a textbook treatment of
this topic. In this framework, one assumes that the algorithm
has a priori (side) information about each agent’s value for
the grand bundle.1 Another way to realize this scaling is via
scrips: upfront, each agent receives scrips (tokens) of overall
value one and can distribute the tokens online to indicate her
values over the goods. Note that the widely-used platform
spliddit.org (Goldman and Procaccia 2015) asks for
the valuations to be entered with a scaling in place, albeit in
an offline manner. Overall, subject to the above-mentioned
scaling, our results hold in the adversarial model wherein
the value of each good t can be set by an adaptive adversary
based upon, say, the fractional assignments till round (t−1).

Related Work. Fair division has been extensively studied
for over seven decades (Brams and Taylor 1996; Brandt
et al. 2016; Moulin 2004). Since a detailed discussion on
(offline) algorithms for fair division is beyond the scope of
the current work, we will primarily focus on prior results
on online algorithms and divisible goods. A work closely
related to ours is that of Banerjee et al. (2021), who de-
velop an O(log n)-competitive online algorithm for maxi-
mizing Nash social welfare over divisible goods. Further-
more, Banerjee et al. provide an intricate lower bound show-
ing that this competitive ratio is the best possible (up to
an absolute constant) for Nash social welfare. The current

1The result of Banerjee et al. (2021) is robust to prediction er-
rors. Extending the current work along these lines is an interesting
direction of future work.

work obtains an O(log3 n) competitive ratio for Nash social
welfare. Our algorithmic template, however, spans all p ≤
1, and provides tight—up to poly-log factor—competitive
guarantees for a wide range of the exponent parameter. In
terms of algorithm design, Banerjee et al. (2021) utilize the
primal-dual method to obtain a competitive guarantee. Ap-
plications of this design schema, in related online settings,
include the work of Devanur and Jain (2012) and Azar et
al. (2010). By contrast, we develop a distinctive charging ar-
gument to design a single algorithmic template for all p ≤ 1.

Bounding envy is another well-studied goal in the lit-
erature on online fair division; see, e.g., (Gkatzelis, Pso-
mas, and Tan 2020; Benade et al. 2018; Bogomolnaia,
Moulin, and Sandomirskiy 2019; Zeng and Psomas 2020),
and (Aleksandrov and Walsh 2020) for a survey. Comple-
mentary to these results, we address p-mean welfare.

The current divisible-goods model captures machine
scheduling with splittable jobs (Jansen et al. 2021; Correa
et al. 2015; Epstein and Stee 2006). In this setup one needs to
schedule T jobs among nmachines, and each job can be split
into multiple parts that get assigned to different machines. In
contrast to p-mean welfare maximization, the focus of these
scheduling results is on makespan minimization.

1.1 Our Results.
In this paper we develop both upper bounds and lower
bounds for online welfare maximization.

Upper Bounds. Our online algorithm (see Section 3) works
with a given threshold Φ. Setting this threshold judiciously
enables us to obtain both expansive and tailored competitive
guarantees.

First, we prove that a particular choice of the threshold
(specifically Φ = 8

√
n log(2n)) leads to an online algorithm

that achieves a universal competitive ratio of O (
√
n log n)

for p-mean welfare maximization, simultaneously for all
p ≤ 1; recall that n denotes the total number of agents.

Theorem 1. For the p-mean welfare maximization
problem—with divisible goods and scaled valuations—one
can compute online a single allocation that O (

√
n log n)

approximates the optimal p-mean welfare, simultaneously
for all p ≤ 1.

Theorem 1 is established in Section 4. This theorem in
fact provides a novel guarantee specifically for egalitarian
welfare (p = −∞). Also, we note that Banerjee et al. (2021)
prove—via a direct example—that, for egalitarian-welfare
maximization and any constant ε > 0, there does not exist
an online algorithm with competitive ratio n1/2−ε. Hence,
this lower bound ensures that, for egalitarian welfare, the
competitive ratio of Theorem 1 is tight, up to a log term.
Moreover, the guaranteed existence of a single allocation
that achieves a nontrivial p-mean welfare guarantee, simul-
taneously for all p ≤ 1, is interesting in its own right.

We also obtain improved guarantees for different ranges
of p. In particular, we show that executing our algorithm
with p-specific thresholds Φ leads to improved competitive
ratios for a wide range of the exponent parameter p ≤ 1.
Our upper bounds are listed in Table 1. Interestingly, while
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Range of p Algorithm threshold
Φ

Upper Bound Lower Bound

Egalitarian Welfare
(p = −∞) 8

√
n log(2n) O(

√
n log n)

Ω
(
n1/2

)
(Banerjee et al. 2021)

Nash Social Welfare
(p = 0) 8 log3(2n) O(log3 n)

Ω
(
log1−ε n

)
(Banerjee et al. 2021)

p ∈ (−∞,−1] 8
√
n log(2n) O(

√
n log n) Ω

(
n
|p|

2|p|+1

)
p ∈ (−1,−1/4] 8n

|p|
|p|+1 log2(2n) O

(
n
|p|
|p|+1 log2 n

)
Ω
(
n
|p|

2|p|+1

)
p ∈ (−1/4, −1

log(2n) ] 8(2n)2|p| log3(2n) O
(
n2|p| log3 n

)
2−(2+2/|p|) · n

|p|
2|p|+1

p ∈ ( −1
log(2n) , 0] 32 log3(2n) O(log3 n) > 1

p ∈ (0, 1) 16 log3(2n) O(log3 n) > 1

Table 1: Upper and lower bounds on the competitive ratio for p-mean welfare maximization. Here, the lower bounds hold for
any constant ε > 0.

the algorithmic template remains the same, the proofs for
different ranges of p require distinct arguments. Due to
space constraints, the proofs of the upper bounds mentioned
in Table 1 are deferred to the full version of the paper (Bar-
man, Khan, and Maiti 2021). Also, note that, for multiple
ranges of the exponent parameter, the lower bounds in the
table closely match the upper bounds.

Lower Bounds. The following two theorems (proved in the
full version of the paper (Barman, Khan, and Maiti 2021))
provide the lower bounds mentioned in Table 1. Theorem 2
shows that sub-optimality is unavoidable for p < 1.2 Theo-
rem 3 provides a stronger negative result for all p < 0.

Theorem 2. For any p < 1, the p-mean welfare maximiza-
tion problem does not admit an online algorithm that com-
putes optimal allocations, i.e., the competitive ratio of any
online algorithm is strictly greater than one.

Theorem 3. For any p < 0, there does not exist an online al-
gorithm with competitive ratio strictly less than 2−(2+2/|p|) ·
n
|p|

2|p|+1 for the p-mean welfare maximization problem.

2 Notation and Preliminaries
We study the problem of allocating T divisible goods among
n agents in an online manner. Let [n] := {1, . . . , n} denote
the set of agents and [T ] := {1, . . . , T} denote the set of
goods.

The divisible goods arrive online, one by one, in T rounds
overall. The value of good t ∈ T , for every agent i ∈ [n],
is revealed only when the good arrives (i.e., in round t);
specifically, let vti ∈ R≥0 be the (nonnegative) value of good
t ∈ [T ] for agent i ∈ [n].

For each good t, the online algorithm must make an ir-
revocable allocation decision, i.e., assign the good fraction-
ally among the agents. Let xti ∈ [0, 1] denote the fraction
of the good t ∈ [T ] assigned to agent i ∈ [n]. Note that at

2By contrast, for p = 1, a greedy online algorithm (that assigns
each good to the agent that values it the most) finds an allocation
with maximum possible (average) social welfare.

most one unit of any good t is assigned among the agents:∑n
i=1 x

t
i ≤ 1. Furthermore, for each agent i ∈ [n], a bundle

xi := (xti)t∈[T ] ∈ [0, 1]T refers to a tuple that denotes the
fractional assignments of all the T goods to agent i.

An allocation x = (xi)i∈[n] ∈ [0, 1]n×T refers to a frac-
tional assignment of the goods among all the agents such
that no more than one unit of any good is assigned.3

Throughout, we will assume that all the agents have ad-
ditive valuations; in particular, for bundle xi = (xti)t∈[T ] ∈
[0, 1]T , agent i’s valuation vi(xi) :=

∑T
t=1 x

t
iv
t
i .

In this work, the extent of fairness and economic ef-
ficiency of allocations is measured by the generalized
means of the values that the allocations generate among
the agents. Specifically, with exponent parameter parame-
ter p ∈ (−∞, 1], the pth generalized mean of n nonnegative
numbers ν1, ν2, . . . , νn ∈ R≥0 is defined as

Mp(ν1, . . . , νn) :=

(
1

n

n∑
i=1

νpi

) 1
p

.

The generalized means Mp(·) with p ≤ 1, constitute a fam-
ily of functions that capture multiple fairness and efficiency
measures: Mp(·) corresponds to the arithmetic mean when
p = 1, and as p tends to zero, Mp—in the limit—is equal
to the geometric mean. Also, limp→−∞Mp(ν1, . . . , νn) =
min {ν1, . . . , νn}. Therefore, following standard conven-
tion, we will write M0(ν1, . . . , νn) := (

∏n
i=1 νi)

1/n and
M−∞(ν1, . . . , νn) := min {ν1, . . . , νn}.

Considering generalized means as a parameterized family
of welfare objectives, we define the p-mean welfare Mp(x)

of an allocation x = (xi)i∈[n] ∈ [0, 1]
n×T as

Mp(x) := Mp (v1(x1), v2(x2), . . . , vn(xn))

=

(
1

n

n∑
i=1

vi(xi)
p

)1/p

3An online algorithm has an allocation (of all T goods) in hand
only after the completion of all the T rounds.
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Here, M1(x) denotes the average social welfare of alloca-
tion x and M0(x) denotes the allocation’s Nash social wel-
fare, M0(x) = (

∏n
i=1 vi(xi))

1/n. In addition, M−∞(x) de-
notes the egalitarian welfare, M−∞(x) = mini∈[n] vi(xi).

We will assume throughout that for every agent the valu-
ation of the grand bundle of goods [T ] is equal to one, i.e.,
for each i ∈ [n], we have

∑T
t=1 v

t
i = 1. See Section 1 for

a discussion on this scaling assumption. Also, without loss
of generality, we will assume that, for all agents i ∈ [n] and
goods t ∈ [T ], the value vti ≤ 1

n2 . This condition can be
achieved online by considering—for each good—n2 iden-
tical copies of value 1/n2 times the value of the underly-
ing good. Note that our results hold in the adversarial model
wherein the value of a good t can be set by an adaptive ad-
versary (subject to the mentioned scaling) based upon the
fractional assignments till round (t− 1).

Also, to ensure that certain numeric inequalities hold, we
will throughout assume that n ≥ 16.4

3 Online Algorithm
This section details our online algorithm, ALG(Φ), for max-
imizing p-mean welfare, for p ≤ 1. The algorithm oper-
ates with a given threshold Φ and upon the arrival of each
good t, it distributes half of the good uniformly among
the agents, i.e., the algorithm initializes fractional assign-
ment xti = 1

2 ·
1
n , for each agent i ∈ [n]; see Line

3 in the algorithm and note that this initialization satis-
fies

∑n
i=1 x

t
i = 1/2. The remaining half of the good is

further divided into log(2n) equal parts; in particular, for
each α ∈

{
1
2k

: 1 ≤ k ≤ log(2n)
}

, the algorithm sets frac-
tional assignments xt,αi ∈ [0, 1] across the agents such that∑n
i=1 x

t,α
i = 1

2 ·
1

log(2n) . Note that such fractional assign-
ments ensure that overall one unit of the good t is assigned
across the agents.

For each α ∈
{

1
2k

: 1 ≤ k ≤ log(2n)
}

, to distribute
1

2 log(2n) fraction of the good t, the algorithm maintains two
subsets of agents: Aαt , referred to as the active set of agents,
and Bαt , a “vulnerable” subset of agents. For each α and
good t, an agent i is said to be active and, hence, included
in Aαt , iff so far from the α part agent i has received value
less than α/Φ, i.e., iff

∑t−1
s=1 v

s
i x
s,α
i < α/Φ. For any α,

only active agents continue to receive nonzero fractional as-
signments. Specifically, for the active agent a that values the
current good t the most (see Line 6 in the algorithm), we set
xt,αa = 1

2 ·
1

2 log(2n) . Furthermore, the algorithm considers a
subset of the active agents Bαt ⊆ Aαt for whom the pending
goods cumulatively have value less than α/4; see Line 7 in
the algorithm and recall the scaling that

∑T
s=1 v

s
` = 1 for all

agents `. The remaining ( 1
4 log(2n) ) part of the good is uni-

formly distributed among the agents in Bαt . At a high level,
the algorithm maintains a set of active agents (who have yet

4Note that one can obtain a competitive ratio of n for p-mean
welfare maximization by dividing every good uniformly among the
n agents. Hence, for n < 16, a constant-factor competitive guar-
antee directly holds.

to receive a sufficiently high value) and a subset of vulnera-
ble agents (for whom limited value is left among the pending
goods). The algorithm then strikes a balance between greed-
ily assigning the good (Line 6) and uniformly distributing
it among the vulnerable agents (Line 7). Indeed, the algo-
rithm is computationally efficient and conceptually simple–
we consider this as a relevant contribution, since such fea-
tures lend the algorithm to large-scale implementations and
explainable adaptations.

Algorithm 1: ALG(Φ)

1: Initialize index t = 1 and, for each (dyadic) α ∈{
1
2k

: 1 ≤ k ≤ log(2n)
}

, initialize sets Aαt = [n] and
Bαt = ∅.

2: for each good t = 1 to T do
3: Initialize fractional assignment xti = 1

2n , for each
agent i ∈ [n] .

4: for all k = 1 to log(2n) do
5: Set α = 1

2k
and initialize fractional assignment

xt,αi = 0, for each agent i ∈ [n].
6: Select agent a = arg maxj∈Aαt v

t
j and assign

xt,αa = 1
4 log(2n) .

7: For each agent i ∈ Bαt , update xt,αi ← xt,αi +
1

4 log(2n)
1
|Bαt |

.

8: Set Aαt+1 = Aαt \
{
j ∈ [n] :

∑t
s=1 v

s
jx
s,α
j ≥ α

Φ

}
.

9: Set Bαt+1 =
{
` ∈ Aαt+1 :

∑t
s=1 v

s
` > 1− α

4

}
.

10: end for
11: Update xti ← xti +

∑
α x

t,α
i for all agents i ∈ [n].

12: end for
13: return allocation x = (xti)i,t.

Write x = (xi)i∈[n] ∈ [0, 1]n×T to denote the allocation
returned by ALG(Φ); here, xi = (xti)t∈[T ] ∈ [0, 1]T is the
bundle assigned to agent i ∈ [n].

Also, let ω = (ωi)i∈[n] be an arbitrary allocation wherein
each agent i ∈ [n] receives a bundle of value at least 1/2n
but less than 1, i.e., 1

2n ≤ vi(ωi) < 1. Next, we establish
lemmas that hold for any such allocation ω and any thresh-
old Φ ≤ n/4. We will instantiate these lemmas with judi-
cious choices of threshold Φ and for different values of the
exponent parameter p; in each (p-specific) invocation, we
will consider ω as an allocation that approximately maxi-
mizes the p-mean welfare.
Remark 1. Note that for each p, there exists an allocation
ω = (ωi)i such that 1

2n ≤ vi(ωi) < 1 and the p-mean
welfare of ω is at least half of the optimal p-mean welfare:5

fix any p ≤ 1, write ω̂ = (ω̂ti)i,t to denote an allocation that
maximizes the p-mean welfare, and set ωti = 1

2n + 1
2 ω̂

t
i , for

all i and t.

At a high level, we aim to bound the number of agents
that—in allocation x—achieve value smaller than what they

5Here, the upper bound vi(ωi) < 1 follows from the scaling
assumption.
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achieve in ω. Upper bounding the number of such sub-
optimal agents will enable us to establish p-mean welfare
guarantees in subsequent sections.

For each α ∈
{

1
2k

: k ∈ [log(2n)]
}

, let H(α,ω) denote
the subset of agents that achieve value at least α in alloca-
tion ω, i.e., H(α,ω) := {i ∈ [n] : vi(ωi) ≥ α}. Lemma 1
(below) shows that, at any point of time, at most 8n log(2n)

Φ
of such high-valued agents are included in the set Bαt (pop-
ulated in Line 9 of ALG(Φ)).

Complementary to the set H(α,ω), we define the set of
agents L(α,ω) := {i ∈ [n] : vi(ωi) < α}. Also, let L̂(α,x)
denote the set of agents that achieve value less than α

8Φ in x,
i.e., L̂(α,x) :=

{
i ∈ [n] : vi(xi) <

α
8Φ

}
. Lemma 2 (below)

relates the number of such low-valued agents in the respec-
tive allocations.

In addition, comparing the values that agents receive in
these two allocations, we will consider the subset of agents,
SΦ(ω), that are (2Φ)-sub-optimal in x; write SΦ(ω) :={
i ∈ [n] : vi(xi) <

1
2Φvi(ωi)

}
.

Lemma 1. For any iteration t ≤ T of ALG(Φ) and any
α ∈

{
1
2k

: 1 ≤ k ≤ log(2n)
}

, we have

|Bαt ∩H(α,ω)| ≤ 8n log(2n)

Φ
.

Proof. Fix any iteration (good) t and α ∈{
1
2k

: 1 ≤ k ≤ log(2n)
}

. Note that, if agent i ∈ Bαt ,
then

∑T
s=t+1 v

s
i ≤ α/4; see Line 9 in ALG(Φ) and recall

that the valuations are scaled to satisfy
∑T
t′=1 v

t′

i = 1.
Furthermore, for each agent i ∈ H(α,ω), by definition, the
value vi(ωi) =

∑T
s=1 ω

s
i v
s
i ≥ α. These inequalities imply

that, for each agent i ∈ H(α,ω) ∩Bαt , we have
t∑

s=1

ωsi v
s
i ≥

3α

4
(1)

Given that agent i is active during iteration t (specifically,
i ∈ Bαt ⊆ Aαt ), agent i must have been active (i ∈ Aαs )
during all previous iterations s ≤ t. Next, write aαs to denote
the agent that was selected among active agents in iteration
s (see Line 6 in ALG(Φ)), aαs := arg maxj∈Aαs v

s
j . The fact

that agent i ∈ Aαs gives us vsi ≤ vsaαs for each s ≤ t. Using
this bound and equation (1) we get

3α

4
|Bαt ∩H(α,ω)| ≤

∑
i∈Bαt ∩H(α,ω)

(
t∑

s=1

ωsi v
s
i

)
(via (1))

=
t∑

s=1

∑
i∈Bαt ∩H(α,ω)

ωsi v
s
i

≤
t∑

s=1

∑
i∈Bαt ∩H(α,ω)

ωsi v
s
aαs

(since vsi ≤ vsaαs )

≤
t∑

s=1

vsaαs

(since
∑
i ω

s
i ≤ 1 for each s)

≤
t∑

s=1

4 log(2n) xs,αaαs vsaαs

(since xs,αaαs ≥
1

4 log(2n) ; Line 6 in ALG(Φ))

= 4 log(2n)
t∑

s=1

xs,αaαs vsaαs

≤ 4 log(2n)
t∑

s=1

 n∑
j=1

xs,αj vsj


= 4 log(2n)

n∑
j=1

t∑
s=1

xs,αj vsj (2)

We next bound the right-hand-side of the previous in-
equality by showing that

∑t
s=1 x

s,α
j vsj ≤ 3α

2Φ , for all agents
j ∈ [n]. Note that if j ∈ Aαt , then

∑t
s=1 x

s,α
j vsj ≤ α

Φ .
Otherwise, if j ∈ [n] \ Aαt , then j was removed from the
active set Aαr during some iteration r ≤ t and we have∑t
s=1 x

s,α
j vsj ≤

∑r−1
s=1 x

s,α
j vsj + vrj ≤ α

Φ + 1
n2 ; the last

inequality follows from the fact that the goods have value
at most 1/n2. Since Φ ≤ n/4 and α ≥ 1

2n , we get, for all
agents j ∈ [n]:

t∑
s=1

xs,αj vsj ≤
α

Φ
+

1

n2
≤ 3α

2Φ
(3)

Equations (2) and (3) give us 3α
4 |B

α
t ∩H(α,ω)| ≤

4 log(2n)
∑n
j=1

(
3α
2Φ

)
= 6αn log(2n)

Φ . Simplifying we ob-

tain the desired bound |Bαt ∩H(α,ω)| ≤ 8n log(2n)
Φ .

Recall that L(α,ω) := {i ∈ [n] : vi(ωi) < α} and
L̂(α,x) :=

{
i ∈ [n] : vi(xi) <

α
8Φ

}
.

Lemma 2. For any α ∈
{

1
2k

: 1 ≤ k ≤ log(2n)
}

we have
|L̂ (α,x) | ≤ |L(α,ω)|+ 8n log(2n)

Φ .

Proof. We begin by showing that L̂(α,x) ⊆ BαT : consider
any agent i ∈ L̂(α,x); by definition of this set, vi(xi) < α

8Φ
and, hence, agent i ∈ AαT . In addition, given that the value of
the good in the last round is at most 1

n2 ≤ α
4 , we get i ∈ BαT .

Since this containment holds for each agent i ∈ L̂(α,x), we
obtain L̂(α,x) ⊆ BαT .

This containment and Lemma 1 lead to the stated bound:

|L̂(α,x)| = |L̂(α,x) ∩ L(α,ω)|+ |L̂(α,x) ∩H(α,ω)|
(H(α,ω) and L(α,ω) partition [n])

≤ |L(α,ω)|+ |L̂(α,x) ∩H(α,ω)|
≤ |L(α,ω)|+ |BαT ∩H(α,ω)|

(since L̂(α,x) ⊆ BαT )

≤ |L(α,ω)|+ 8n log(2n)

Φ
(Lemma 1)

This completes the proof.
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Recall that SΦ(ω) :=
{
i ∈ [n] : vi(xi) <

1
2Φvi(ωi)

}
.

The following lemma establishes that the number of such
sub-optimal agents decreases linearly with the chosen pa-
rameter Φ.
Lemma 3. The number of sub-optimal agents |SΦ(ω)| ≤
8n log2(2n)

Φ .

Proof. We partition the set of agents SΦ(ω) into log(2n)
subsets, based on the values vi(ωi)s. Specifically, for each
α ∈

{
1
2k

: 1 ≤ k ≤ log(2n)
}

, write subset S (α) :=

{i ∈ SΦ(ω) : α ≤ vi(ωi) < 2α}. Since 1
2n ≤ vj(ωj) < 1,

for all agents j ∈ [n], the subsets S(α)s form a partition of
SΦ(ω). Therefore,

∑log(2n)
k=1

∣∣S ( 1
2k

)∣∣ = |SΦ(ω)|.
Next, we will show that S(α) ⊆ BαT ∩ H(α,ω) and

apply Lemma 1. Towards this, note that for each agent
i ∈ S(α) ⊆ SΦ(ω), we have vi(xi) <

vi(ωi)
2Φ < 2α

2Φ = α
Φ .

Since
∑T
s=1 x

s,α
i vsi ≤ vi(xi), we get that agent i continues

to be in the active set (for α) throughout the execution of
the algorithm, i.e., i ∈ AαT . In fact, agent i ∈ BαT , since the
value of the last good T is at most 1

n2 ≤ 1
8n , which in turn in

upper bounded by α
4 (see Line 9 in ALG(Φ)) since α ≥ 1

2n ;
recall the assumption that n ≥ 16.

Furthermore, for each agent i ∈ S(α), we have vi(ωi) ≥
α, i.e., i ∈ H(α,ω). These observations imply that every
agent i ∈ S(α) is contained in BαT ∩ H(α,ω); equiva-
lently, S(α) ⊆ BαT ∩H(α,ω). Therefore, Lemma 1 gives us
|S (α)| ≤ 8n log(2n)

Φ , for all α ∈
{

1
2k

: 1 ≤ k ≤ log(2n)
}

.
This establishes the Lemma: |SΦ(ω)| =∑log(2n)
k=1

∣∣S ( 1
2k

)∣∣ ≤ log(2n) 8n log(2n)
Φ = 8n log2(2n)

Φ .

4 Universal Online Algorithm for p-Mean
Welfare

Considering the p-mean welfare maximization problem si-
multaneously for all p ≤ 1, this section establishes an online
algorithm with a universal competitive ratio ofO(

√
n log n).

Specifically, we establish Theorem 1 by executing our algo-
rithm, ALG(Φ), with threshold Φ = 8

√
n log(2n).

Throughout this section we will consider the allocation
x = (xi)i returned by ALG (8

√
n log(2n)) and establish

an O(
√
n log n)-competitive ratio for different values of p:

Subsection 4.1 details the guarantee for egalitarian welfare
(p = −∞) and Subsection 4.2 for Nash social welfare (p =
0). The proofs for p ≤ −1 and p > −1 are deferred to the
full version of the paper. Together, Subsections 4.1 and 4.2
along with the proofs for p ≤ −1 and p > −1 in the full
version prove Theorem 1.

Consider an arbitrary allocation ω = (ωi)i with the
property that 1

2n ≤ vi(ωi) < 1, for all agents i ∈
[n], and recall that, complementary to H(α,ω), the set
L(α,ω) := {i ∈ [n] : vi(ωi) < α}. Also, with Φ =

8
√
n log(2n), the set L̂(α,x) contains the agents that have

value less than α
8Φ = α

64
√
n log(2n)

in allocation x, i.e.,

L̂(α,x) =
{
i ∈ [n] : vi(xi) <

α
64
√
n log(2n)

}
. The follow-

ing lemma builds upon Lemma 2 specifically for Φ =
8
√
n log(2n).

Lemma 4. For parameter Φ = 8
√
n log(2n) and any

α ∈
{

1
2k

: 1 ≤ k ≤ log(2n)
}

, if |L(α,ω)| ≤
√
n, then

L̂(α,x) = ∅.

Proof. Using the upper bound |L(α,ω)| ≤
√
n, we will

show that no agent i ∈ [n] is contained in L̂(α,x). To-
wards this, note that if, in ALG(Φ), agent i was removed
directly from the active set Aαt in some iteration t, then
vi(xi) ≥ α

Φ ≥ α
64
√
n log(2n)

(Line 8). In such a case,

i /∈ L̂(α,x). Hence, for the rest of the proof we assume that
i ∈ Aαt for all iterations 1 ≤ t ≤ T . Let f be the iteration
in which agent i was included in Bαf for the first time, i.e.,∑T
s=f−1 v

s
i ≥ α

4 and
∑T
s=f v

s
i <

α
4 (Line 9). Since all the

goods have value at most 1/n2 and α ≥ 1
2n ≥

8
n2 , we get

T∑
s=f

vsi =
T∑

s=f−1

vsi − v
f−1
i ≥ α

4
− 1

n2
≥ α

8
(4)

Next, note that Lemma 1 gives us |Bαs ∩ H(α,ω)| ≤
8n log(2n)

Φ =
√
n for all s ≥ f . Furthermore, we have

|L(α,ω)| ≤
√
n. Therefore, for all s ≥ f , we can upper

bound Bαs as follows
|Bαs | = |Bαs ∩H(α,ω)|+ |Bαs ∩ L(α,ω)|

≤
√
n+
√
n = 2

√
n (5)

Since i ∈ Bαs for all s ≥ f , agent i receives at least
1

4 log(2n)|Bαs |
fraction of the good in every iteration s ≥ f

(Line 9). Therefore, the value achieved by agent i is at least
T∑
s=f

1

4 log(2n)|Bαs |
vsi ≥

(via (5))

1

8
√
n log(2n)

T∑
s=f

vsi

≥
(via (4))

1

8
√
n log(2n)

α

8

=
α

64
√
n log(2n)

.

Therefore, even in the current case i /∈ L̂(α,x). This,
overall, establishes that no agent i is contained in L̂(α,x)

(i.e., L̂(α,x) = ∅). The lemma stands proved.

The following lemma multiplicatively bounds the number
of low-valued agents in allocation x in terms of the number
of low-valued agents in ω.
Lemma 5. For parameter Φ = 8

√
n log(2n) and any α ∈{

1
2k

: 1 ≤ k ≤ log(2n)
}

, we have |L̂(α,x)| ≤ 2|L(α,ω)|.

Proof. Lemma 4 ensures that, if L(α,ω) ≤
√
n, then

|L̂(α,x)| = 0. Hence, in such a case, the stated bound
holds: |L̂(α,x)| ≤ 2|L(α,ω)|. The complementary case
(i.e., |L(α,ω)| >

√
n) is addressed by Lemma 2:

|L̂(α,x)| ≤ |L(α,ω)|+ 8n log(2n)

Φ
= |L(α,ω)|+

√
n (here Φ = 8

√
n · log(2n))

≤ 2|L(α,ω)|.
This completes the proof.
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4.1 Universal Guarantee for Egalitarian Welfare
In this subsection we show that ALG(Φ), with Φ = 8

√
n ·

log(2n), achieves a competitive ratio of O (
√
n · log n)

for maximizing egalitarian welfare M−∞(·).6 Here, let
ω = (ωi)i denote an allocation with egalitarian welfare,
M−∞(ω), at least half of the optimal egalitarian welfare and
1

2n ≤ vi(ωi) < 1, for all i ∈ [n]; such an allocation is guar-
anteed to exist (Remark 1).

We will show that the allocation x = (xi)i—
computed by ALG (8

√
n log(2n))—satisfies M−∞(x) ≥

1
128
√
n log(2n)

M−∞(ω) and, hence, obtain the stated com-
petitive ratio for egalitarian welfare.

Write κ to denote the integer that satisfies 1
2κ ≤

M−∞(ω) < 2
2κ . Since vi(ωi) ≥ 1/2n, for all agents

i ∈ [n], we have M−∞(ω) = mini vi(ωi) ≥ 1/2n.
Hence, κ ≤ log(2n). Setting α̃ := 1/2κ, we invoke
Lemma 4 and note that L(α̃,ω) = ∅ and, hence,
L̂(α̃,x) = ∅. Therefore, all agents i ∈ [n] satisfy
vi(xi) ≥ α̃

64
√
n log(2n)

> M−∞(ω)

128
√
n log(2n)

. Equivalently,
M−∞(x) ≥ 1

128
√
n log(2n)

M−∞(ω) and the stated competi-
tive ratio holds.

The next subsection shows that the allocation x obtains
an analogous competitive guarantee for Nash social welfare
as well.

4.2 Universal Guarantee for Nash Social Welfare
In this subsection, let ω = (ωi)i denote an allocation with
Nash social welfare, M0(ω), at least half of the optimal
Nash social welfare and 1

2n ≤ vi(ωi) < 1, for all i ∈ [n];
such an allocation is guaranteed to exist (Remark 1). Recall
that SΦ(ω) is a subset of agents that are (2Φ)-sub-optimal
in x; specifically, SΦ(ω) :=

{
i ∈ [n] : vi(xi) <

1
2Φvi(ωi)

}
.

For notational convenience, throughout this subsection we
will use S for the set SΦ(ω) and write Sc := [n] \ S. In
the current context we have Φ = 8

√
n · log(2n) and, hence,

Lemma 3, gives us |S| ≤ 8n log2(2n)
Φ =

√
n · log(2n). Using

this upper bound on |S| we establish the competitive ratio
for Nash social welfare:(∏n

i=1 vi(ωi)∏n
i=1 vi(xi)

) 1
n

=

(
n∏
i=1

vi(ωi)

vi(xi)

) 1
n

=

(∏
i∈S

vi(ωi)

vi(xi)

) 1
n
(∏
i∈Sc

vi(ωi)

vi(xi)

) 1
n

≤ (2n)
|S|
n

(∏
Sc

vi(ωi)

vi(xi)

) 1
n

(since vi(ωi) ≤ 1 & vi(xi) ≥ 1
2n , for all i; Line 3)

≤ (2n)
|S|
n

(
16
√
n log(2n)

)Sc
n

(since vi(xi) ≥ vi(ωi)
16
√
n log(2n)

for all i ∈ Sc)

6As mentioned previously, this competitive ratio is tight, up to
a log factor.

≤ (2n)
√
n·log(2n)

n

(
16
√
n log(2n)

)
(since |S| ≤

√
n log(2n))

≤ 1328
√
n log(2n)

(since (2n)
√
n·log(2n)

n ≤ 83 for all n ≥ 1)

Hence, the allocation x is O (
√
n log n)-competitive for

Nash Social Welfare.

Remark 2. As mentioned previously, the universal guaran-
tees for the ranges p ≤ −1 and p > 1 appear in the full ver-
sion of the paper. In addition, the full version contains the
derivations of the the p-specific upper bounds (mentioned in
Table 1). We note that, while we have a single algorithmic
template, the derivations are distinct across different ranges
of p.

5 Conclusion and Future Work
This work studies online allocation of divisible goods and
develops encompassing guarantees for p-mean welfare ob-
jectives. Our results hold under a standard (in the fair divi-
sion literature) scaling assumption. Relaxing this assump-
tion by, say, considering the problem in the algorithms-
with-prediction framework (Mitzenmacher and Vassilvitskii
2021) is an interesting direction for future work. Another
relevant direction would be to study online p-mean welfare
maximization with stochastic valuations or in the random-
order-arrival model. Connecting approximation guarantees
for p-mean welfare and other well-studied fairness criteria,
such as (bounded) envy, is a meaningful thread as well.

The current paper focussed on divisible goods. However,
some of our results extend to settings wherein the goods
cannot be fractionally assigned, i.e., extend to indivisible
goods. In particular, under assumption that all the (indi-
visible) goods have sufficiently small values, one can ob-
tain high-probability bounds for egalitarian welfare. Work-
ing with such (beyond worst case) assumptions and studying
online p-mean welfare maximization for indivisible goods
will also be interesting.
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