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Abstract

We extend the recently introduced framework of metric dis-
tortion to multiwinner voting. In this framework, n agents and
m alternatives are located in an underlying metric space. The
exact distances between agents and alternatives are unknown.
Instead, each agent provides a ranking of the alternatives, or-
dered from the closest to the farthest. Typically, the goal is to
select a single alternative that approximately minimizes the
total distance from the agents, and the worst-case approxima-
tion ratio is termed distortion. In the case of multiwinner vot-
ing, the goal is to select a committee of k alternatives that (ap-
proximately) minimizes the total cost to all agents. We con-
sider the scenario where the cost of an agent for a committee
is her distance from the q-th closest alternative in the com-
mittee. We reveal a surprising trichotomy on the distortion of
multiwinner voting rules in terms of k and q: The distortion
is unbounded when q 6 k/3, asymptotically linear in the
number of agents when k/3 < q 6 k/2, and constant when
q > k/2.

Introduction
The most canonical problem in voting theory is to aggre-
gate ranked preferences of n individual agents over a set of
m alternatives to reach a collective decision. Examples of
such decisions include selecting a single alternative (single-
winner voting), selecting k out of m alternatives for a fixed
k > 1 (multiwinner voting), and selecting a set of costly al-
ternatives subject to a budget constraint (participatory bud-
geting). In centuries of research on voting, perhaps the most
prominent approach to designing voting rules has been the
axiomatic approach, in which one fixes several qualitative
axioms and seeks voting rules satisfying them. Unfortu-
nately, this approach has often led to impossibility results,
such as Arrow’s impossibility theorem (Arrow 1951).

To circumvent this, Procaccia and Rosenschein (2006)
proposed the (utilitarian) distortion framework for analyz-
ing, comparing, and designing single-winner voting rules.
Under this framework, the ordinal preferences expressed
by agents are viewed as proxies for their underlying car-
dinal utilities, and the goal of a voting rule is to optimize
the worst-case approximation ratio (distortion) of the social
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welfare (the total utility of the agents). Under minimal as-
sumptions, this framework offers a quantitative comparison
of voting rules. It has been used successfully to analyze the
distortion of well-known methods (Caragiannis and Procac-
cia 2011) and to identify voting rules with optimal distor-
tion (Boutilier et al. 2015). The framework has also been ex-
tended to multiwinner voting (Caragiannis et al. 2017) and
participatory budgeting (Benadè et al. 2017), under the as-
sumption that the utility of an agent for a set of alternatives is
the maximum and the sum of her utilities for the alternatives
in the set, respectively.

Anshelevich, Bhardwaj, and Postl (2015) built on this
idea to propose the metric distortion framework, in which
agents and alternatives are embedded in an underlying met-
ric space, and the cost of an agent for an alternative is the
distance between them. An agent still ranks the alternatives,
but now in a non-decreasing order of their distance from her.
Instead of maximizing the social welfare, the goal is now to
minimize the social cost (the total cost of the agents). Like in
the utilitarian case, scholars have analyzed the metric distor-
tion of prominent voting rules (Skowron and Elkind 2017;
Goel, Krishnaswamy, and Munagala 2017; Munagala and
Wang 2019; Kempe 2020a) and identified rules with opti-
mal metric distortion (Gkatzelis, Halpern, and Shah 2020).
For a detailed overview, we refer the reader to the survey by
Anshelevich et al. (2021).

The goal of our work is to extend the metric distortion
framework to multiwinner voting, where the objective is
to select a subset of k alternatives (committee) for a given
k > 1. To the best of our knowledge, the only prior works
to address multiwinner voting with general metric costs are
those of Goel, Hulett, and Krishnaswamy (2018) and Chen,
Li, and Wang (2020). Both focus on a model in which an
agent’s cost for a committee is the sum of her distances to
the alternatives in the committee. In a sense, this assumes
that an agent cares equally about all the alternatives chosen
in the committee.

However, in many applications, an agent may care only
about a few alternatives in the committee, typically the ones
she prefers more. For example, when parliament members
are chosen in a political election, each voter may associate
with just one (or a few) of the elected candidates as her rep-
resentative(s). Similarly, if a city builds parks at multiple lo-
cations, each resident may only be able to access a few parks
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closest to her. Motivated by these applications, we consider
the case where an agent’s cost for a committee of k alter-
natives is her distance to the q-th closest alternative in the
committee, for a given q 6 k. Note that for q = 1, this is the
distance to the closest alternative in the committee, whereas
for q = k, it is the distance to the farthest one. Our main
research question is:

What is the optimal distortion for selecting a com-
mittee of k alternatives under this cost model? How
does it depend on the relation between q and k? Can
the optimal distortion be achieved via efficient voting
rules?

Before proceeding further, note that another reason why
it may not be desirable to model an agent’s cost for a com-
mittee as the sum of her distances to the alternatives in the
committee is that the optimal committee can suffer from the
tyranny of the majority; that is, it may consist entirely of the
alternatives liked by the majority and include none liked by
a minority. This is somewhat reflected by the fact that re-
peatedly applying a single-winner voting rule is known to
work well in this model (Goel, Hulett, and Krishnaswamy
2018). Due to this, prior work on multiwinner voting, both
in the distortion literature (Caragiannis et al. 2017) and
elsewhere (Chamberlin and Courant 1983; Monroe 1995;
Procaccia, Rosenschein, and Zohar 2008; Lu and Boutilier
2011), aims to ensure that there is at least one alternative
in the committee that every agent likes well (which corre-
sponds to q = 1 in our model). An interesting byproduct
of our cost model is that an agent’s submitted ranking of
individual alternatives can be used to determine her ordinal
preferences over committees; we use this fact to derive some
of our results.

Our Contributions
Recall that n is the number of agents and m is the number
of alternatives. We reveal a surprising trichotomy on the best
possible distortion for multiwinner voting.

When q 6 k/3, the distortion is unbounded. This holds
even for randomized voting rules, and even when n and m
are only linear in k. When q ∈ (k/3, k/2], the best possi-
ble distortion is Θ(n). Here, the upper bound is obtained via
a novel voting rule that is deterministic and efficient, while
the lower bound holds even for randomized voting rules and
when m is linear in k or q. Finally, when q > k/2, the best
possible distortion is 3 for deterministic rules, and between
2 and 3 for randomized rules. For this case, we show that
the costs of agents for committees satisfy the triangle in-
equality. Hence, we can reduce multiwinner voting to single-
winner voting by treating each committee as a separate alter-
native and applying any single-winner voting rule, allowing
us to borrow known best possible distortion bounds from the
single-winner case to the multiwinner one. This is where we
use the fact that under our cost model, we can deduce an
agent’s ordinal preferences over committees from her pro-
vided ranking of individual alternatives.

However, this reduction is not efficient as we need to ap-
ply the single-winner voting rule on an instance with

(
m
k

)
alternatives. To that end, we also provide an efficient reduc-

tion. We show that there exists an agent such that the com-
mittee consisting of the k alternatives she prefers the most
has social cost no worse than 3 times the optimal. Thus, we
can apply any single-winner voting rule with distortion ρ
on a reduced instance with only n committees (one com-
mittee per agent) as alternatives and obtain a multiwinner
rule with distortion at most 3ρ. In particular, by applying
the PLURALITYMATCHING rule of Gkatzelis, Halpern, and
Shah (2020), which is known to achieve the best possible
distortion of 3 in the single-winner case, we obtain distortion
at most 9 in polynomial time. We also show that an efficient
reduction of this type cannot be used to achieve distortion
better than 5.207.

Related Work
The works of Goel, Hulett, and Krishnaswamy (2018) and
Chen, Li, and Wang (2020) are the most closely related to
ours as they consider metric distortion for multiwinner vot-
ing. As mentioned before, both focus on a setting where the
cost of an agent for a committee is the sum of her distances
to the alternatives in the committee.1 Goel, Hulett, and Kr-
ishnaswamy (2018) show that selecting a committee by re-
peatedly applying any single-winner voting rule with distor-
tion δ yields a distortion of at most δ. Since the best pos-
sible single-winner distortion is known to be 3 (Gkatzelis,
Halpern, and Shah 2020), this implies that a distortion of 3
can be achieved for any k in this model. Chen, Li, and Wang
(2020) directly present a voting rule achieving distortion 3
for the case of k = m− 1 and prove this to be best possible.

Jaworski and Skowron (2020) consider a model where
voters (agents) and candidates (alternatives) have prefer-
ences over a set of binary issues, which induce the prefer-
ences of the voters over the candidates; specifically, voters
rank candidates based on the number of issues they agree
on. The elected committee uses majority voting to decide on
each issue, and the cost of a voter is the number of issues for
which the decision differs from her preferred outcome. This
can be viewed as a metric distortion model, but with the spe-
cific Hamming distance metric. Also, the cost of a voter for a
committee depends on the locations of the candidates in the
committee, and not just on their distances to her. Meir, San-
domirskiy, and Tennenholtz (2021) consider a similar model
where voters are also candidates, and show that sortition —
picking k of the voters uniformly at random — leads to low
distortion.

The distortion of randomized rules has also received sig-
nificant attention. For single-winner voting, the best possi-
ble distortion under the utilitarian model is known to be
Θ̃(
√
m) (Boutilier et al. 2015), while that under the met-

ric model still remains a challenging open question (An-
shelevich and Postl 2017; Kempe 2020b). Caragiannis et al.
(2017) provide bounds on the best possible distortion of
randomized multiwinner voting rules under the utilitarian
model, and our work does so under the metric model.

More broadly, there is a huge literature on multiwinner
voting that focuses on desiderata other than distortion, such

1Chen, Li, and Wang (2020) focus only on the case of k =
m− 1, but also consider another cost model.
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as proportional representation (Aziz et al. 2017; Peters and
Skowron 2020), committee diversity (Bredereck et al. 2018),
monotonicity or consistency axioms (Elkind et al. 2017), ex-
plainability (Peters et al. 2021), etc. We refer the interested
reader to the book chapter by Faliszewski et al. (2017) for
an overview.

Preliminaries
For p ∈ N, define [p] = {1, . . . , p}. An instance of our
problem is given by the tuple I = (N,A, d, k, q), where:

• N is a set of n > 2 agents.
• A is a set of m > 2 alternatives.
• d is a pseudometric over N ∪ A with d(x, y) denot-

ing the distance between x, y ∈ N ∪ A. Being a
pseudometric, d satisfies, for all x, y, z ∈ N ∪ A,
d(x, x) = 0, d(x, y) = d(y, x), and the triangle inequal-
ity d(x, y) 6 d(x, z) + d(z, y). Since our framework
only uses distances between agents and alternatives (and
not between two agents or between two alternatives), we
use the following equivalent formulation of the triangle
inequality (Goel, Krishnaswamy, and Munagala 2017):
d(i, x) 6 d(i, y)+d(j, y)+d(j, x) for all agents i, j ∈ N
and alternatives x, y ∈ A.2

• k and q are positive integers such that 1 6 q 6 k < m.

Every agent i ∈ N ranks the alternatives based on her dis-
tances from them, from smallest (most preferable) to largest
(least preferable), breaking ties arbitrarily; that is, the pseu-
dometric d induces the ordinal preferences of agent i given
by a ranking �i over the alternatives such that x �i y im-
plies d(i, x) 6 d(i, y). We refer to �d= (�i)i∈N as the
preference profile.

For any S ⊆ A with |S| > q, we denote by topi,q(S) the
set of q most preferred alternatives of agent i in S. A com-
mittee C ⊆ A is a set of alternatives of size exactly equal to
k. We define the q-cost of agent i for C, denoted ci,q(C|d),
to be the distance of i from her q-th closest alternative in
C: ci,q(C|d) = maxx∈topi,q(C) d(i, x). The q-social cost of
committee C, denoted SCq(C|d), is then defined as the total
q-cost of the agents for C: SCq(C|d) =

∑
i∈N ci,q(C|d).

A (randomized) multiwinner voting rule f takes as input
a preference profile �d and outputs a distribution over com-
mittees; we say that f is deterministic if the distribution it
returns has singleton support. Given k ∈ N and q ∈ [k], the
(k, q)-distortion of f is the worst-case ratio, over all possi-
ble instances with these parameters, between the (expected)
q-social cost of the committee chosen by f and the minimum
possible q-social cost of any committee, i.e.,

sup
I=(N,A,d,k,q):|A|=m>k

E[SCq(f(�d)|d)]

minC⊆A:|C|=k SCq(C|d)
.

Our goal is to design multiwinner rules with as low (k, q)-
distortion as possible. Due to lack of space, some proofs are
omitted.

2When proving lower bounds, we will often design a worst-case
pseudometric d by embedding agents and alternatives in the 1D
Euclidean space and taking the Euclidean distance between them.

agent ranking
v1 X1 � X2 � Y1 � Y2 � Y3
v2 X2 � X1 � Y1 � Y2 � Y3
u1 Y1 � Y2 � Y3 � X2 � X1

u2 Y2 � Y1 � Y3 � X2 � X1

u3 Y3 � Y2 � Y1 � X2 � X1

Table 1: An example of the preference profile used in the
proof of Theorem 1, when k = 8 and q = 2.

To simplify notation, we drop q and d whenever they are
clear from the context. In particular, we will use ci(C) in-
stead of ci,q(C|d), SC(C) instead of SCq(C|d), and topi(S)
instead of topi,q(S). We also denote by Ti = topi(A) the
set of q alternatives ranked highest by agent i.

Unbounded Distortion With q 6 k/3
We begin with a strong impossibility result for the case
where q 6 k/3. In particular, we show that every multi-
winner voting rule has unbounded distortion, even if it is
allowed to use randomization.

Theorem 1. For q 6 k/3, the (k, q)-distortion of every
(even randomized) multiwinner voting rule is unbounded.

Proof. Fix k and q such that q 6 k/3, and a mutliwin-
ner voting rule f . Let L = bk/qc + 1 > 4. We con-
sider an instance with n = L agents, partitioned into two
sets: V = {v1, . . . , vbL/2c} and U = {u1, . . . , udL/2e}.
There are m = Lq alternatives, partitioned into L sets
X1, . . . , XbL/2c, Y1, . . . , YdL/2e of size q each.3 Let X =⋃bL/2c

`=1 X` and Y =
⋃dL/2e

`=1 Y`.
Consider any preference profile such that:

• Every agent in V ranks the alternatives in X higher than
those in Y .

• Every agent in U ranks the alternatives in Y higher than
those in X .

• For ` ∈ [bL/2c], every agent ranks the alternatives in X`

as well as those in Y` arbitrarily.
• For ` ∈ [bL/2c], agent v` ∈ V ranks the alternatives in
Xi higher than those inXj whenever |`− i| < |`−j|, for
i, j ∈ [bL/2c]; agent v` ranks the sets of Y in the order
Y1, . . . , YdL/2e from highest to lowest.

• For ` ∈ [dL/2e], agent u` ∈ U ranks the alternatives in
Yi higher than those in Yj whenever |`− i| < |`− j|, for
i, j ∈ [dL/2e]; agent u` ranks the sets of X in the order
XbL/2c, . . . , X1 from highest to lowest.

Table 1 presents an example preference profile for k = 8
and q = 2; Figure 1 depicts the possible underlying metric
spaces used in the two cases below for this example instance.

Because m = Lq = (bk/qc + 1) · q > k, not all alterna-
tives can be included in the committee. We switch between
the following two cases.

3We use an instance with n 6 m. Note, however, that the lower
bound continues to hold even if one assumes n > m. We can sim-
ply create t copies of each agent, for an appropriately large t ∈ N.
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{v1, X1}
{v2, X2}

0

{u1, Y1}

4

{u2, Y2}

5

{u3, Y3}

6

(a) The metric space in Case 1.

{v1, X1}

−4

{v2, X2}

−3

{u1, Y1}
{u2, Y2}
{u3, Y3}

0

(b) The metric space in Case 2.

Figure 1: The two metrics used in the proof of Theorem 1
when k = 8 and q = 2. Both are consistent with the ordinal
preferences presented in Table 1.

Case 1: Some alternative in Y is not included in the com-
mittee with a positive probability.
Suppose that an alternative in Y`∗ is not included in the com-
mittee with a positive probability, for some `∗ ∈ [dL/2e].
Consider the following one-dimensional Euclidean metric,
which is consistent with the ordinal preferences of the agents
defined above:

• All agents in V and all alternatives in X are located at 0.
• For every ` ∈ [dL/2e], agent u` ∈ U and the alternatives

in Y` are located at dL/2e+ `.

Since some alternative in Y`∗ is not included in the commit-
tee with a positive probability, the expected q-cost of agent
u`∗ is positive, and thus the expected q-social cost under f
is also positive. However, it is possible to achieve q-social
cost 0 by including in the committee all the alternatives of
Y and an arbitrary subset of k − dL/2eq > q alternatives
from X; here, the inequality follows because q 6 k/3. So,
the distortion of f is unbounded in this case.

Case 2: Every alternative in Y is included in the commit-
tee with probability 1.
Consider the following metric, which is consistent with the
ordinal preferences of the agents defined above:

• For ` ∈ [bL/2c], agent v` and the alternative in X` are
located at −L+ `.

• All agents of U and all alternatives in Y are located at 0.

Since f chooses a committee that includes all of Y with
probability 1, it excludes at least one alternative of X with
probability 1. Whenever an alternative in X` is excluded,
note that agent v` has q-cost at least 1. Hence, the expected
q-social cost is at least 1. However, it is possible to achieve
q-social cost 0 by choosing the committee containing all the
alternatives of X and an arbitrary subset of k−bL/2cq > q
alternatives from Y . So, the distortion of f is unbounded in
this case as well.

Algorithm 1: POLAROPPOSITES

1: Choose an arbitrary agent i ∈ N
2: Choose an agent j ∈ arg max`∈N\{i} ci(T`)
3: Output an arbitrary committee W ⊇ Ti ∪ Tj

Linear Distortion With k/3 < q 6 k/2
We now turn our attention to the case of q ∈ (k/3, k/2].
In this case, the best possible distortion turns out to be
bounded, but linear in the number of agents, which could
be very large.

We propose a novel deterministic multiwinner voting rule,
called POLAROPPOSITES (see Algorithm 1), which runs in
polynomial time and achieves a distortion of O(n). Recall
that, for a fixed value of q, topi(S) is the set of the q most
favorite alternatives of agent i in S, and Ti = topi(A). PO-
LAROPPOSITES is relatively straightforward: we choose an
agent i arbitrarily, and another agent j whose Tj has the
highest cost4 for agent i; then we output any committee that
includes Ti ∪ Tj . However, the analysis of the distortion up-
per bound of our rule is intricate.

Before we proceed with bounding the distortion of our
rule, we present a structural lemma, which holds for all pos-
sible values of k and q, and will be extremely useful in the
proof of the bound.

Lemma 1. Consider any instance I = (N,A, d, k, q) and
let O ∈ arg minC:|C|=k SC(C) be an optimal committee.
There exists a subset of agents S with |S| 6 bk/qc such
that for every agent i ∈ N there exists an agent j ∈ S with
topi(O) ∩ topj(O) 6= ∅ and cj(O) 6 ci(O). In addition,
for every agent i ∈ N and committee C ⊇

⋃
j∈S topj(A),

we have ci(C) 6 3 · ci(O).

We are now ready to bound the distortion of the PO-
LAROPPOSITES rule.

Theorem 2. For any q ∈ (k/3, k/2], the (k, q)-distortion of
POLAROPPOSITES is O(n).

Proof. Let I = (N,A, d, k, q) be an instance with q ∈
(k/3, k/2]. Let i and j be the agents chosen by POLAROP-
POSITES on I , W ⊇ Ti ∪ Tj be the committee returned by
it, andO ∈ arg minC:|C|=k SC(C) be an optimal committee
for I . We will show that c`(W ) 6 c`(O) + 4 ·SC(O) for ev-
ery agent ` ∈ N . Then, by summing over all agents, we will
obtain that SC(W ) 6 (4n+1)·SC(O), thus implying an up-
per bound of 4n+ 1 on the distortion of POLAROPPOSITES.
We distinguish between the following two cases.

Case 1: topi(O) ∩ topj(O) 6= ∅. Let x ∈ topi(O) ∩
topj(O) be an alternative that both i and j consider to be
among their top q alternatives in the optimal committee O.
For any agent ` ∈ N , let

• y` = arg maxz∈T`
d(`, z) be the q-th overall favorite al-

ternative of `, and
4Here, we use the fact that in our model, we can compare two

sets of alternatives in terms of their cost to agent i using only agent
i’s preference ranking over individual alternatives.
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• y`j = arg maxz∈Tj d(`, z) be the q-th favorite alterna-
tive of ` among those in Tj .

Since Tj ⊆ W , by the definition of y`j , we have c`(W ) 6
c`(Tj) = d(`, y`j). Combining this with the triangle in-
equality, we obtain

c`(W ) 6 d(`, y`j)

6 d(`, y`) + d(i, y`) + d(i, x) + d(j, x) + d(j, y`j).

For any agent v, note that cv(Tv) 6 cv(O), and for any agent
u and alternative y ∈ Tv , we also have d(u, y) 6 cu(Tv).
Combining these with the definitions of j, y`, x, and y`j , we
can now bound each of the terms in the expression above as
follows:

• d(`, y`) = c`(T`) 6 c`(O);
• d(i, y`) 6 ci(T`) 6 ci(Tj);
• d(i, x) 6 ci(O);
• d(j, x) 6 cj(O);
• d(j, y`j) 6 cj(Tj) 6 cj(O).

Substituting these, we get

c`(W ) 6 c`(O) + ci(Tj) + ci(O) + 2cj(O).

We can bound the term ci(Tj) using the definition of alter-
native yij , the triangle inequality, and some of the above ob-
servations, as follows:

ci(Tj) = d(i, yij)

6 d(i, x) + d(j, x) + d(j, yij)

6 ci(O) + cj(O) + cj(Tj)

6 ci(O) + 2cj(O).

So, combining everything, and using the fact that SC(O) >
ci(O) + cj(O), we have that

c`(W ) 6 c`(O) + 2ci(O) + 4cj(O)

6 c`(O) + 4 · SC(O),

as desired.

Case 2: topi(O) ∩ topj(O) = ∅. Consider the set S that
is guaranteed to exist by Lemma 1. Since q ∈ (k/3, k/2],
we have that bk/qc = 2, and hence |S| 6 2.

If |S| = 1, then every agent ` ∈ N is mapped to the sin-
gle agent v ∈ S, and it holds that top`(O) ∩ topv(O) 6=
∅. If |S| = 2, we claim that there is a function g :
N → S such that for every agent ` ∈ N , it holds that
top`(O)∩ topg(`)(O) 6= ∅ and S = {g(i), g(j)}. Lemma 1
already guarantees a function g meeting the first condi-
tion. The only case in which the second condition can-
not be met is if there exists v ∈ S such that topi(O) ∩
topv(O) = topj(O) ∩ topv(O) = ∅. However, this,
along with topi(O) ∩ topj(O) = ∅ implies that topi(O),
topj(O), and topv(O) are disjoint subsets of O of size q
each. This is a contradiction since |O| = k < 3q.

Now, consider any agent ` ∈ N , and suppose that g(`) =
g(j) = v ∈ S; the case g(`) = g(i) if |S| = 2 is similar. By
the properties of S, there exist alternatives x ∈ top`(O) ∩
topv(O) and z ∈ topj(O)∩topv(O). As in case 1, let y`j ∈

{V,X}
{U, Y }

0

{w,Z}

1

(a) The metric space in Case 1.

{V,X}

0

{U, Y }

1

{w,Z}

2

(b) The metric space in Case 2.

Figure 2: The metric spaces used in the proof Theorem 3.
Each of the sets X,Y, Z has size q. Both metrics are con-
sistent with the ordinal profile according to which the pref-
erence of all x agents in V is X � Y � Z, the preference
of the x agents in U is Y � X � Z, and the preference of
agent w is Z � Y � X . If the q alternatives of Z are not all
included in the committee with positive probability (Case 1),
then agent w has positive expected q-cost in the first metric
space, leading to unbounded distortion as the committee that
includes Z and q alternatives fromX∪Y has q-social cost 0.
If all alternatives of Z are included in the committee (Case
2), then the x agents of V (in case not all alternatives of X
are included in the committee) or the x agents in U (in case
not all alternatives of Y are included in the committee) have
q-cost 1 in the second metric space, leading to a distortion of
x = Ω(n) as the committee that includes all the alternatives
of X ∪ Y and some alternatives of Z has q-social cost 1. In
any case, the distortion of the voting rule is Ω(n).

Tj be the q-th favorite alternative of ` in Tj ; so, c`(Tj) =
d(`, y`j). By the fact that Tj ⊆ W , and using the triangle
inequality, we obtain

c`(W ) 6 c`(Tj) = d(`, y`j)

6 d(`, x) + d(v, x) + d(v, z) + d(j, z) + d(j, y`j).

By the definitions of x, z and y`j , we have d(`, x) 6 c`(O),
d(v, x) 6 cv(O), d(v, z) 6 cv(O), d(j, z) 6 cj(O), and
d(j, y`j) 6 cj(Tj) 6 cj(O). Combined with the fact that
SC(O) > cv(O) and SC(O) > cj(O), we get

c`(W ) 6 c`(O) + 2cv(O) + 2cj(O)

6 c`(O) + 4 · SC(O),

as desired.

We conclude this section by showing a matching lower
bound of Ω(n) on the distortion of any (even randomized)
multiwinner voting rule. Hence, when q ∈ (k/3, k/2], PO-
LAROPPOSITES is the asymptotically best possible rule in
terms of distortion, even among randomized rules. See Fig-
ure 2 and its caption for a sketch of the proof.

Theorem 3. For q ∈ (k/3, k/2], the (k, q)-distortion of ev-
ery (even randomized) multiwinner voting rule is Ω(n).
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Constant Distortion With q > k/2
We now turn our attention to the case q > k/2, where it
is possible to achieve constant distortion. A crucial observa-
tion, which we exploit in this section, is that the q-costs of
the agents form a new metric over the agents and all possible
committees of alternatives.
Lemma 2. For any instance I = (N,A, d, k, q) with q >
k/2, the q-costs ci(C) of agents i ∈ N for k-sized commit-
tees of alternatives C ⊆ A form a pseudometric.

Proof. To prove the statement, we need to show that the q-
costs satisfy the triangle inequality, i.e., ci(X) 6 ci(Y ) +
cj(Y )+cj(X), for any two agents i, j ∈ N and two k-sized
committees X,Y .

For any q 6 k, there exists x ∈ topj(X) that is among
the k − q + 1 least favorite alternatives (ranked in some
position from q to k) of agent i in X; thus, x is such that
ci(X) 6 d(i, x) and cj(X) > d(j, x). Since q > k/2, there
also exists y ∈ topi(Y ) ∩ topj(Y ), that is, y is such that
ci(Y ) > d(i, y) and cj(Y ) > d(j, y). Combining these with
the triangle inequality for the distances between agents and
alternatives, we have that

ci(X) 6 d(i, x) 6 d(i, y) + d(j, y) + d(j, x)

6 ci(Y ) + cj(Y ) + cj(X),

as desired.

Since the q-costs form a metric, we can transform the
original profile in which the agents rank the alternatives to
one in which the agents rank all possible k-sized commit-
tees. In particular, to decide whether agent i prefers a com-
mittee X over another committee Y , it suffices to compare
her q-th favorite alternatives in X and Y ; we can break ties
arbitrarily. Given the rankings of the agents over the commit-
tees, we can then employ any single-winner rule to decide
the final committee. Specifically, using the PLURALITY-
MATCHING rule of Gkatzelis, Halpern, and Shah (2020), we
obtain a best-possible distortion bound of 3.
Corollary 1. For q > k/2, there exists a multiwinner voting
rule with (k, q)-distortion at most 3.

Unfortunately, the above approach requires us to apply a
single-winner voting rule to a profile consisting of an expo-
nential number of alternatives (the set of all k-sized com-
mittees). This is an inherent obstacle in our attempts to get
constant distortion bounds by naı̈vely applying known de-
terministic single-winner voting rules.

Interestingly, it is still easy to compute the favorite k-sized
committee of an agent, which consists of the agent’s k most
preferred alternatives; we refer to this as the top-k commit-
tee of the agent. Consequently, randomized dictatorship, the
single-winner voting rule which selects an agent uniformly
at random and returns her most favorite alternative, can be
efficiently implemented in our setting. Using its distortion
analysis by Anshelevich and Postl (2017), we obtain the fol-
lowing.
Corollary 2. For any q > k/2, the (k, q)-distortion of ran-
domized dictatorship, which can be implemented efficiently,
is at most 3− 2/n.

In the following, we restrict our attention to deterministic
polynomial-time multiwinner voting rules. Our main result
provides such a rule with distortion at most 9 by exploiting
the following lemma.

Lemma 3. Consider any instance I = (N,A, d, k, q) with
q > k/2, and let O be an optimal committee for I . There
exists a committee C that is top-k for some agent, and such
that SC(C) 6 3 · SC(O).

Proof. By Lemma 2, the q-costs of the agents form a metric
space. Let j be the closest agent to the optimal committee O
according to her q-cost, i.e., cj(O) 6 ci(O) for every i ∈ N .
Let C be the top-k committee of j, and thus cj(C) 6 cj(O).
Combining the above with the triangle inequality for the q-
cost metric, for any agent i ∈ N , we have

ci(C) 6 ci(O) + cj(O) + cj(C)

6 ci(O) + 2cj(O) 6 3ci(O),

The lemma follows by summing over all agents.

Essentially, Lemma 3 suggests that the best top-k com-
mittee must 3-approximate the optimal committee in terms
of social cost. So, by considering the n top-k committees
(one per agent) as alternatives, we can deploy the single-
winner rule of Gkatzelis, Halpern, and Shah (2020) to obtain
in polynomial time a committee that is within a factor of 3
away of the best top-k committee in terms of social cost, and
thus has a (k, q)-distortion of at most 9.

Corollary 3. For any q > k/2, there is a polynomial-time
multiwinner voting rule with (k, q)-distortion at most 9.

Actually, the approach used to obtain Corollary 3 can be
used as a template that could potentially lead to even lower
distortion bounds by deterministic polynomial-time voting
rules. All we need is an algorithm that takes as input the
ranking profile and decides — in polynomial time — on a
set P of k-sized committees, which, for every distance met-
ric consistent with the ranking profile, contains a commit-
tee that approximates the optimal social cost within a fac-
tor of ρ (e.g., Lemma 3 suggests that this is possible for
ρ = 3). Then, applying the voting rule of Gkatzelis, Halpern,
and Shah (2020) on the reduced ranking profile with only
the committees in P as alternatives, we obtain a determin-
istic polynomial-time multiwinner voting rule with (k, q)-
distortion at most 3ρ.

We present two results related to this template. The first
one is positive and shows that a guarantee of ρ = 1 is possi-
ble when the number of agents is constant, making the opti-
mal distortion bound of 3 achievable in polynomial time.

Theorem 4. For any q > k/2 and constant number of
agents, there is a deterministic polynomial-time multiwinner
voting rule with (k, q)-distortion at most 3.

Proof. We prove the theorem by defining a voting rule that
follows our template with ρ = 1. In particular, given a
ranking profile, our rule first identifies a set P of at most
mn committees such that one of minimum social cost is al-
ways included, no matter which distance function d, consis-
tent with the preference profile, is used in the definition of
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the social cost. Then, by invoking the single-winner rule of
Gkatzelis, Halpern, and Shah (2020) using the committees
in P as alternatives, we get the desired multiwinner voting
rule with (k, q)-distortion of at most 3.

To identify the committees in P , we enumerate over all
possibilities for the alternatives in a k-sized committee that
the agents can have as their q-th closest ones. In partic-
ular, for each of the mn possible vectors of alternatives
` = 〈`1, `2, ..., `n〉, we include in P a committee C ⊆ A
with |C| = k,

⋃n
i=1 {`i} ⊆ C, such that `i is the alternative

in C that is the q-th closest to agent i, for i ∈ [n], if such a
committee exists. We refer to each committee having these
properties as a (k, q)-completion of the vector of alternatives
`. Notice that including in P just one (k, q)-completion for
each vector of alternatives is enough for our purposes since
any two committees C, C ′ that are (k, q)-completions for
the same vector ` of alternatives have the same social cost
for a given distance function d: SCq(C|d) = SCq(C ′|d) =∑n

i=1 d(i, `i). Clearly, since n is a constant, P has polyno-
mial size. To prove that its whole construction takes poly-
nomial time, it suffices to show how a (k, q)-completion C
for a given vector of alternatives ` can be identified (if it
exists) in polynomial time. Essentially, we need to decide
which alternatives in addition to the ones in ` form a k-sized
committee and ensure that alternative `i is the q-th closest to
agent i among those in C. To do so, we define the following
classification of the alternatives into types from the set

T = {〈t1, t2, ..., tn〉 : ti ∈ {+1, 0,−1}, i ∈ N}.
An alternative a ∈ A belongs to type t ∈ T if and only if

• a �i `i for each i ∈ N with ti = +1,
• a = `i for each i ∈ N with ti = 0, and
• `i �i a for each i ∈ N with ti = −1.

Notice that the classification is such that replacing an alter-
native in a (k, q)-completion by another alternative from the
same class results in another (k, q)-completion. Hence, to
identify a (k, q)-completion C for a given vector of alterna-
tives `, we need to identify the number of alternatives from
each type of T that C should have.

For each type t ∈ T , denote by H(t) the number of al-
ternatives of type t. Also, set L(t) = 1 if t is the type of
some alternative in ` and L(t) = 0, otherwise. The quanti-
ties L(t) and H(t) are lower and upper bounds on the num-
ber h(t) of alternatives of type t that can be included in a
(k, q)-completion of `. In particular, notice that each alterna-
tive in ` is the unique alternative in its type t, i.e., H(t) = 1.
Setting L(t) = 1 for this type guarantees that this alternative
will be included in the (k, q)-completion. Now, the existence
of a (k, q)-completion is equivalent to the feasibility of the
following integer linear program:∑

t∈T
h(t) = k∑

t∈T :ti>0

h(t) = q, ∀i ∈ N

L(t) 6 h(t) 6 H(t), ∀t ∈ T
h(t) ∈ N>0, ∀t ∈ T

Notice that we can naively check the feasibility of the above
ILP by enumerating all possible values for the variables
h(t). As there are 3n types, there are 3n such variables (i.e.,
constantly many since n is a constant), each taking at most
m + 1 values. Even this naive solution takes only polyno-
mial time. Finally, once we have a feasible solution for the
above ILP, we can easily define the (k, q)-completion by just
including h(t) alternatives of type t in it, for t ∈ T .

Our last result is negative and reveals a limitation of our
template. It shows a lower bound of 1 + 2/e on ρ (unless
P = NP) and, consequently, a lower bound of approximately
5.207 on the distortion that can be achieved via this tem-
plate. A slightly weaker lower bound of 4.5 can be shown us-
ing purely information-theoretic arguments that do not rely
on any complexity assumption.
Theorem 5. LetA be an algorithm which on input a ranking
profile with n agents and m alternatives, and integers k and
q with 1 6 k/2 < q 6 k < m, runs in time polynomial in
m and n and returns a set P of (polynomially many) k-sized
committees of alternatives with the following property: For
every distance function d, there is a committee C ∈ P such
that SCq(C|d) < (1 + 2/e + ε) · SCq(O|d), where O is a
committee of minimum social cost according to d, and ε is a
positive constant. Then, P = NP.

Extensions and Open Problems
In this work, we extended the metric distortion framework to
multiwinner voting. By modeling the cost of an agent for a
k-sized committee as her distance from her q-favorite alter-
native therein, we revealed a quite surprising trichotomy on
the distortion of multiwinner rules in terms of q and k, pro-
viding asymptotically tight bounds. The main question that
our work leaves open is to identify the best possible distor-
tion for when q > k/2 that can be achieved by an efficient
deterministic rule.

We exclusively focused on the social cost and did not con-
sider other objectives, such as the maximum agent cost. It
is not hard to observe that our methods provide bounds in
terms of this objective as well, albeit not necessarily tight.
When q 6 k/3, the distortion remains unbounded (in the in-
stances used in the proof of Theorem 1, the optimal commit-
tee guarantees cost 0 to all agents, whereas any voting rule
yields a positive cost to some agent). When q ∈ (k/3, k/2],
by carefully inspecting the proof of the upper bound of PO-
LAROPPOSITES in Theorem 2, we can show that it achieves
constant distortion in terms of the maximum cost. Finally,
when q > k/2, since the q-costs form a metric space, known
results from single-winner voting extend to multiwinner vot-
ing; that is, there exists a deterministic multiwinner rule with
distortion at most 3, which is based on the rule of Gkatzelis,
Halpern, and Shah (2020); this rule is known to achieve a
fairness ratio of at most 3, which implies 3-approximation
of the maximum cost as well. The efficient upper bound of
9 via our template also extends to the maximum cost, as the
bound of 3 in Lemma 3 actually holds per agent. In the fu-
ture, it would be interesting to go beyond objectives such
as the social and maximum costs, and consider others that
make sense in mutliwinner voting.
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