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Abstract

Most of the economic reports forecast that almost half of the
worldwide market value unlocked by AI over the next decade
(up to 6 trillion USD per year) will be in marketing&sales. In
particular, AI will enable the optimization of more and more
intricate economic settings, in which multiple different activ-
ities need to be jointly automated. This is the case of, e.g.,
Google Hotel Ads and Tripadvisor, where auctions are used
to display ads of similar products or services together with
their prices. As in classical ad auctions, the ads are ranked
depending on the advertisers’ bids, whereas, differently from
classical settings, ads are displayed together with their prices,
so as to provide a direct comparison among them. This dra-
matically affects users’ behavior, as well as the properties of
ad auctions. We show that, in such settings, social welfare
maximization can be achieved by means of a direct-revelation
mechanism that jointly optimizes, in polynomial time, the ads
allocation and the advertisers’ prices to be displayed with
them. However, in practice it is unlikely that advertisers al-
low the mechanism to choose prices on their behalf. Indeed,
in commonly-adopted mechanisms, ads allocation and price
optimization are decoupled, so that the advertisers optimize
prices and bids, while the mechanism does so for the alloca-
tion, once prices and bids are given. We investigate how this
decoupling affects the efficiency of mechanisms. In particu-
lar, we study the Price of Anarchy (PoA) and the Price of
Stability (PoS) of indirect-revelation mechanisms with both
VCG and GSP payments, showing that the PoS for the rev-
enue may be unbounded even with two slots, and the PoA
for the social welfare may be as large as the number of slots.
Nevertheless, we show that, under some assumptions, sim-
ple modifications to the indirect-revelation mechanism with
VCG payments achieve a PoS of 1 for the revenue.

Introduction
Most of the economic reports forecast that artificial intelli-
gence (AI) will unlock up to 12 trillion USD per year world-
wide by the next decade, and almost half of this amount will
derive from the marketing&sales area (see, e.g., (Chui et al.
2018)). In particular, AI is playing a crucial role to tackle
various problems, including, e.g., auction design (Bachrach
et al. 2014), the automation of advertisers’ budget (Nuara
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et al. 2018) and bidding strategies (He et al. 2013), and the
optimization of conversion funnels (Nuara et al. 2019).

In this paper, we focus on recently-emerged online ad-
vertising settings where ad auctions are employed to display
ads of similar products or services together with their prices.
This is the case of, e.g., Google Hotel Ads and Tripadvi-
sor, where users search for the availability of a hotel room
in a given date. The web page of results shows a ranking
of banners advertising similar hotel rooms that match the
search criteria. Each banner displays the name of the adver-
tiser providing the online booking service, together with the
per-night selling price of the room. Such settings are similar
to standard ad auctions, since the ads are ranked depending
on the advertisers’ bids. On the other hand, they also fun-
damentally differ from them, as the ad allocation must also
take prices into account, and these are displayed inside the
banners so as to provide a direct comparison among them.
This dramatically affects users’ behavior, as well as the ef-
ficiency and the properties of ad auctions. The goal of this
work is to investigate how the additional degree of freedom
introduced by prices influences the problem of finding an
optimal ad allocation and the revenue of the mechanisms.

The price-displaying feature of our setting introduces ex-
ternalities among the ads, since the probability that a user
clicks on an ad depends on the prices displayed with both
the ad being clicked and the other ads in the allocation. Sev-
eral forms of externalities are investigated in the literature on
ad auctions. However, to the best of our knowledge, no pre-
vious work takes into account price displaying. For instance,
Kempe and Mahdian (2008) and Aggarwal et al. (2008) in-
troduce a basic user model that is currently adopted by most
of the mechanisms. In this model, a Markovian user ob-
serves the slots in a top-down fashion, moving down slot by
slot with a given continuation probability and stopping on a
slot to observe its ad with the remaining probability. Kempe
and Mahdian (2008) also propose richer models where the
probability with which a user moves from a slot to the next
one depends on the ad actually displayed in the former. In
this case, it is not known whether the ad allocation problem
admits a polynomial-time algorithm; however, Farina and
Gatti (2016, 2017) provide several algorithms showing that
in special cases a constant approximation can be achieved.
Further externalities models are explored by Fotakis, Krysta,
and Telelis (2011) and Gatti et al. (2018), which allow for

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

4933



potentially different externalities for each pair of ads. How-
ever, with these models, the ad allocation problem is NP-
hard and, in some cases, even inapproximable. It is also
worth mentioning that similar models are adopted in mobile
geo-located advertising by Gatti et al. (2014).

In our model, we assume that the probability with which a
user clicks on an ad depends on the price displayed with the
ad and on the lowest among all displayed prices. In partic-
ular, we model the click probability as a monotonically de-
creasing function of the ad price, assuming that the demand
curve is monotonically decreasing in the price and that it is
unlikely that a user clicks on an ad with a price larger than
her reserve value. We also assume that the click probability
is monotonically decreasing in the difference between the
ad price and the lowest displayed price, as the user’s interest
in any feature different from price (e.g., brand and loyalty)
decreases as such difference increases.

In our setting, the private information of each advertiser
(i.e., her type) is a pair composed by the probability with
which a user visiting the advertiser’s web page produces a
conversion (e.g., a purchase) and the advertiser’s cost for a
unit of product or service. On the other hand, the prices con-
stitute an additional degree of freedom that can be controlled
by either the advertisers or the mechanism.

As a first step, we present a direct-revelation mechanism
that maximizes the social welfare by jointly optimizing over
the ad allocations and the prices displayed with the ads.
Differently from what happens in most of the externalities
models studied in the literature, such optimization problem
can be solved in polynomial time for a given discretization
of price values. We also study the properties of the direct-
revelation mechanism when VCG payments are used, show-
ing that incentive compatibility, individual rationality and
weak budget-balance hold in our setting.

In real-world scenarios, it is unlikely that the advertis-
ers let the mechanism select prices on their behalf, as re-
quired by the direct-revelation mechanism. In the (indirect-
revelation) mechanisms that are currently adopted in real-
world applications, the optimization over ad allocations and
that over prices are decoupled. In particular, each advertiser
finds her optimal price and bid, while the mechanism opti-
mizes over ad allocations once prices and bids are given. As
for the direct-revelation mechanism, the best ad allocation
can be found in polynomial time given prices and bids. How-
ever, even if these indirect-revelation mechanisms allow the
advertisers not to reveal private (and potentially sensitive)
information, they can lead to inefficient equilibria.

We investigate the equilibrium inefficiency of indirect-
revelation mechanisms with GSP and VCG payments, in
terms of Price of Anarchy (PoA) and Price of Stability (PoS)
in complete information settings. In the literature, PoA and
PoS are commonly-adopted efficiency metrics for standard
ad auctions, in which the price variable is not taken into ac-
count. For instance, Paes Leme and Tardos (2010), Cara-
giannis et al. (2011), Lucier and Leme (2011), and Caragian-
nis et al. (2015) show that the PoA for the social welfare of
the GSP is upper bounded by 1.3 with complete informa-
tion and by 3 with incomplete information, while Farina and
Gatti (2017) and Giotis and Karlin (2008) study the inef-
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Figure 1: An example of ad auction with price displaying.
A user visits a web page with three ads (ad 1, ad 2, and
ad 3) together with their prices (p1, p2, and p3). The user
observes slot 3 with probability λ3. Once observed slot 3,
the user clicks on the ad displayed in slot 3, i.e., ad 3, with
probability q3(p3, pmin) where pmin is the minimum price
among p1, p2, p3. The user visits the web page of adver-
tiser 3 (e.g., an online marketplace), and, then, produces a
conversion (e.g., purchase) with probability α3. The value
that advertiser 3 gets from the conversion is p3 − c3.

ficiency with specific externalities, and Gatti et al. (2015)
investigate learning issues. In our setting, the externalities
preclude the adoption of the tools provided by Roughgar-
den, Syrgkanis, and Tardos (2017) and Hartline, Hoy, and
Taggart (2014) to bound the inefficiency of equilibria for the
social welfare and the revenue, respectively, thus pushing us
to develop ad hoc approaches. In particular, we show that, in
our setting, the inefficiency of the indirect-revelation mech-
anisms with VCG and GSP mechanisms is much higher than
that of the classical mechanisms without prices, even when
excluding overbidding, since the PoS for the revenue may
be unbounded even with two slots and the PoA for the so-
cial welfare may be as large as the number of slots. Further-
more, with VCG payments, the PoS for the social welfare is
1, while, with GSP payments, it is at least 2, suggesting that
GSP payments perform worse than VCG ones.

A crucial question is whether inefficiency can be re-
duced when letting the advertisers choose their prices. We
show that, under some assumptions, simple modifications
to the indirect-revelation mechanism with VCG payments—
requiring each advertiser to report an additional price—
achieve a PoS of 1 for the revenue.

Formal Model
There is a set N = {1, . . . , n} of n agents, who simultane-
ously play the role of advertisers and sellers. Each agent sells
a single good on her own website (e.g., an online market-
place) and relies on an external ad publisher that advertises
the good through a single ad in which the price is displayed.
Since the goods being sold by the agents are similar, the
price comparison that users perform on the publisher’s web-
site results in a high competition level among the agents, as
happening in classical comparator websites (Jung, Cho, and
Lee 2014). In the following, for the ease of presentation, we
use index i ∈ N to refer to the agent, her good, and also her
ad. Figure 1 provides an overview of our scenario.

For every i, we denote with ci ∈ R≥0 and pi ∈ R≥0 the
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cost of supply and the selling price of agent i’s good, respec-
tively. Furthermore, we denote with αi ∈ [0, 1] the probabil-
ity with which a user buys agent i’s good when visiting her
website. Thus, agent i’s expected gain from a visit of a user
on her website is αi (pi − ci). Let us remark that the con-
version probability αi is constant w.r.t. the price pi, since
we assume that the user is aware of the price before visit-
ing the website and, thus, she does not visit it if the price is
larger than her reserve value. As previously discussed, the
user first observes the ads on the publisher’s website, to-
gether with their prices, and, then, she clicks on an ad so
as to visit the corresponding advertiser’s website. Therefore,
the motivation behind an uncompleted conversion following
the user’s visit to the advertiser’s web page does not con-
cern the price (e.g., it may be due to the user acquiring more
information on the seller, or potential extra fees and/or an-
cillary services). The pair (αi, ci) is a private information of
agent i, and sometimes we will refer to it as her type θi. We
let Θ = [0, 1]× R≥0 be the space of types of every agent.

The ad publisher has a set M = {1, . . . ,m} of slots
in which the ads are displayed. An assignment of ads to
slots (also called allocation) is represented by a function
f : N → M ∪ {⊥} such that there is at most one ad per
slot (i.e., there are no ads i, h ∈ N such that i 6= h and
f(i) = f(h) ∈M ). All the ads that are not assigned to slots
in M are assigned to ⊥, meaning that these ads are not dis-
played. For every slot j ∈ M , we denote with λj ∈ [0, 1]
the probability (called prominence) that a user observes the
ad displayed in that slot. As customary in the literature, we
assume that λ1 ≥ λ2 ≥ . . . ≥ λm. For the ease of nota-
tion, we define λ⊥ = 0. Furthermore, for every agent i, we
denote with qi ∈ [0, 1] the probability (called quality) that a
user clicks on ad i conditioned on its observation. In our set-
ting, qi depends on the prices, as they are displayed with the
ads. In particular, qi is a function of the prices p = {pi}i∈N
of agents whose ads are displayed, since the user can com-
pare all the prices shown on the web page when deciding
the website from which to buy a good. This dependency in-
troduces externalities among the ads. In this work, we as-
sume that qi : R≥0 × R≥0 → [0, 1], where qi(pi, pmin)
denotes the agent i’s quality when her price is pi and the
minimum price among all the displayed ads is pmin, with
pmin = minh∈N :f(h)∈M{ph} (for the sake of notation, we
omit the dependency of pmin on f ). Moreover, given pmin,
qi is (non-strictly) monotonically decreasing in pi since, as
previously discussed, a user clicks on the ad if the price is
non-larger than the user’s reserve value. Finally, qi is (non-
strictly) monotonically increasing in pmin, given pi. The ra-
tionale behind this assumption is that, given pi, the probabil-
ity that a user clicks on ad i decreases as the gap between pi
and the minimum price pmin increases, capturing a potential
reduction of the user’s interest for agent i’s good. A simple
example is when the users are only interested in the price
and, thus, qi is zero if pi > pmin. We also assume that there
exists pi ∈ R≥0 maximizing qi(pi, pi)αi (pi−ci) and, thus,
there exists pi < ∞ that agent i would use when displayed
alone. Finally, we remark that, as it is customary in the liter-
ature, parameters λ and q are estimated by the ad publisher.

Every mechanism receives some input (or bid) from ev-

ery agent i, chooses an allocation f , and charges every
agent i of a payment πi. We say that the mechanism is direct-
revelation if the input provided by agent i belongs to Θ, i.e.,
it consists of a conversion probability and a cost, which are
not necessarily the real ones (her type). Otherwise we say
that the mechanism is indirect-revelation.

In our setting, a direct-revelation mechanism takes as in-
put a reported type θ′i = (α′i, c

′
i) ∈ Θ for each agent i, and

chooses some prices p = {pi}i∈N and an allocation func-
tion f . We let b = {bi}i∈N be the vector of declared gains,
where bi = α′i (pi − c′i) is agent i’s gain for the reported
type θ′i. On the other hand, an indirect-revelation mechanism
takes as input a price pi and a declared gain bi for each agent
i, and chooses an allocation function f . We say that agent i
does not overbid if bi ≤ αi (pi − ci), where pi is the price
given as input and (αi, ci) = θi is the true agent i’s type.

Given an allocation f , prices p, and bi, we denote with
v̂i(f,p, bi) = λf(i) qi(pi, pmin) bi the expected (w.r.t. clicks
and purchase) value of agent i according to her declared
gain. The true expected value that she receives from al-
location f is vi = λf(i) qi(pi, pmin)αi (pi − ci), while
agent i’s expected utility is ui = vi − πi since the envi-
ronment is quasi-linear.1 The social welfare of an alloca-
tion with respect to the declared gains is ŜW(f,p,b) =∑

i v̂i(f,p, bi), where b = {bi}i∈N . The true social wel-
fare is SW =

∑
i vi. The revenue is instead Rev =

∑
i πi.

We informally introduce notable properties of mecha-
nisms; see (Mas-Colell, Whinston, and Green 1995) for for-
mal definitions. A mechanism, both direct- and indirect-
revelation, is individually rational, if for every agent i, the
assigned payment πi is non-larger than her value v̂i(f,p, bi)
according the declared gain. Furthermore, a mechanism is
weakly budget-balanced if the sum of payments is always
non-negative. A direct-revelation mechanism is truthful if
for every agent i it is a dominant strategy to report the true
type θi = (αi, ci) to the mechanism, i.e., the utility that
agent i achieves by reporting θi is at least as large as with
every alternative input, regardless of other agents’ actions.
For indirect-revelation mechanisms, we say that a set of in-
puts is in equilibrium according to Nash (1951) if no agent
may increase her utility by submitting a different bid, when-
ever the inputs of other agents remain unchanged.

Mechanisms
Next, we introduce our direct-revelation mechanism and two
indirect-revelation mechanisms.

Direct-revelation Mechanism
We let MVCG

D be the direct-revelation mechanism defined
as follows. Given the agent i’s input θ′i = (α′i, c

′
i) ∈ Θ,

the mechanism defines bi = α′i (pi − c′i) for every price
pi. Then, the mechanism computes an assignment f∗ and
prices p∗ that maximize the social welfare with respect to
the declared gains; formally,

ŜW(f∗,p∗,b) = max
f,p

ŜW(f,p,b).

1The dependency of vi, ui, πi on the arguments f,p, bi is omit-
ted to avoid cumbersome notation.
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Finally, the mechanism assigns to each advertiser i in the
allocation (i.e., such that f(i) ∈M ) the VCG payment

πi = max
f,p : f(i)/∈M

∑
j 6=i

(
v̂j(f,p, bj)− v̂j(f∗,p∗, bj)

)
= v̂i(f

∗,p∗, bi)−∆i,

where

∆i = ŜW(f∗,p∗,b)− max
f,p:f(i)/∈M

ŜW(f,p,b) ≥ 0.

It is immediate to check that payments cannot be negative
and they are never larger than the value corresponding to the
declared gain. Thus, the mechanism is trivially individually-
rational and weakly budget-balanced. Moreover, it is not
hard to verify that these payments allow the mechanism to
be truthful (essentially this is a VCG mechanism and there
is no interdependence among types). Truthfulness also im-
plies that the mechanism maximizes the true social welfare.
These observations prove the following theorem.
Theorem 1. MechanismMVCG

D is truthful, individually ra-
tional, weakly budget-balanced, and maximizes SW.

Indirect-revelation Mechanisms
Next, we introduce two alternative mechanisms, namely
MVCG

I and MGSP
I . These mechanisms share the same

structure, but they differ in the way they compute the pay-
ments. They work as follows. Agent i inputs (pi, bi), where
pi ∈ R≥0 is the price that agent i wants to be displayed for
her ad and bi ∈ R is the expected gain that i declares to
achieve from a click on her ad for price pi. The mechanism
computes an assignment g∗ that maximizes the social wel-
fare with respect to the submitted prices and gains; formally

ŜW(g∗,p,b) = max
g

ŜW(g,p,b).

Then,MVCG
I assigns to each advertiser i such that g∗(i) ∈

M the VCG payment

πi = max
g : g(i)/∈M

∑
j 6=i

(
v̂j(g,p, bj)− v̂j(g∗,p, bj)

)
= v̂i(g

∗,p, bj)− δi,
where

δi = ŜW(g∗,p,b)− max
g:g(i)/∈M

ŜW(g,p,b) ≥ 0.

W.l.o.g., let the optimal allocation g∗ be such that only the
first ` ≤ m slots are assigned and no slot j > ` is assigned.
MGSP

I assigns to each i such that g∗(i) ∈M and g∗(i) < `
(i.e., i is assigned to a slot different from `) the following
payments:

$i = λg∗(i)qj(pj , pmin)bj , (1)

where j is such that g∗(j) = g∗(i) + 1. When g∗(i) = `,
there are two possible payments. If all the not assigned
agents j (i.e., such that g∗(j) = ⊥) have a price pj < pmin,
then $i = 0. Otherwise, the payment is

$i = λg∗(i) max
j:pj≥pmin∧g∗(j)=⊥

{qj(pj , pmin)bj}. (2)

As done for MVCG
D , it is immediate to check that pay-

ments are at least zero, and they are always less than the
value corresponding to the declared gain. Hence, MVCG

I
is individually rational and weakly budget-balanced. More-
over, one may hope that the inputs that agents select at
any equilibrium are such that the allocation selected by the
mechanism maximize the social welfare. Unfortunately, we
will show in the next sections that this is not the case.

The payments of MGSP
I are at least zero, and, thus, the

mechanism is weakly budged-balanced. Let us also observe
that, given agent i, ∀j s.t. g∗(j) > g∗(i) or g∗(j) = ⊥ ∧
pj ≥ pmin, we have that qj(pj , pmin)bj ≤ qi(pi, pmin)bi.
Otherwise, the allocation g achieved from g∗ by fixing
g(j) = g∗(i), g(i) = g∗(j), and g(k) = g∗(k) ∀k /∈
{i, j} would achieve a larger social welfare (according to
declared gains). Hence, we have that $i ≤ v̂i(g

∗,p, bi),
and, thus, the mechanism is individually rational. We re-
mark that for this property to hold, it is fundamental that, in
Equation 2, we consider only the not assigned agents j who
have a declared price pj ≥ pmin. Indeed, an agent j with
pj < pmin may have a large qj(pj , pj)bj so that, if the j-th
ad is displayed, the minimum price changes from pmin to pj ,
qj(pj , pj)bj > qi(pi, pmin)bi, and$i > v̂i(g

∗,p, bi), where
i is the agent assigned to the slot `. Nevertheless, this agent
may not be chosen by the allocation g∗ because of the nega-
tive externalities that its low price would put on other agents
(by lowering their value and thus the social welfare). As a
result an optimal allocation may not assign all the available
slots. We finally observe that, as for MVCG

I , even MGSP
I

may fail to optimize the true social welfare. The following
sections will bound the extent of this failure.

Computational Complexity
In general, externalities make hard the problem of comput-
ing the allocation maximizing the social welfare. In this sec-
tion, we prove that in our setting the problem of allocating
advertisers to slots can be solved in polynomial time by both
the direct- and the indirect-revelation mechanisms.

Let us start with the problem of computing the allocation
g∗ in the indirect-revelation mechanisms. We show in the
next theorem that g∗ can be efficiently computed.
Theorem 2. There is an algorithm that computes the allo-
cation g∗ in time O(n2 log n).

Proof. Let b and p be the set of gains and prices submitted
by agents. First observe that, given a minimum displayed
price pmin, the allocation that maximizes the social welfare
(with respect to gains and prices in input), can be trivially
computed by sorting agents in {i : pi ≥ pmin} in order of
qi(pi, pmin)bi and assigning slot 1 to the agent that maxi-
mizes this quantity, slot 2 to the second such agent, and so
on. Note that this operation requires O(n log n) steps.

However, in order to provide the allocation g∗, we also
need to decide which is the best value for pmin. However,
since pmin must belong to p, it is sufficient to compute the
best allocation by using as minimum displayed price each of
the at most n different prices in p, and choosing the alloca-
tion that optimizes the social welfare.
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Computing g∗ is an easier problem than the one faced by
the direct-revelation mechanism, since, for the former, prices
are given and we optimize only over the allocation function,
while, for the latter, optimization occurs both on the alloca-
tion function and prices. Nevertheless, the following theo-
rem shows that f∗ and p∗ can also be computed efficiently,
as long as the set P of allowed prices is discrete and finite.
Theorem 3. There is an algorithm that computes the allo-
cation f∗ and prices p∗ in time O(n2|P |(|P |+ log n)).

Proof. Let bi(p) = α′i(p− c′i) be the expected gain of agent
i according to her input when ad i is displayed with price
p, where (α′i, c

′
i) is the input of agent i. For each agent i

and every price p̂ ∈ P we compute p∗i (p̂) as follows: if
maxp∈P :p≥p̂ qi(p, p̂)bi(p) > 0, then

p∗i (p̂) = arg max
p∈P :p≥p̂

qi(p, p̂)bi(p),

otherwise we set p∗i (p̂) = ⊥. Roughly speaking, p∗i (p̂) is the
best price (according to her input) for agent i when the min-
imum displayed price is p̂ and the i-th ad is displayed (and
thus i’s price is at least p̂). Clearly, if there is no price larger
than or equal to p̂ guaranteeing to agent i a positive utility,
then she prefers to be not displayed. For this reason, in the
latter case, we do not assign any value to p∗i (p̂). Notice that
p∗i (p̂) can be computed by evaluating the function for every
p ∈ P with p ≥ p̂, requiring at most O(|P |) operations.

Then, if the minimum displayed price pmin was given,
along with the agent to which it is assigned, then we sim-
ply choose price p∗i (pmin) for each remaining agent i (this
can be done in O(nP ) steps), prune out agents for which
p∗i (pmin) = ⊥, and finally compute the corresponding opti-
mal assignment by sorting the remaining agents in order of
bi(p

∗
i (pmin)), as shown in Theorem 2 (in O(n log n) steps).

Unfortunately, selecting pmin is much harder than in the
indirect case: not only the value of pmin can assume every
value in P (and not just one among at most n alternatives),
but we also need to decide which agent should display this
price. For this reason, we need to go through every price
p ∈ P and every agent i and compute the best solution that
would be achieved when i is the agent displaying the min-
imum price p. Since for each of the nP possible choices,
computing the best solution requires time O(nP + n log n),
we achieve the desired running time.

Observe that the dependence on |P | in Theorem 3 is in
some way necessary as long as we would like to keep quality
function as general as possible. It is not hard to see that we
can avoid to check all prices by doing opportune restriction
on the quality functions.

We finally highlight that the discretization of the set of
prices does not affect the property of the mechanism. In par-
ticular, truthfulness continues to hold, since the mechanism
is maximal-in-the-range.

Performance of the Indirect Mechanisms
For the sake of presentation, we provide the informal defini-
tions of PoS and PoA for social welfare and revenue; formal
definitions can be found in (Nisan et al. 2007).

• PoS for the social welfare is the minimum—w.r.t. all the
Nash equilibria—ratio between the maximum achievable
social welfare and the social welfare of an allocation
achievable in a Nash equilibrium of an indirect-revelation
mechanismMVCG

I orMGSP
I .

• PoA for the social welfare is the maximum—w.r.t. all
the Nash equilibria—ratio between the maximum achiev-
able social welfare and the social welfare of an allocation
achievable in a Nash equilibrium of an indirect-revelation
mechanismMVCG

I orMGSP
I .

• PoS for the revenue is the minimum—w.r.t. all the Nash
equilibria—ratio between the maximum revenue achiev-
able by an individually-rational mechanism and the rev-
enue achievable in a Nash equilibrium of an indirect-
revelation mechanismMVCG

I orMGSP
I .

• PoA for the revenue is the maximum—w.r.t. all the Nash
equilibria—ratio between the maximum revenue achiev-
able by an individually-rational mechanism and the rev-
enue achievable in a Nash equilibrium of an indirect-
revelation mechanismMVCG

I orMGSP
I .

Table 1 summarizes the lower and upper bounds over the
mechanisms’ inefficiency when agents do not overbid; the
results when agents overbid are omitted since the ineffi-
ciency can be arbitrary even with a single slot. Interestingly,
whileMVCG

I performs as well asMVCG
D with a single slot

asMVCG
I andMVCG

D are equivalent in this case since there
is no externality; with more than 2 slots the inefficiency can
be large both for social welfare and revenue even in the ba-
sic case in which slots are indistinguishable and λ = 1. In
particular, in our proofs of the upper-bound results, we use
a special class of quality functions that we denote as only-
min functions, which assign a value 0 to the quality of an
agent when her price is not the minimum among those dis-
played, and we prove that in many cases no worse instance
is possible. With multiple slots, the positive result is that,
withMVCG

I , the optimal allocation is always achievable by
some Nash equilibrium (i.e., PoS = 1). Nevertheless, there
are auction instances in which some Nash equilibria lead to
allocations whose social welfare is 1/m of the optimal al-
location (i.e., PoA = m) or in which all the Nash equilib-
ria lead to a revenue of zero whereas the direct-revelation
mechanismMVCG

D provides a strictly positive revenue (i.e.,
PoS = ∞).MGSP

I performs even worse thanMVCG
I , both

1 slot m ≥ 2 slots
SW Rev. SW Rev.

PoS PoA PoS PoS PoA PoS

MVCG
I 1 1 1

(♠)
1 m ∞

MGSP
I 1 1 ∞ ≥ 2 ≥ m ∞

Table 1: Lower and upper bounds over PoS and PoA when
agents do not overbid. ♠: PoS here is taken w.r.t. the mech-
anismMVCG

D maximizing the social welfare (thus not nec-
essarily maximizing the revenue).
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with a single and multiple slots.
In the following, we formally provide the results on the

lower and upper bounds over the mechanisms’ inefficiency.

Price of Stability for the Social Welfare
Initially, we provide our main positive result in terms of
indirect-revelation mechanisms inefficiency.
Theorem 4. The PoS for the social welfare ofMVCG

I is 1.

Proof. Suppose that each agent i reports the pair (p̃i, b̃i) de-
fined as follows: if the mechanismMVCG

D displays the ad i
when run on truthful bids, then p̃i is the corresponding price,
and b̃i = αi(p̃i − ci), i.e., the true gain associated to this
price; otherwise p̃i = b̃i = 0. It is immediate to check that
with these bids the allocation returned byMVCG

I is exactly
the same as the one returned byMVCG

D , and, thus, it maxi-
mizes social welfare.

Unfortunately, we cannot conclude that inputs (p̃i, b̃i) are
in equilibrium directly from the truthfulness ofMVCG

D . In-
deed, the payments assigned by the indirect mechanism are
different from the ones assigned by the direct mechanism.
Moreover, in the former the agent may lie both about the
price and about the expected gain, while in the latter an agent
may essentially lie only on the expected gain. Still, in the fol-
lowing we prove that inputs (p̃i, b̃i) are in equilibrium, and,
thus, the theorem follows.

In particular, let p̃ = (p̃1, . . . , p̃n) and b̃ = (b̃1, . . . , b̃n).
We prove that the utility ũi of agent i when the mecha-
nism MVCG

I is run on p̃ and b̃ is at least the utility ui
that she achieves if the mechanism would be run on in-
put p = (pi, p̃−i) and b = (bi, b̃−i), for every i, pi,
and bi. Indeed if i is allocated by the mechanism MVCG

I

when run on input p̃ and b̃, then, since, by definition of b̃i,
vi = v̂i(f

∗, p̃, b̃i),

ũi = vi − πi = v̂i(f
∗, p̃, b̃i)− πi

= ŜW (f∗, p̃, b̃)− max
g:g(i)/∈M

ŜW (g, p̃, b̃) ≥ 0,

where f∗ is the allocation returned by MVCG
D on truthful

bids. If i is instead, unallocated then

ũi = 0 = ŜW (f∗, p̃, b̃)− max
g:g(i)/∈M

ŜW (g, p̃, b̃).

Thus, if the agent i is unallocated by the mechanism
MVCG

I when run on input p and b, then the equilibrium
condition is trivially satisfied. Otherwise, let b̌i = αi(pi−ci)
and b̌ = (b̌i,b−i). We have:

ui = vi − πi = v̂i(g
∗,p, b̌i)− v̂i(g∗,p, bi)

+ ŜW (g∗,p,b)− max
g:g(i)/∈M

ŜW (g,p,b)

= ŜW (g∗,p, b̌)− max
g:g(i)/∈M

ŜW (g, p̃, b̃),

where the last equality follows since pj = p̃j and bj = b̃j
for every agent j 6= i.

Since ŜW (f∗, p̃, b̃) ≥ ŜW (g∗,p, b̌), because f∗ and
p̃ are the allocation and the prices that maximize the social
welfare, we have that ũi ≥ ui, as desired.

The proof of the theorem above shows that, with VCG
payments, there is always a Nash equilibrium in which ev-
ery agent i bids the truthful gain bi and the price thatMVCG

D
would use. Such a strategy profile leads to the same alloca-
tion ofMVCG

D , thus guaranteeing a PoS for the social wel-
fare of 1, but, as we discuss in the following sections, the
revenue of the two mechanisms can be different. The same
result does not hold in the case of GSP payments, thus lead-
ing to a larger PoS for the social welfare.
Theorem 5. The PoS for the social welfare ofMGSP

I is at
least 2 even if agents do not overbid.

Price of Anarchy for the Social Welfare
We initially focus on the basic case with a single slot, show-
ing that in this caseMVCG

I andMGSP
I are efficient.2

Theorem 6. The PoA for the social welfare ofMVCG
I and

MGSP
I is 1 if m = 1 when agents do not overbid.

Then, we study the case with multiple slots providing a
lower bound on PoA.
Theorem 7. The PoA for the social welfare ofMVCG

I and
MGSP

I is at least m if m ≥ 2 when agents do not overbid.

In the specific case ofMVCG
I , we show that a PoA larger

than m is not possible, and therefore there are no instances
worse than those used in the proof of Theorem 7. Most inter-
estingly, this result holds even when qi is not monotonically
decreasing in pi.
Theorem 8. The PoA for the social welfare ofMVCG

I is at
most m if m ≥ 2 when agents do not overbid.

Finally, we show that when agents overbid, the ineffi-
ciency can be arbitrarily large.
Theorem 9. The PoA for the social welfare ofMVCG

I and
MGSP

I is∞ even if m = 1 when agents can overbid.

Price of Stability for the Revenue
Initially, we provide our main result, showing that MVCG

I

andMGSP
I can be arbitrarily inefficient even with 2 slots.

Theorem 10. The PoS for the revenue ofMVCG
I andMGSP

I
is∞ even if m = 2.

In the specific case of MVCG
I and m = 1, we have a

positive result for PoS (PoA is trivially∞ as it is∞ even in
second-price single-item auctions).
Theorem 11. The PoS for revenue of MVCG

I with respect
to the mechanismMVCG

D is 1 if m = 1.

Instead, the above positive result does not hold with
MGSP

I , as stated below.

Theorem 12. The PoS for the revenue ofMGSP
I is∞ even

if m = 1 when agents do not overbid.

In the proof of this theorem we strongly rely upon the
definition of GSP payments described above, which restricts
payments to depend only on agents submitting a price at

2All the proofs of the theorems in this section and the following
one are in (Castiglioni et al. 2022).
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least pmin. This payment format turns out to be necessary
in order to guarantee individual rationality. We leave open
the problem of understanding if a better Price of Stability
for the revenue ofMGSP

I would be possible by considering
alternative non-individually rational GSP payments.

A Better PoS for the Revenue with
Indirect-revelation Mechanisms

As discussed in the previous section, indirect-revelation
mechanisms present major weaknesses in terms of effi-
ciency. A natural question is whether we can design indirect-
revelation mechanisms with a better efficiency when agents
can choose their price. In particular, we focus on MVCG

I ,
as it always guarantees PoS = 1 for the social welfare, and
we show that a simple modification of the mechanism leads
to PoS = 1 for the revenue when some assumptions hold.
We call this new mechanism MVCG∗

I . The rationale is to
ask agents for more information. More precisely, the input
provided by every agent is a triple composed of (bi, pi, p

∗
i )

where (bi, pi) is the input toMVCG
I and p∗i is the price that

advertiser i would choose when her ad is the only displayed
ad. The property that PoS = 1 is guaranteed when function
qi(pi, pi) is differentiable in pi and non-zero in p∗i . Mecha-
nismMVCG∗

I is defined as follows:
1. every agent i submits a bid (bi, pi, p

∗
i ), where bi, pi, and

p∗i are defined as above;
2. the mechanism infers the values of ci and αi for every

agent i as follows: ĉi = q(p∗i , p
∗
i ) / dq(pi,pi)

dpi

∣∣
pi=p∗

i

+ p∗i ,

and α̂i = bi
pi−ĉi if pi 6= ĉi and α̂i = 0 otherwise;

3. the mechanism computes an auxiliary allocation, say f̄ ,
by using the allocation function ofMVCG

I when the in-
put is (bi, pi) for every agent i; the corresponding social
welfare (evaluated with the declared gain bi) is ŜW;

4. for every agent i, the mechanism computes an auxiliary
allocation, say f̄−i, by using the allocation function of
MVCG

D when the values inferred above for {α̂h}h∈N
and {ĉh}h∈N are provided in input and agent i is re-
moved from the optimization problem. For every max-
imization, we denote with SW

−i
the corresponding so-

cial welfare evaluated with the inferred values {α̂h}h∈N
and {ĉh}h∈N . Notice that, as it happens withMVCG

D , the
prices in output to these maximizations can be different
from those agents provide in input;

5. if ŜW ≥ maxi SW
−i

, then the mechanism chooses
allocation f̄ and charges every agent i of a payment
πi = SW

−i− (ŜW− λf̄(i) qi(pi, pmin) bi), else no ad is
allocated and every agent is charged a payment of zero.

Basically, mechanismMVCG∗
I exploits the additional infor-

mation asked to the agents to infer their types and then uses
this information to compute the same payments thatMVCG

D
would charge. Step 5 is necessary to guarantee individual
rationality. More precisely, since the allocation f̄ is com-
puted as the indirect mechanism does (without optimizing
over prices), while the payments {πi}i∈N are computed as

the direct mechanism does (optimizing over prices), individ-
ual rationality may not be satisfied. We solve this problem
setting the payments to 0 (and allocating no ads) when the
payments {πi}i∈N are too large. As a side effect, we have
that if the submitted prices are different from the optimal
one, it is possible that the mechanism does not assign any
slot. Thus, the PoA for the social welfare and revenue can
be unbounded.
Theorem 13. Mechanism MVCG∗

I is individually rational
and weakly budget-balanced. Moreover, the PoS for the rev-
enue ofMVCG∗

I is 1.
We recall that the algorithm we provide to find the best

allocation with MVCG
I works when the values that pi can

assume are discrete, and the same holds withMVCG∗
I . We

also notice thatMVCG∗
I requires that p∗i is not restricted to a

set of discrete values, the mechanism could not infer the ex-
act values of αi and ci otherwise. However, requiring price
pi to belong to a finite, discrete set of values and price p∗i to
belong to R≥0 does not modify the properties of the mecha-
nism since p∗i is not used in the allocation algorithm.

Conclusions and Future Work
In this paper, we investigate how displaying prices together
with ads affects the users’ behavior and the properties of
auction mechanisms. Since the goods sold by the agents are
similar, a high competition among the agents arises from the
price comparison. Specifically, the prices introduce external-
ities as the probability with which a user clicks on an ad de-
pends on the price of that ad and on the prices of the other
displayed ads. Interestingly, the social welfare can be maxi-
mized when a direct-revelation mechanism jointly optimizes
over the ad allocation and the prices, and this can be done in
polynomial time when the prices can assume a finite set of
values. However, in practice, it is unlikely that advertisers
would allow the mechanism to choose prices on their behalf
and, in commonly-adopted mechanisms, ads allocation and
price optimization are decoupled, so that the advertisers op-
timize prices and bids, while the mechanism does so for the
allocation, once prices and bids are given. We show that this
decoupling makes standard mechanisms with VCG and GSP
payments highly inefficient in terms of PoA and PoS for so-
cial welfare and revenue. Finally, we investigate whether we
can reduce the inefficiency of such mechanisms. We show
that we can obtain PoS of 1 for the revenue by asking the
advertisers for an additional price that the mechanism ex-
ploits to infer some advertisers’ parameters. Such a modifi-
cation can be easily implemented without agents revealing
their sensitive information.

Many research directions can be explored in future. The
most interesting concerns how the bidding strategies com-
monly adopted for standard ad auctions without prices can
be extended to our case. In particular, the crucial question is
whether, as in the case of the standard GSP without prices,
there are bidding strategies converging to notable Nash equi-
libria. Other interesting questions concern the analysis of
PoA and PoS and the design of allocation algorithms when
the quality functions satisfy specific properties, such as, e.g.,
smoothness.
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