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Abstract

The existence of EFX allocations of goods is a major open
problem in fair division, even for additive valuations. The cur-
rent state of the art is that no setting where EFX allocations
are impossible is known, and yet, existence results are known
only for very restricted settings, such as: (i) agents with iden-
tical valuations, (ii) 2 agents, and (iii) 3 agents with additive
valuations. It is also known that EFX exists if one can leave
n− 1 items unallocated, where n is the number of agents.
We develop new techniques that allow us to push the bound-
aries of the enigmatic EFX problem beyond these known re-
sults, and (arguably) to simplify proofs of earlier results. Our
main result is that every setting with 4 additive agents admits
an EFX allocation that leaves at most a single item unallo-
cated. Beyond our main result, we introduce a new class of
valuations, termed nice cancelable, which includes additive,
unit-demand, budget-additive and multiplicative valuations,
among others. Using our new techniques, we show that both
our results and previous results for additive valuations extend
to nice cancelable valuations.

1 Introduction
The question of justness, fairness and division of resources
and commitments dates back to Aristotle (Chroust 1942).
Distributional justice, the “just” allocation of limited re-
sources, is fundamental in the work of (Rawls 1999). Some
evidence of the great interest in Rawls’ work is that numer-
ous editions of his book have been cited over 100,000 times.

The mathematical study of fair division is due to Hugo
Steinhaus, Bronislaw Knaster and Stefan Banach (Steinhaus
1949) who considered proportional allocations, in which ev-
ery one of the n agents gets at least a 1/n fraction of her
total value for all the goods.

A stronger notion of fairness is that of an envy free (EF) al-
location — introduced by (Gamow and Stern 1958) for cake
cutting, and in the context of general resource allocation by
(Foley 1967). Unfortunately, if goods are indivisible, envy
free allocations need not exist. Consider the trivial case of
one indivisible good — if some agent gets the good, others
will be envious. Lipton et al. (2004) and Budish (2011) con-
sider a relaxed notion of envy freeness, namely envy freeness
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up to some item (EF1) — an allocation is EF1 if for every
pair of agents Alice and Bob, there is an item that we can
remove from Alice’s allocation such that Bob will not be
interested in swapping his allocation with what remains of
Alice’s allocation.

EF1 allocations always exist but their fairness guarantees
are questionable. Consider for example a setting where Alice
and Bob have identical valuations over 3 items a, b, c with
respective values 1, 1, 2. Arguably, a fair allocation would
assign a, b to one of the players, and c to the other one, giv-
ing each a value 2. However, the allocation that assigns a, c
to Alice and b to Bob is also EF1.

The notion of envy freeness up to any item (EFX) was in-
troduced by (Caragiannis et al. 2016, 2019). An allocation is
EFX if for every pair of agents, Alice and Bob, Bob does not
want to swap with what remains of Alice’s allocation when
any item is discarded. I.e., it suffices to consider removing
the item with minimal marginal value (to Bob) from Alices’s
allocation. Indeed, in the example above, the only EFX allo-
cations are those that allocate a, b to one player and c to the
other player.

A major open problem is “when do EFX allocations ex-
ist?”. The current state of our knowledge is somewhat em-
barrassing. We do not know how to rule out EFX allocations
in any setting, and yet, they are known to exist only in sev-
eral restricted cases. In particular, Plaut and Roughgarden
(2020) prove that EFX valuations exist for 2 agents with ar-
bitrary valuations, and for any number of agents with iden-
tical valuations. Even for the simple case of additive valua-
tions (where the value of a bundle of items is simply the sum
of values of individual goods), EFX is only known to exist
in settings with 3 agents (Chaudhury, Garg, and Mehlhorn
2020), in settings with only one of two types of additive val-
uations (Mahara 2020), or when the value of every agent to
every item can take one of two permissible values (Amana-
tidis et al. 2021).
Indeed, Procaccia (2020) recently wrote:

In my view, it (EFX existence) is the successor of
envy-free cake cutting as fair division’s biggest prob-
lem.

Given that EFX valuations are known to exist in so few
cases, the following question arises: Can one find a good
partial EFX allocation? I.e., an EFX allocation in which
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only a small amount of items can be unallocated? The idea
of partial EF and EFX allocations has appeared in multi-
ple papers, e.g. (Brams, Kilgour, and Klamler 2013; Cole,
Gkatzelis, and Goel 2013; Caragiannis, Gravin, and Huang
2019). Caragiannis, Gravin, and Huang (2019) show that
discarding some items gives good EFX allocations for the
rest (achieving 1/2 of the maximum Nash Welfare). Chaud-
hury et al. (2020) show that given n agents with arbitrary
valuations, there always exists an EFX allocation with at
most n − 1 unallocated items. Moreover, no agent prefers
the set of unallocated items to her own allocation.

1.1 Our Results
In this paper we develop new techniques, based upon
ideas that appear in (Chaudhury, Garg, and Mehlhorn 2020;
Chaudhury et al. 2020). Chaudhury, Garg, and Mehlhorn
(2020) introduced the notion of champion edges with respect
to a single unallocated good, and used it to make progress
with respect to the lexicographic potential function in order
to eventually reach an EFX allocation. We extend the notion
of champion edges beyond a single unallocated item, to sets
of items, allocated or not, and derive useful structural prop-
erties that allow us to make more aggressive progress within
a graph theoretic framework.

Our main result concerns EFX allocation for four agents.
Extending EFX existence from three to four agents is highly
non-trivial. Indeed, Chaudhury et al. (2021) discovered an
instance with four additive agents in which there exists
an EFX allocation with one unallocated item such that no
progress can be made based on the lexicographic potential
function. We show that one unallocated item is the only
possible obstacle to EFX existence in any setting with four
agents.
Theorem 1 (Main Result): Every setting with four additive
agents admits an EFX allocation with at most a single unal-
located item (which is not envied by any agent).

To prove Theorem 1, we show that for any EFX allocation
with at least two unallocated items, it is possible to reshuf-
fle bundles and reallocate them in such a way that advances
the lexicographic potential function and preserves EFX. The
proof requires solving a complex puzzle, and exemplifies the
extensive use of our new techniques.

The immediate open problem is whether one can go the
additional mile and allocate the one item that remains. A
natural approach to solving this problem is by using a dif-
ferent potential function. Notably, our new techniques are
orthogonal to the choice of the potential function, and may
prove useful in analyzing other potential functions.

We believe that we have only scratched the surface of the
power of our new techniques, and hope they will prove use-
ful in making further progress on the EFX problem.
Further Results: Beyond our main result on 4 agents, in the
full version we illustrate the applicability of our framework
by extending previous results. In a subsequent paper (Ma-
hara 2021) further improved these results while making use
of our techniques and terminology introduced herein.

We show that for every setting with n additive agents
there exists an EFX allocation with at most n − 2 unallo-
cated items. Additionally, our new techniques greatly sim-

plify existing proofs of EFX existence for 3 agents (Chaud-
hury, Garg, and Mehlhorn 2020) and for the case of 2 types
of additive valuations (Mahara 2020).

Extensions beyond additive valuations appear in the full
version. Note that the full version deals with nice-cancelable
valuations, a generalization of additive valuations.

1.2 Our Techniques
Our proof techniques lie within a graph theoretic framework.
Given an EFX allocation X, we describe a graph MX (see
Definition 3.2) where vertices are associated with agents and
there are three types of edges: envy edges i j, champion
edges i g j, where g is an unallocated item, and general-
ized champion edges i H | S j, where H is some subset
of items (allocated or not) and S is a subset of j’s allocation
in X.

The use of such graphs, with envy and champion edges
(but no generalized championship edges) has previously ap-
peared in the literature and is a key component in the proof
of an EFX allocation for 3 additive agents (Chaudhury, Garg,
and Mehlhorn 2020). The new ingredient introduced in this
paper is the notion of generalized champion edges. We show
how to find such edges (Section 3.1), and use them to reach
a new EFX allocation that advances the lexicographic poten-
tial function of (Chaudhury, Garg, and Mehlhorn 2020).

The key idea in all our results is to reshuffle the existing
allocation to obtain a new allocation with higher potential,
while preserving EFX. This follows the same proof template
as in Chaudhury et al. — but we have more options to play
with by using the generalized championship edges.

An envy edge i j suggests a possible reshuffling where
agent i gets j’s current allocation. A champion edge i g

j suggests another reshuffling, where agent i gets a subset
of agent j’s current allocation, along with the currently un-
allocated item g. A generalized champion edge i H | S j
suggests giving agent i agent j’s allocation along with some
arbitrary set of items H (that may be arbitrarily allocated
among other agents, or be unallocated), while freeing up the
set of items S.

Our proofs require solving a complex puzzle, where the
goal is to find a cycle consisting of envy, champion, and
generalized champion edges, such that the union of all sets
S freed up along with the currently unallocated items suffice
for the suggested allocation along the cycle.

Finding the appropriate generalized championship edges
is a major technical component of our techniques (see Sec-
tion 3.1). We show how to find such edges, based on existing
edges. Then, these edges allow us to reshuffle the current al-
location and advance the potential.

Remark 1.1. Due to space limitations some of the technical
claims and lemmas in the body of the paper are presented
without proofs. These can be found in the full version of the
paper.

2 Preliminaries
We consider a setting with n agents, and a set M of m items.
Each agent has a valuation vi : 2M → R≥0, which is nor-
malized and monotone, i.e. v(S) ≤ v(T ) whenever S ⊆ T
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and v(∅) = 0. We further assume that all valuations are ad-
ditive, i.e., vi(S) =

∑
s∈S vi({s}).

For two sets of items S, T ⊆ M , we write S <i T if
vi(S) < vi(T ). Similarly we define S >i T , S ≤i T , S ≥i

T , S =i T if vi(S) > vi(T ), vi(S) ≤ vi(T ), vi(S) ≥
vi(T ), vi(S) = vi(T ), respectively.

We denote a valuation profile by v = (v1, . . . , vn). An
allocation is a vector X = (X1, . . . , Xn) of disjoint bun-
dles, where Xi is the bundle allocated to agent i. Given an
allocation X, We say that agent i envies a set of items S if
Xi <i S. We say that agent i envies agent j , denoted i
j, if i envies Xj . We say that agent i strongly envies a set
of items S if there exists some h ∈ S such that i envies
S \{h}. Likewise we say that agent i strongly envies agent j
if i strongly envies Xj . X is called envy-free (EF) if no agent
envies another. X is called envy-free up to any good (EFX)
if no agent strongly envies another.

A valuation v is non-degenerate if v (S) 6= v (T ) for
any two different bundles S, T . (Chaudhury, Garg, and
Mehlhorn 2020) have shown that in order to prove the ex-
istence of an EFX allocation for a given valuation profile
v = (v1, . . . , vn) of additive valuations, it is without loss
of generality to assume that all of the valuations are non-
degenerate. Thus, for the remainder of this paper we assume
that all valuations are non-degenerate.
Potential Functions and Progress Measures: All our EFX
existence results follow the same paradigm: given an arbi-
trary EFX allocation X with k unallocated goods, construct
a new partial EFX allocation that advances some fixed po-
tential function. Since there are finitely many allocations,
there must exist an EFX allocation with at most k − 1 unal-
located items.

A natural progress measure to consider is Pareto domi-
nation. Given two allocations X,Y, we say that Y Pareto
dominates X if Yi ≥i Xi for every i ∈ [n], and there ex-
ists some i for which the inequality is strict. Chaudhury,
Garg, and Mehlhorn (2020) have presented an instance with
n = 3 agents that admits a partial EFX allocation which is
not Pareto-dominated by any full EFX allocation (note that
there can still exist Pareto-optimal full EFX allocations). To
overcome this obstacle they introduced an alternative “lexi-
cographic” progress measure which we shall also use:

Definition 2.1 (Chaudhury, Garg, and Mehlhorn (2020)).
Fix some arbitrary ordering of the agents a1, . . . , an. The
allocation Y dominates X if for some k ∈ [n], we have that
Yaj =aj Xaj for all 1 ≤ j < k, and Yak

>ak
Xak

.

Note that Pareto-domination implies domination but not
vice versa.

Lemma 2.2. If for every partial EFX allocation X with k
unallocated items, there exists a partial EFX allocation Y
that dominates X, then there exists a partial EFX allocation
with at most k − 1 unallocated items. Moreover, no agent
envies the set of k − 1 unallocated items.

Hereinafter we fix a partial EFX allocation X, and our
goal is to find a dominating EFX allocation Y. In fact, we
almost always progress via Pareto-domination. In the few
cases we do not, we find an allocation in which a1 (the most

important agent in the ordering) is strictly better off. We de-
note this agent avip.
Most Envious Agents: Fix some unallocated good g. We
denote by U the set of goods that are unallocated in X
(thus g ∈ U ). The following are variants of definitions from
(Chaudhury, Garg, and Mehlhorn 2020; Chaudhury et al.
2020).

We say that i is most envious of a set of items S, if there
exists a subset T ⊆ S, such that i envies T and no agent
strongly envies T . When more than one such T exists, we
choose one of them arbitrarily unless stated otherwise. The
set S \ T is referred to as the corresponding discard set.

Definition 2.3 (Chaudhury, Garg, and Mehlhorn (2020)).
We say that i champions j with respect to g, denoted i g

j, if i is most envious of Xj ∪ {g}. The corresponding dis-
card set is denoted Dg

i,j . Note that i envies the set (Xj ∪
{g}) \Dg

i,j , but no agent strongly envies it.

An important case considered frequently in the paper is
where g /∈ Dg

i,j . In this case Xj = (Xj \Dg
i,j) ·∪Dg

i,j . Fol-
lowing (Chaudhury, Garg, and Mehlhorn 2020), if i g j
and g /∈ Dg

i,j , then we say that i g-decomposes j into top
and bottom half-bundles (Xj \Dg

i,j) and Dg
i,j , respectively

(in short, i g-decomposes j). If there is no concern of ambi-
guity, then we denote the top and bottom half-bundles by Tj

and Bj , respectively (note that different g-decomposers of
j may induce different top and bottom half-bundles). Under
this notation, we have (Xj ∪ {g}) \Dg

i,j = Tj ∪ {g}.
In the following observations from (Chaudhury, Garg, and

Mehlhorn 2020), i g j and i 6 j are the respective
negations of i g j, i j.

Observation 2.4. For every agent i, there exists an agent j
who champions i with respect to g.

Observation 2.5. If i g j and i 6 j, then g /∈ Dg
i,j ,

i.e., i g-decomposes j.

3 Generalized Championship
A crucial component in our techniques is the extension of
Definition 2.3 to an arbitrary set of items H . It will be useful
to have a notation that contains some information regarding
the discarded items.

Definition 3.1. i champions j with respect to (H | S), de-
noted i H | S j, where H ⊆M \Xj and S ⊆ Xj , if i is
most envious of (Xj \ S) ∪ H . The corresponding discard
set is denoted D

H|S
i,j .

As opposed to basic championship, not every agent j has
an (H | S)-champion (consider an extreme example where
H = ∅, S = Xj). If i H | S j, then giving i the de-
sired bundle implied by the championship releases S to be
reallocated to other agents. For example, if we also know
that k S | S′ `, then these two champion relations can be
“used” simultaneously in a transition to a new EFX alloca-
tion.

We say that a set of items T is released by i H | S j if
T ⊆ S ∪D

H|S
i,j . We denote the negation of i H | S j by

i H | S j.
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Definition 3.2. The champion graph MX = ([n], E) with
respect to X is a labeled directed multi-graph. The vertices
correspond to the agents, and E consists of the following 3
types of edges:

1. Envy edges: i j iff i envies j.
2. Champion edges: i g j iff i champions j with respect

to g, where g is an unallocated good.
3. Generalized champion edges: i H | S j iff i champi-

ons j with respect to H | S.

We refer to envy and champion edges as basic edges.
Hereinafter, the edge notations above will sometimes refer to
the edges of the champion graph and sometimes refer to the
statements they convey. For example, we will sometimes re-
fer to “i g j” as an edge in MX and sometimes as short-
hand that i is a g-champion of j, and the meaning will be
clear from the context. Futhermore, it is not hard to verify
that i g j iff i {g} | ∅ j and that i j iff i ∅ | ∅ j.
Thus, we can treat every basic edge in MX as a generalized
champion edge.

Given a cycle C = a1 → a2 → · · · → ak → a1 of edges
and an agent ai in the cycle, succ(ai) and pred(ai) denote,
respectively, the successor and predecessor of ai along the
cycle.

Definition 3.3. A cycle C = a1 H1 | S1 a2 H2 | S2

· · · Hk−1 | Sk−1 ak Hk | Sk a1 in MX is called Pareto
improvable (PI) if for every i, j ∈ [k] we have Hi ∩Hj = ∅,
and either Hi ⊆ U or Hi is released by some edge in the
cycle1.

A PI cycle which is composed entirely of basic edges is
called a basic PI cycle.

By definition, every agent ai along a PI cycle envies some
subset Ai ⊆

(
Xsucc(ai) \ Si

)
∪ Hi that no agent strongly

envies. The following simple but useful lemma asserts that
reallocating Ai to agent ai for every ai along the cycle pro-
duces a Pareto-dominating EFX allocation. Thus, finding a
PI cycle in MX suffices to advance our potential function.

Lemma 3.4. If MX contains a Pareto improvable cycle,
then there exists a (partial) EFX allocation Y that Pareto
dominates X. Furthermore, every agent i along the cycle sat-
isfies Yi >i Xi.

Corollary 3.5 (Following (Chaudhury et al. 2020)). If MX

contains an envy-cycle, a self-g-champion (an agent i satis-
fying i g i) or a cycle composed of envy edges and basic
champion edges where for every h ∈ U there is at most one
h-champion edge in the cycle, then there exists a (partial)
EFX allocation Y that Pareto dominates X. Note that these
are exactly the basic PI cycles2.

1We could have defined a PI cycle more generally, e.g., to al-
low the set Hi to be a combination of unallocated goods and items
released from several edges. The proposed definition is hopefully
easier to digest and suffices for our purposes.

2Envy cycles, the simplest form of basic PI cycles, were con-
sidered in (Lipton et al. 2004). Basic PI-cycles were considered
in (Chaudhury et al. 2020) using different terminology — champi-
onship was only defined in (Chaudhury, Garg, and Mehlhorn 2020).
Our definition of a PI-cycle captures and generalizes these notions.

Remark 3.6. Lemma 3.4 can be generalized to handle dis-
joint cycles. The fact that C is a cycle is used in the proof
of the lemma only to ensure that every agent whose bundle
is reallocated, is also given an alternative bundle in the new
allocation. The same is true if C is a set of vertex-disjoint cy-
cles rather than a single cycle. We may then define C as an
edge set {ai Hi | Si succ(ai)}i∈[k], and if the conditions
in the definition of a Pareto-improvable cycle are satisfied,
then Lemma 3.4 still applies. In this case we refer to C as a
Pareto-improvable edge set.

3.1 New Edge Discovery
In this section we describe a way to discover new general-
ized champion edges in MX. These will almost always be
of the form k S | Bj j where Bj ⊆ Xj is some bottom
half-bundle induced by a g-decomposer of j (see discussion
below Definition 2.3). Therefore, to facilitate readability we
use the following convention:

Convention 3.7. For any two agents k, j and any set S
disjoint from Xj , we write k S | ◦ j as shorthand for
k S | Bj j, where the half-bundle Bj will be clear from
the context.

The following structure within the champion-graph is es-
pecially convenient for edge discovery.

Definition 3.8. A cycle C = a1 g a2 g · · · g

ak g a1 with at least two g-champion edges in MX is
called a good g-cycle if:

1. All agents along the cycle are different.
2. There are no parallel envy edges, i.e., ai 6 succ(ai)

for all i.
3. There are no internal g-champion edges, i.e., for every

i, j ∈ [k], ai g aj iff aj = succ(ai).

Observation 3.9. Agents j on a good g-cycle are g-
decomposed by pred(j) into Xj = Tj ·∪Bj .

We next show how to discover new generalized champion
edges in the presence of a good g-cycle. The following two
observations are useful:

Observation 3.10. If i 6 j then i Bj | ◦ j.

Observation 3.11. For any two agents i, j along a good g-
cycle, pred(i) Bi | ◦ j.

Lemma 3.12. Let C be a good g-cycle. For any agent i
along the cycle, there exists an agent a such that a Bi | ◦
succ(i).

Lemma 3.13. Let C be a good g-cycle. Let i, j, k be agents
along the cycle. If k Bi | ◦ j, then there exists an agent a
(not necessarily in the cycle) such that a Bi | ◦ succ(k).

For every bottom half-bundle Bi along a good g-cycle C,
applying Lemma 3.12 provides an initial Bi-champion edge.
If this edge is internal to the cycle, i.e., the source of the edge
is in the cycle, then we can apply Lemma 3.13 to discover a
new Bi-champion edge. Once again, if the new edge is inter-
nal to the cycle, then we can reapply Lemma 3.13. We can
repeat this process to discover more and more Bi-champion
edges, until either the new edge has already been previously
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discovered, or it is external (i.e., its source is outside the cy-
cle).

There are two particular types of internal Bi-champions
edges that are useful to us.

Definition 3.14. Let C be a good g-cycle. Let i, j, k be three
agents along C. If i Bk | ◦ j and k is on the path from j
to i in C, then we say that the edge i Bk | ◦ j is a good
edge (or good Bk-edge). If ` Bk | ◦ j for some agent `
outside the cycle C, then we say that the edge ` Bk | ◦ j
is an external edge (or external Bk-edge).

The figure below illustrates Definition 3.14.

The red edges form a good g-cycle C among 4 agents, C =
1 g 2 g 3 g 4 g 1. The edge 2 B1 | B4 4 is
a good edge, since 1 is on the path from 4 to 2 in C. On the
other hand, 3 B4 | B2 2 is not a good edge (we call it a
bad edge in the figure), since 4 is not on the path from 2 to 3
along C. 5 B2 | B3 3 is an external edge.

Theorem 3.15. Let C be a good g-cycle. For every agent j
along the cycle, there exists either a good Bj-edge in C, or
an external Bj-edge in C.

Proof. Assume without loss of generality that C = 1 g

2 g · · · g k g 1 and j = 1, i.e., we try to find
B1-champion edges. By Lemma 3.12 there exists an edge
`1 B1 | ◦ 2 for some agent `1. If this is an external B1-
edge we are done. Otherwise, `1 is an agent along C,
and thus by Lemma 3.13 there exists an edge `2 B1 | ◦
succ(`1), for some agent `2 which can be equal to `1. As
long as the result of Lemma 3.13 is not an external edge we
may apply the lemma repeatedly. Hence, if no such iteration
results in an external edge, we obtain a sequence of agents
(`i)
∞
i=1 such that `i+1 B1 | ◦ succ(`i) for every i ≥ 1.

If for some i ≥ 1, we have `i+1 ≤ `i then the edge
`i+1 B1 | ◦ succ(`i) is a good edge (since the path from
succ(`i) to `i+1 includes 1). Hence, if none of these edges
are good, then `i < `i+1 for every i ≥ 1, in contradiction to
C being of finite length. Thus, one of these edges must be
good, hence we are done.

The following observation and its corollary allow us to
narrow down the possible configurations of Bj-edges ob-
tained from Theorem 3.15.

Observation 3.16. If i Bj | ◦ k and i 6 k then Bk <i

Bj .

Corollary 3.17. Let C be a good g-cycle. Consider the set
of Bj-edges guaranteed by Theorem 3.15 for every agent j
along the cycle. If all these edges are external, then they can-
not all share the same source agent, unless that agent envies
some agent along the cycle. (the figure below demonstrates
an impossible configuration).

4 Proof of the Main Result: EFX for 4
Additive Agents with 1 Unallocated Good

In this section we prove our main result, namely that every
setting with 4 additive agents admits an EFX allocation with
at most one unallocated good. By Lemma 2.2 it suffices to
prove:

Theorem 4.1. Let X be an EFX allocation on 4 agents
with additive valuations, with at least two unallocated items.
Then, there exists an EFX allocation Y that dominates X.

The proof involves a rigorous case analysis, which exem-
plifies the extensive use of our new techniques. We have at-
tempted to make the proofs as accessible as possible through
the use of extensive aids such as figures and colors.

By assumption, there exist two unallocated goods which
we denote g, h. The proof distinguishes between two main
cases, namely whether X is envy-free or not. When X is
envy-free, we show that a Pareto improvable (PI) cycle al-
ways exists. This is shown via a case analysis that depends
on the lengths of the good g- and h-cycles which (we show)
must exist in the champion graph MX.

When X has envy, we show that one can restrict attention
to cases where the basic edges in MX follow some specific
structure, modulo permuting the agent identities. Then, we
show that there is an EFX allocation in which agent avip (per
the lexicographic potential) is better off relative to X. Since
avip could be any one of the agents (due to the identity per-
mutation), the proof deals with all cases irrespective of the
identity of avip. Our approach here is heavily inspired by and
follows a similar high-level structure to that of (Chaudhury,
Garg, and Mehlhorn 2020) in their analysis of the envy case
in their 3 agent result. Due to space constraints the complete
proof of Theorem 4.1 is deferred to the full version. In what
follows we present some of the cases where X is envy-free.

4.1 X is Envy-Free
We show that if X is envy-free, then we can always find
a PI cycle or edge set in MX (see Remark 3.6), implying
(by Lemma 3.4) the existence of a Pareto-dominating EFX
allocation Y.

Recall that every agent i has an incoming g-champion
edge and an incoming h-champion edge (Observation 2.4),
and thus MX contains a g-cycle and an h-cycle. If there is
a self g or h champion we are done by Corollary 3.5. Thus,
these cycles are of size at least 2, and contain no envy edges,
and are therefore good cycles. Denote them by Cg, Ch.

By Observation 3.9, Cg (resp. Ch) induces a g (resp.
h)-decomposition of Xj for any agent j in the cycle. In
the following we denote the g (resp. h) -decomposition by
Xj = T g

j ·∪ Bg
j (resp. Xj = Th

j ·∪ Bh
j ). We shall make re-

peated use of Observations 3.10 and 3.11. For concise pre-
sentation, we write here the implications that will be repeat-
edly used in this section: For every two agents i, j we have:
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(a) i Bg
j | ◦ j ; (b) if i, j reside on the same good g-cycle,

then pred(i) Bg
i | ◦ j. Analogous claims hold for h. We

remind the reader that i Bg
k | ◦ j, i Bh

k | ◦ j are short-
hand for i Bg

k | B
g
j j, i Bh

k | B
h
j j, respectively.

Since there are 4 agents, Cg and Ch can be of size 2, 3,
or 4. Assume w.l.o.g. that |Cg| ≤ |Ch|. Thus, there are six
cases to consider. The cases |Cg| = 2, |Ch| = 4; |Cg| =
|Ch| = 3; |Cg| = |Ch| = 4 appear in the full version. The
remaining cases are treated below.
Case 1: |Cg| = |Ch| = 2. Assume w.l.o.g. that Cg =
1 g 2 g 1. By Theorem 3.15, there exists either a
good or external Bg

1 -edge going into agent 2, and there ex-
ists either a good or external Bg

2 -edge going into agent 13.
If one of these is good we are done: for example, the only
possible good Bg

1 -edge is 1 Bg
1 | ◦ 2 which closes the PI

cycle 1 Bg
1 | ◦ 2 g 1 (recall that the edge 2 g 1 re-

leases Bg
1 ).

Thus both edges have to be external, i.e., their sources are
agents 3 or 4. Assume w.l.o.g. that 3 Bg

1 | ◦ 2. We cannot
also have 3 Bg

2 | ◦ 1 by Corollary 3.17. We conclude that
4 Bg

2 | ◦ 1, and we have the following structure:

Consider Ch. If Ch = 1 h 2 h 1 then we are done
since we get the PI cycle 1 g 2 h 1 (see Corollary
3.5). If Ch = 3 h 4 h 3, then following the analo-
gous reasoning for Cg we can assume that we have external
Bh

3 and Bh
4 edges, in which case we have one of the follow-

ing two structures (highlighted edges are part of PI cycles or
PI edge sets):

In the left graph, the two cycles 1 Bh
3 | ◦ 4 Bg

2 | ◦
1, 2 Bh

4 | ◦ 3 Bg
1 | ◦ 2 form a PI edge set, and in the

right graph we have the PI-cycle 1 Bh
4 | ◦ 3 Bg

1 | ◦
2 Bh

3 | ◦ 4 Bg
2 | ◦ 1 (note that in both cases every one

of the four used bottom half-bundles is released by a cor-
responding incoming edge to each one of the agents), and
thus we are done. We remark that if MX contains the good
g-cycle 3 g 4 g 3, then similar reasoning also shows
that we have a PI cycle (or PI edge set). In other words, if
MX contains two disjoint g-cycles of size 2 or two disjoint
h-cycles of size 2, then we are done.

It remains to consider the case where Ch intersects Cg at
exactly one agent. If Ch = 1 h 3 h 1, then we get
the PI cycle 1 h 3 Bg

1 | ◦ 2 g 1. The case Ch =
2 h 4 h 2 is symmetric. We are left with the cases
Ch = 2 h 3 h 2 or Ch = 1 h 4 h 1, which

3Note that by Observation 3.10, there cannot be a Bg
1 edge go-

ing into agent 1 or a Bg
2 edge going into agent 2.

are also symmetric. Thus, w.l.o.g. we assume Ch = 2 h

3 h 2 and we get the structure:

As before, there must be two external Bh
2 and Bh

3
edges (coming out of agents 1 and 4). If 1 Bh

2 | ◦ 3 and
4 Bh

3 | ◦ 2, then we get the PI cycle 1 Bh
2 | ◦ 3 h

2 g 1. Thus 1 Bh
3 | ◦ 2 and 4 Bh

2 | ◦ 3, and we get
the structure:

We now ask who is an h-champion of agent 4 (such ex-
ists by Observation 2.4). If 3 h 4, we are done via the
PI edge set 1 Bh

3 | ◦ 2 g 1, 3 h 4 Bh
2 | ◦ 3. If

2 h 4, we are done: 1 g 2 h 4 Bg
2 | ◦ 1. Thus,

assume 1 h 4 (recall our assumption that there are no
self-champions, i.e., 4 h 4).

Now we ask who is an h-champion of agent 1. If 4 h

1 we are done since we have two disjoint size 2 h-cycles, a
situation we have already dealt with at the start of Case 1. If
2 h 1 we are done: 1 g 2 h 1. Therefore, 3 h

1 and we have the structure:

Now we ask who is a g-champion of 3. If 1 g 3 or
2 g 3, we have a size 2 cycle with g and h edges and we
are done. Thus, 4 g 3.

Finally, we ask who is a g-champion of 4. If 3 g 4 then
we have two disjoint g-cycles of size 2 and we are done. If
2 g 4, then we are done: 2 g 4 Bh

2 | ◦ 3 h 2.
Thus assume 1 g 4, and we have the structure:

In this case we are done via the PI edge set 1 g

4 Bg
2 | ◦ 1, 2 h 3 Bg

1 | ◦ 2.
Case 2: |Cg| = 2, |Ch| = 3. Assume w.l.o.g. that Cg =
1 g 2 g 1. If Ch passes through both agents 1 and 2
then we are done since we are guaranteed to have a size 2
cycle with g and h edges. Thus Ch passes through exactly
one of them, and we can assume w.l.o.g. that Ch = 1 h

4 h 3 h 1 (note that the reverse direction of the cycle
is symmetric by switching the roles of agents 3 and 4). We
get the following structure:

4831



As in the previous case we may assume that the Bg
1

and Bg
2 edges guaranteed by Theorem 3.15 are exter-

nal. If we have 3 Bg
2 | ◦ 1 and 4 Bg

1 | ◦ 2, we are
done: 1 h 4 Bg

1 | ◦ 2 g 1. Thus assume we have
the edges 3 Bg

1 | ◦ 2 and 4 Bg
2 | ◦ 1.

We now ask who is a g-champion of 3. If 1 g 3, we are
done: 1 g 3 h 1. If 2 g 3, we are done: 1 h

4 Bg
2 1, 2 g 3 Bg

1 2. Thus 4 g 3, and we have
the structure:

Consider Ch. We ask which agent i satisfies i Bh
4 | ◦

3 (such exists by Lemma 3.12, since 3 = succ(4) in
Ch). We cannot have 1 Bh

4 | ◦ 3 since 1 = pred(4) in
Ch (see Observation 3.11). If 4 Bh

4 | ◦ 3, we are done:
1 h 4 Bh

4 | ◦ 3 Bg
1 | ◦ 2 g 1. If 2 Bh

4 | ◦ 3
we are done: 1 h 4 Bg

2 | ◦ 1, 2 Bh
4 | ◦ 3 Bg

1 | ◦

2. Thus, we must have 3 Bh
4 | ◦ 3.4

We now ask which agent i satisfies i Bh
4 | ◦ 1 (such

exists by Lemma 3.13 since 3 Bh
4 | ◦ 3 and 1 =

succ(3) in Ch). We cannot have 1 Bh
4 | ◦ 1, since 1 =

pred(4) in Ch. If 3 Bh
4 | ◦ 1, we are done: 1 h

4 g 3 Bh
4 | ◦ 1. If 4 Bh

4 | ◦ 1, we are done: 1 h

4 Bh
4 | ◦ 1. Thus 2 Bh

4 | ◦ 1, and we have the struc-
ture:

Finally, we ask which agent i satisfies i Bh
1 | ◦ 4 (such

exists by Lemma 3.12). We cannot have 2 Bh
1 | ◦ 4, as

otherwise, together with 2 Bh
4 | ◦ 1 we have by Observa-

tion 3.16 that Bh
1 <2 Bh

4 <2 Bh
1 , contradiction. We cannot

have 3 Bh
1 | ◦ 4, as 3 = pred(1) in Ch. Thus, we must

have 4 Bh
1 | ◦ 4, and we are done: 1 g 2 Bh

4 | ◦ 1,
4 Bh

1 | ◦ 4.
Case 3: |Cg| = 3, |Ch| = 4. (Note that this is Case 5 in
the full version.) Assume w.l.o.g. that Ch = 1 h 2 h

3 h 4 h 1 and that Cg = 1 g 3 g 4 g 1
(note that if Cg is in the opposite direction we immediately
get a PI cycle). We have the structure:

4Note that as opposed to a self g-loop, 3 Bh
4 | ◦ 3 is not a

PI-cycle since Bh
4 is not released within the cycle.

Consider Cg . In what follows we reason about possi-
ble Bg

1 , B
g
3 and Bg

4 edges, starting with Bg
3 . By Theorem

3.15, MX contains a good or external Bg
3 -edge. If it is a

good Bg
3 -edge, then it is one of 3 Bg

3 | ◦ 4, 3 Bg
3 | ◦ 1,

4 Bg
3 | ◦ 1, and in all cases we get a PI cycle:

1 g 3 Bg
3 | ◦ 4 h 1, 1 g 3 Bg

3 | ◦ 1,

1 g 3 h 4 Bg
3 | ◦ 1,

respectively. Thus, we can assume that there is an external
Bg

3 -edge, which can be either 2 Bg
3 | ◦ 1 or 2 Bg

3 | ◦
4, and thus the structure is one of the following:

We now ask which agent i satisfies i Bg
1 | ◦ 3 (such

exists by Lemma 3.12, since 3 = succ(1) in Cg). We
cannot have 4 Bg

1 | ◦ 3, since 4 = pred(1) in Cg .
If 1 Bg

1 | ◦ 3, we are done: 1 Bg
1 | ◦ 3 h 4 g

1. If 3 Bg
1 | ◦ 3, we are done regardless of whether

2 Bg
3 | ◦ 1 or 2 Bg

3 | ◦ 4; in the first case we have the
PI edge set 1 h 2 Bg

3 | ◦ 1, 3 Bg
1 | ◦ 3, and in the

second case we have the PI edge set 1 h 2 Bg
3 | ◦

4 g 1, 3 Bg
1 | ◦ 3. Thus, we must have 2 Bg

1 | ◦ 3.
Therefore, the external Bg

3 -edge cannot be 2 Bg
3 | ◦ 1,

as otherwise by Observation 3.16 we get Bg
1 <2 Bg

3 <2 Bg
1 ,

contradiction. Hence we have 2 Bg
3 | ◦ 4, and we obtain

the following structure:

We now ask which agent i satisfies i Bg
4 | ◦ 1 (such

exists by Lemma 3.12, since 1 = succ(4) in Cg). We can-
not have 3 Bg

4 | ◦ 1, since 3 = pred(4) in Cg . We can-
not have 2 Bg

4 | ◦ 1, as otherwise we get a contradic-
tion to Corollary 3.17, since there are already external Bg

1
and Bg

3 edges whose source is agent 2. If 4 Bg
4 | ◦ 1, we

are done: 1 h 2 Bg
1 | ◦ 3 g 4 Bg

4 | ◦ 1. Thus we
must have 1 Bg

4 | ◦ 1 and we have the structure:

By Lemma 3.13, 1 Bg
4 | ◦ 1 implies that there is an

agent i that satisfies i Bg
4 | ◦ 3 (3 = succ(1) in Cg). We

cannot have 2 Bg
4 | ◦ 3, as again we would get a con-

tradiction to Corollary 3.17. We cannot have 3 Bg
4 | ◦

3 since 3 = pred(4) in Cg . If 1 Bg
4 | ◦ 3 we are

done: 1 Bg
4 | ◦ 3 g 4 h 1. Thus we must have

4 Bg
4 | ◦ 3, and we are done: 3 g 4 Bg

4 | ◦ 3.
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