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Abstract

Elkind et al. (2021) introduced a model for deliberative coali-
tion formation, where a community wishes to identify a
strongly supported proposal from a space of alternatives, in
order to change the status quo. In their model, agents and
proposals are points in a metric space, agents’ preferences
are determined by distances, and agents deliberate by dynam-
ically forming coalitions around proposals that they prefer
over the status quo. The deliberation process operates via k-
compromise transitions, where agents from k (current) coali-
tions come together to form a larger coalition in order to sup-
port a (perhaps new) proposal, possibly leaving behind some
of the dissenting agents from their old coalitions. A deliber-
ation succeeds if it terminates by identifying a proposal with
the largest possible support. For deliberation in d dimensions,
Elkind et al. consider two variants of their model: in the Eu-
clidean model, proposals and agent locations are points in Rd

and the distance is measured according to || · ||2; and in the
hypercube model, proposals and agent locations are vertices
of the d-dimensional hypercube and the metric is the Ham-
ming distance. They show that in the Euclidean model 2-
compromises are guaranteed to succeed, but in the hypercube
model for deliberation to succeed it may be necessary to use
k-compromises with k ≥ d. We complement their analysis
by (1) proving that in both models it is hard to find a proposal
with a high degree of support, and even a 2-compromise tran-
sition may be hard to compute; (2) showing that a sequence
of 2-compromise transitions may be exponentially long; (3)
strengthening the lower bound on the size of the compromise
for the d-hypercube model from d to 2Ω(d).

1 Introduction
Imagine a nominally democratic country where the current
ruling party has been in power for many years, through a
combination of clever political strategizing and a range of
more or less non-democratic means (e.g., gerrymandering,
vote suppression, media control, etc.). Even if, initially, po-
litical parties and alliances other than the ruling party may
differ in positions they take on various issues facing the soci-
ety, after many years of being out of power, they may choose
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to focus on what unites them rather than on what differen-
tiates them, and seek to identify a common platform that
would enjoy broad popular support and enable them to over-
turn the status quo. In doing so, they may pursue a variety of
goals: to increase their chances of winning seats in an elec-
tion, to place themselves in a better position in post-electoral
bargaining, or—in the most extreme cases—to initiate a re-
volt against the current regime. This common platform may
be quite different from the party’s true position—what mat-
ters is that it attracts a large number of supporters and that it
offers an improvement over the status quo, i.e., is preferable
to the policies of the current governing party.

In a recent paper, Elkind et al. (2021, 2020) propose a
simple model that aims to capture essential features of such
scenarios1. In this model, both voters and proposals are as-
sociated with points in a metric space, with voters’ prefer-
ence being driven by distances: voters prefer proposals that
are close to them to ones that are further away. The number
of voters is finite, but the set of feasible proposals may be
any (potentially infinite) subset of the metric space. There
is also a distinguished point, referred to as the status quo
and denoted by r. A voter v approves a proposal p if her
distance to p is strictly less than her distance to r. Voters
deliberate in order to identify a proposal that is supported
by as many voters as possible. At each point, each voter se-
lects some approved proposal to support, with voters who
support a given proposal forming a deliberative coalition
around it. This collection of deliberative coalitions—a de-
liberative coalition structure—evolves based on transition
rules: for instance, one transition rule allows two coalitions
to identify a new proposal supported by all members of both
coalitions and to form a new joint coalition around it. The
transition rules aim to capture the behavior of agents who
are consensus-driven—i.e., they desire to form a large coali-
tion to overturn the status quo—and myopic, in the sense
that they make a decision whether to participate in a transi-
tion based on the outcome of that transition only and not the
entire deliberative process.

1The conference version of their paper (Elkind et al. 2021) was
published in AAAI’21, and an extended version was presented at
COMSOC’21 and is available from arXiv (Elkind et al. 2020). One
of the models we consider, namely, the hypercube model, is only
described in the arXiv version, so in what follows we refer to the
arXiv version only.
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In their work, Elkind et al. (2020) primarily focus on the
power of various transition rules to enable the identification
of popular proposals, in a range of metric spaces. They do
not investigate the complexity of the associated algorithmic
challenges, and only offer very crude bounds on the number
of steps it may take the deliberation process to converge.

1.1 Our Contribution
Our goal is to complement the analysis of Elkind et al.
(2020), by exploring the complexity of the deliberation pro-
cess in their model. We focus on two deliberation spaces: in
the hypercube model, voters and proposals are vertices of the
d-dimensional hypercube, with distances measured accord-
ing to the Hamming distance, and in the Euclidean model
voters and proposals are elements of the d-dimensional Eu-
clidean space, with || · ||2 being the underlying distance mea-
sure. In both models, each point of the underlying metric
space is considered to be a feasible proposal. We consider
three types of questions:

• What is the computational complexity of identifying a
proposal approved by as many voters as possible, both
from a centralized perspective (i.e., how can we compute
a popular proposal given the positions of all voters), and
from a decentralized perspective (i.e., how can a group of
voters identify the next step in the deliberative process)?
We consider both the worst-case complexity of this prob-
lem and its parameterized complexity, with two natural
parameters being the number of voters and the dimension
of the space.

• How many transitions may be necessary for a delibera-
tion to converge? Elkind et al. (2020) show that deliber-
ation always converges after at most nn steps, where n
is the number of voters; we improve this upper bound to
2n and derive exponential lower bounds for both of the
models we consider.

• How many coalitions need to be involved in each delib-
eration step to ensure that a most approved proposal is
identified? Elkind et al. (2020) prove that in Euclidean
deliberation spaces 2-coalition deals are sufficient irre-
spective of dimension, and in a d-dimensional hypercube
we may need transitions involving at least d coalitions;
we improve this lower bound from d to 2Θ(d).

The work of Elkind et al. (2020) is an important step to-
wards modeling coalition formation in the presence of a sta-
tus quo option. Such a theory provides formal foundations
for the design and development of practical systems that
can support successful deliberation, for instance, by helping
agents to identify mutually beneficial compromise positions
(cf. di Fenizio and Velikanov; 2016). Our paper supplements
the analysis of Elkind et al. (2020) by resolving several chal-
lenging open questions posed by their work.

1.2 Related Work
Our work builds directly on the work of Elkind et al. (2020).
In turn, their paper belongs to a rich tradition in political sci-
ence that studies spatial coalition formation (Coombs 1964;
Enelow and Hinich 1984; Merrill III and Grofman 1999;

Vries 1999). An important feature of their model that sets
it somewhat apart from prior work is the presence of a spe-
cial reference point, i.e., the status quo. The agenda of social
choice in the presence of status quo has recently been pur-
sued by Shapiro, Talmon, and co-authors in a series of pa-
pers (Shapiro and Talmon 2018; Shahaf, Shapiro, and Tal-
mon 2019; Bulteau et al. 2021; Abramowitz, Shapiro, and
Talmon 2021).

The study of group deliberation is a broad and interdisci-
plinary area, see, e.g., (Austen-Smith and Feddersen 2005;
Hafer and Landa 2007; Patty 2008; List 2011; List et al.
2013; Rad and Roy 2021; Perote-Peña and Piggins 2015;
Karanikolas, Bisquert, and Kaklamanis 2019); we refer the
reader to the work of Elkind et al. (2020) for further dis-
cussion. In particular, an important consideration is whether
simple deliberation protocols that only involve a small num-
ber of participants can achieve a desirable outcome (Goel
and Lee 2016; Fain et al. 2017); this question is similar to
the one considered in Section 5 of our paper.

The process of deliberation that we consider can be
viewed as one of dynamic coalition formation (Konishi and
Ray 2003; Arnold and Schwalbe 2002; Chalkiadakis and
Boutilier 2012). Indeed, the transitions from one delibera-
tive coalition structure to the next one can be interpreted as
a form of better response dynamics, where agents prefer de-
liberative coalitions whose proposal they approve to those
whose proposal they do not approve, and, among coalitions
whose proposal they approve, they favor larger coalitions.
Potential functions are commonly used in the literature to es-
tablish upper bounds on convergence time of better response
dynamics (see, e.g., Tardos and Wexler; 2007); however, our
use of a potential function to establish a lower bound (Sec-
tion 4) is somewhat unconventional.

2 Preliminaries
Following Elkind et al. (2020), we define a deliberation
space as a 4-tuple (X ,V, r, ρ), where X is a (possibly infi-
nite) set of proposals, V = {v1, . . . , vn} is a set of n agents,
r ∈ X is a special element ofX , which we will refer to as the
status quo, and ρ is a metric on X ∪V . An agent vi is said
to approve a proposal x ∈ X \{r} if ρ(vi, x) < ρ(vi, r):
intuitively, vi approves x if x is more representative of her
position than r is. It will be convenient to require that each
agent approves at least one proposal, i.e., to exclude agents
that are happy with the status quo.

We will consider two families of d-dimensional delibera-
tion spaces, where d is a positive integer: Euclidean deliber-
ation spaces and hypercube deliberation spaces. We refer to
Elkind et al. (2020) for a discussion of some other delibera-
tion spaces.

• d-Euclidean The space of proposals X is Rd, r =
(0, 0, . . . , 0), and vi ∈ Rd for each i ∈ [n]. The metric ρ
is the usual Euclidean norm: ρ(x, y) = ||x− y||2.

• d-Hypercube The space of proposals X is {0, 1}d, r =
(0, 0, . . . , 0), and vi ∈ {0, 1}d for each i ∈ [n]. The met-
ric ρ is the Hamming distance: ρ(x, y) = ||x− y||1.

At any point in the deliberation process, the set of agents
is split into deliberative coalitions. A deliberative coalition
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is a pair d = (C, x), where C is a non-empty subset of
V , x ∈ X \{r}, and each agent in C approves x. When
convenient, we identify a deliberative coalition d = (C, x)
with its set of agents C, and say that agents in C support x.

A deliberative coalition structure is a set D =
{d1, . . . ,dm}, m ≥ 1, such that:
• dj = (Cj , xj) is a deliberative coalition for each j ∈

[m];
• ∪j∈[m]Cj = V and Cj ∩ C` = ∅ for all j, ` ∈ [m] such

that j 6= `.
The agents start out in some deliberative coalition struc-

ture, and then this structure evolves according to transition
rules. Elkind et al. (2020) define several such rules; in this
paper, we focus on k-compromise transitions. The intuition
behind all these rules is that agents seek to form large coali-
tions and act myopically, i.e., an agent in a deliberative coali-
tion (C, x) is willing to deviate so as to end up in a coali-
tion (C ′, x′) if (i) she approves x′ and (ii) |C ′| > |C|.
Specifically, under a k-compromise transition, agents from
` ≤ k existing deliberative coalitions d1, . . . ,d`, where
dj = (Cj , xj) for j ∈ [`], get together and identify a pro-
posal x such that t of them approve x and t > |Cj | for each
j ∈ [`]. Then all agents who approve x form a deliberative
coalition that supports proposal x. The agents in Cj who do
not approve x stay put, i.e., they end up in deliberative coali-
tion (C ′j , xj) withC ′j = Cj\C (note thatC ′j may be empty).
This notion is formalized as follows.
Definition 2.1 (k-Compromise Transitions). A pair of coali-
tion structures (D,D′) forms a k-compromise transition if
there exist an ` ∈ [k] and ` coalitions d1, . . . ,d` ∈ D,
where dj = (Cj , xj) for j ∈ [`], such that D′ is obtained
from D by (1) removing d1, . . . ,d`, (2) adding a delibera-
tive coalition (C, x) such thatC ⊆ ∪j∈[`]Cj , for each j ∈ [`]
it holds that |C| > |Cj | and C ∩ Cj consists of all agents
in Cj that approve x; (3) for each j ∈ [`] such that Cj 6⊆ C
adding a deliberative coalition (Cj \ C, xj).

We say that a deliberative coalition structure D is k-
terminal if there does not exist a k-compromise transition
of the form (D,D′). A k-deliberation is a sequence of
k-compromise transitions such that for the last transition
(D,D′) in this sequence it holds that D′ is terminal. We will
refer to D′ as the outcome of the respective k-deliberation.

We define the score of a proposal x ∈ X \{r} as the num-
ber of agents in V who approve x. We say that a proposal
x ∈ X \{r} is popular if its score is at least as high as that
of any other proposal in X \{r}. A deliberative coalition
structure D is successful if it contains a deliberative coali-
tion (C, x) such that x is a popular proposal and C consists
of all agents who approve x. A k-deliberation is successful
if its outcome is successful.

Note that if there is a majority-approved proposal, a suc-
cessful k-deliberation identifies some such proposal, en-
abling a majority-supported change to the status quo.

An important result of Elkind et al. (2020) is that a delib-
eration process with k-compromise transitions always ter-
minates.
Theorem 1. (Elkind et al. 2020) For each integer k with
2 ≤ k ≤ n a k-deliberation can have at most nn transitions.

This result holds for any deliberation space, so in partic-
ular both for the d-Euclidean space and the d-hypercube for
any d ≥ 1.

3 Complexity of Finding Popular Proposals
In this section, we focus on the complexity-theoretic chal-
lenges presented by the deliberation process. We first con-
sider two computational problems: SCORE and PERFECT
SCORE. For SCORE, the input is a deliberation space and a
positive integer η, and we ask if there is a proposal that is ap-
proved by at least η agents in V; in PERFECT SCORE, we are
given a deliberation space and ask if there is a proposal that
is approved by all agents in V . These problems model the
challenge of finding a good proposal in a centralized way.

As PERFECT SCORE is a special case of SCORE, an NP-
hardness result for PERFECT SCORE implies that SCORE,
too, is NP-hard, whereas a polynomial-time algorithm for
SCORE can be used to solve PERFECT SCORE in polynomial
time.

We will also consider another computational problem,
which captures the complexity of the decentralized delibera-
tion process: in k-COMPROMISE, we are given a deliberative
space and a deliberative coalition structure, and the goal is
to find a k-compromise transition from this coalition struc-
ture if one exists; note that k-COMPROMISE is a function
problem and not a decision problem.

For all three problems, we use prefixes Euc and Hyp to
indicate whether we consider the variant of the problem for
the Euclidean space or for the hypercube.

Given a deliberation space I = (S,V, r, ρ), we denote
by |I| the number of bits in the description of I . For d-
hypercube deliberation spaces, this is simply O(nd) (we
need to specify d bits per agent). For Euclidean delibera-
tion spaces, we assume that the locations of all agents are
vectors of rational numbers given in binary; similarly, when
we consider k-COMPROMISE, we assume that the proposals
supported by the coalitions in the initial deliberative coali-
tion structure are vectors of rational numbers given in binary.

We will first consider hypercubes, and then Euclidean
spaces.

3.1 Hypercube Deliberation Spaces
In hypercube deliberation spaces, even deciding whether
there is a unanimously approved proposal is computation-
ally difficult.
Theorem 2. Hyp-PERFECT SCORE is NP-complete.

We prove Theorem 2 by a reduction from INDEPENDENT
SET (Garey and Johnson 1979); the proof is provided in the
full version of the paper.

Since SCORE is at least as hard as PERFECT SCORE, and
it is clearly in NP, we obtain the following corollary.
Corollary 3. Hyp-SCORE is NP-complete.

Moreover, for hypercube deliberation spaces, we can
show that computing a k-compromise is at least as hard as
finding a proposal with a perfect score.
Corollary 4. For each k ≥ 2, there does not exist a
polynomial-time algorithm for Hyp-k-COMPROMISE unless
P = NP.
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Proof. Suppose we have a polynomial-time algorithm for
Hyp-k-COMPROMISE for some k ≥ 2. We will explain how
it can be used to solve Hyp-PERFECT SCORE in polynomial
time.

Given an instance I of Hyp-PERFECT SCORE, we pro-
ceed inductively as follows. For each i ∈ [n], let Ii be
our instance of Hyp-PERFECT SCORE restricted to the first
i agents. We will explain how to find a proposal xi ap-
proved by each of the agents v1 . . . , vi if it exists (and
output ‘no’ if it does not). For I1, we can set x1 = v1.
To solve Ii, we first solve Ii−1. If the answer for Ii−1 is
‘no’, then we output ‘no’ as well. Otherwise, we form an
instance of Hyp-k-COMPROMISE that contains the first i
agents; the initial deliberative coalition structure consists of
({v1, . . . , vi−1}, xi−1) and the singleton deliberative coali-
tion ({vi}, vi). We can then run the algorithm for Hyp-k-
COMPROMISE, k ≥ 2, on this instance; it returns a proposal
if and only if Ii is a yes-instance of PERFECT SCORE.

On the positive side, the problem of finding a popular pro-
posal becomes easy if the number of agents or the number
of dimensions is small: indeed, we can obtain an FPT algo-
rithm with respect to each of these parameters.

Proposition 5. Given a d-hypercube deliberation space, we
can compute a popular proposal in time O(2ddn).

Proof. We can go through the proposals one by one; it takes
O(d) time to decide whether a given agent prefers a given
proposal to the status quo, so we can determine the score of
each proposal in time O(dn). As there are 2d − 1 propos-
als other than the status quo, the bound on the running time
follows.

Proposition 6. Given a d-hypercube deliberation space, we
can compute a popular proposal in time poly(2n2n

, log d).

Proof. Given an n-bit vector b = (b1, . . . , bn) ∈ {0, 1}n,
we say that a dimension j ∈ [d] is of type b if for each
i ∈ [n] the j-th coordinate of vi is equal to bi. Thus, each
dimension belongs to one of the 2n possible types. For a type
b, let nb denote the number of dimensions of type b. We
can then represent a proposal x by a sequence of numbers
(xb)b∈{0,1}n , where 0 ≤ xb ≤ nb: the value xb indicates
the number of dimensions of type b that are set to 1 in x.
Now, for each subset of agents S ⊆ V , we formulate a set of
constraints on the values (xb)b∈{0,1}n which ensure that x
is approved exactly by the agents in S.

1. For each agent i in S,∑
b:bi=0

xb +
∑

b:bi=1

(nb − xb) <
∑

b:bi=1

nb

⇐⇒
∑

b:bi=0

xb −
∑

b:bi=1

xb ≤ −1.

In the constraint above,
∑

b:bi=0 xb counts the number
of dimensions where the agent has value 0, but the pro-
posal has value 1, while

∑
b:bi=1(nb − xb) counts the

number of dimensions where the agent has value 1 but
the proposal has value 0; overall, it measures the distance

of the agent from the proposal.
∑

b:bi=1 nb measures the
distance of the agent from the status quo.

2. For each agent i not in S,∑
b:bi=0

xb +
∑

b:bi=1

(nb − xb) ≥
∑

b:bi=1

nb

⇐⇒
∑

b:bi=0

xb −
∑

b:bi=1

xb ≥ 0.

3. Feasibility constraints: for each b ∈ {0, 1}n, 0 ≤ xb ≤
nb.

The constraints above form an ILP with 2n variables and
n+ 2n constraints. Lenstra’s algorithm (and subsequent im-
provements of it) can solve an ILP in time exponential in
the number of variables, but linear in the number of bits re-
quired to represent the problem (constraints). As nb ≤ d and
can be represented in O(log d) bits for each b ∈ {0, 1}n,
we obtain a time complexity of poly(2n2n

, log d). We can
find the optimal proposal by searching over all 2n sub-
sets of agents S ⊆ V . The overall running time is then
2n · poly(2n2n

, log d) = poly(2n2n

, log d).

3.2 Euclidean Deliberation Spaces
Recall that, in a Euclidean space, an agent v approves a pro-
posal x if and only if

ρ(v, x) < ρ(v, 0)⇐⇒ ||x||2 < 2〈v, x〉. (1)

That is, a given proposal x splits Rd into two half-spaces;
these half-spaces are divided by the hyperplane orthogonal
to and bisecting the line segment joining x to the origin. We
will use this correspondence between proposals and half-
spaces throughout this section.

We first observe that, in contrast to hypercube spaces, for
Euclidean deliberation spaces the PERFECT SCORE problem
is easy.

Proposition 7. Euc-PERFECT SCORE is polynomial-time
solvable.

Proof. It suffices to check whether there exists a hyperplane
H passing through r such that the entire set V lies on the
same side of this hyperplane. This is equivalent to checking
whether there exists an x ∈ Rd that satisfies the following
set of linear constraints: 〈v, x〉 > 0, ∀v ∈ V . Once we find
such an x, we can choose the proposal to be p = εx/||x|| for
sufficiently small ε > 0.

However, finding a proposal that enjoys a specific degree
of support turns out to be computationally challenging,

Theorem 8. Euc-SCORE is NP-complete.

We prove Theorem 8 by a reduction from 3-SAT; the
proof is provided in the full version of the paper.

Just like for hypercubes, Euc-SCORE is fixed-parameter
tractable with respect to the number of agents.

Proposition 9. Euc-SCORE can be solved in time 2n ·
poly(|I|).
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Proof. We reuse the argument in the proof of Proposition 7,
but apply it to every subset of agents. That is, for every sub-
set S ⊆ V of agents, we check whether there exists a hy-
perplane passing through the origin that has all the agents in
S strictly on one side of the hyperplane, by solving a linear
program. Altogether, we have to solve 2n linear programs,
so the bound on the running time holds.

However, for the Euclidean case, we were unable to obtain
an FPT algorithm with respect to the number of dimensions.
On the positive side, we can place our problem in the com-
plexity class XP with respect to this parameter, i.e., show
that it can be solved in polynomial time for the practically
important case where the dimension of the underlying Eu-
clidean space is small.
Proposition 10. Euc-SCORE can be solved in time polyno-
mial in nd+1 and |I|.

Proof. As we observed earlier, a proposal divides Rd into
two half-spaces. The set of half-spaces in Rd has a VC-
dimension of d + 1 (Kearns and Vazirani 1994), and there-
fore, the set of proposals also has a VC-dimension of at most
d + 1. Given a set V of n agents, let S be the following set
of subsets of agents:

S = {S ⊆ V | ∃x ∈ X s.t. ||x||2 < 2〈v, x〉, ∀v ∈ S,

and ||x||2 ≥ 2〈v, x〉, ∀v /∈ S}.

In other words, for every set S ∈ S , there exists a proposal
that is approved by all the agents in S and none of the agents
not in S. As the set of proposals has a VC-dimension of d+1,
the set S is of size O(nd+1) and the elements of S can be
enumerated in time polynomial in n when d is fixed.2. The
elements of S can be computed inductively, see the proof
of Lemma 3.1 of Kearns and Vazirani (1994). We are also
using the fact that given an arbitrary set of agents S, we can
efficiently compute a proposal that is supported by exactly
the agents in S by solving a linear program, as shown in
Proposition 7. So, we can find the largest S in S and the
corresponding proposal efficiently.

To conclude this section, we consider the complexity of
2-COMPROMISE in d-Euclidean deliberation spaces. Recall
that Elkind et al. (2020) prove (Theorem 3) that a sequence
of 2-compromises is guaranteed to converge to a successful
deliberative coalition structure. Their argument proceeds by
showing that whenever a deliberative coalition structure is
not successful, then one of the following conditions holds:
(i) two existing coalitions can merge; (ii) there exists an
agent that can join a maximum-size coalition (the new coali-
tion may need to choose a proposal that differs from the pro-
posal originally supported by the maximum-size coalition),
or (iii) the deliberative coalition structure consists of two
coalitions (and hence there is a 2-compromise transition).
Note that the transitions in (ii) and (iii) increase the size of
the largest coalition and (i) does not decrease it, whereas
(i) decreases the number of coalitions. Consequently, one

2See Lemma 3.1 and 3.2 of Chapter 3 of the book by Kearns
and Vazirani (1994)

can reach a successful outcome in O(n2) steps by verify-
ing conditions (i)–(iii) and performing the respective transi-
tion when one of them holds. Now, one can efficiently verify
whether condition (i) or (ii) holds, and compute the outcome
of the respective transition; if this was also true for (iii), we
would be able to solve Euc-SCORE in polynomial time, in
contradiction to Theorem 8 (assuming P 6= NP). We obtain
the following corollary.
Corollary 11. For each k ≥ 2, there is no polynomial-time
algorithm for Euc-k-COMPROMISE unless P 6= NP.

4 Number of Transitions
In this section, we go back to viewing deliberation as a de-
centralized process, and ask whether all sequences of k-
compromise transitions terminate after a number of steps
that is polynomial in n. Recall that, in Euclidean spaces, if
the agents are told to perform 2-compromise transitions in a
specific easy-to-compute order, then deliberation terminates
in n2 +1 steps (Elkind et al. 2020) (see also the exposition at
the end of Section 3). However, if the agents can choose the
order of transitions arbitrarily, the only known upper bound
(which applies to all deliberation spaces) is nn, proved using
a lexicographic potential function. In the next theorem, we
put forward a different potential function, which enables us
to improve the upper bound to 2n.
Theorem 12. The number of transitions in a 2-deliberation
is at most 2n. This can be shown using the following poten-
tial function:

φ(D) = −|D |+
∑

(C,x)∈D

2|C|. (2)

Proof. Consider a deliberative coalition structure D. Note
that

⋃
(C,x)∈D C = V . From now on, to simplify notation,

we will identify a deliberative coalition (C, x) with its set of
agents C, i.e., we will speak of a coalition C in D.

Suppose a 2-compromise transition occurs, where two
coalitions A and B of sizes a and b in D compromise to
form coalitions C, D, and E of sizes c, d and e in D′, where
D ( A, E ( B. We can assume without loss of generality
that a ≤ b < c. Note that D and E may be empty, in which
case they do not appear in the new coalition structure D′.
We have a + b = c + d + e, and the value of |D′ | − |D |
may be either−1, 0, or 1, depending upon whetherD and/or
E are empty. The change in potential is

φ(D′)− φ(D) = 2c − 2a − 2b + 1 + (2d − 1) + (2e − 1).

Indeed, if D is non-empty then it contributes 2d to∑
C∈D′ 2

|C| and −1 to the −|D′ | portion of φ(D′). On the
other hand, ifD is empty, then it makes neither of these con-
tributions to φ(D′), but also 2d−1 = 0. The same argument
applies to E. As 2d − 1 and 2e− 1 are always non-negative,
we obtain

φ(D′)−φ(D) ≥ 2c−2a−2b+1 ≥ 2 ·2b−2b−2b+1 = 1,

as c > b ≥ a. Hence, any 2-compromise transition increases
the potential by at least 1. On the other hand, we have n ≤
φ(D) ≤ 2n − 1 for any D.
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Observe that Theorem 12 is independent of the delibera-
tion space and is a property of 2-compromise transitions. A
similar result can be proven for k-compromise transitions:
they converge in at most kn steps.

We now focus on proving a lower bound on the conver-
gence of 2-compromise transitions. We first prove a lemma
that applies to any deliberation space that satisfies a certain
property. We then use this lemma to construct a family of ex-
amples for hypercube deliberation spaces, and for Euclidean
deliberation spaces.
Lemma 13. Suppose a deliberation space with the set of
proposals X and the set of agents V satisfies the following
property: for every C ⊆ V there exists a proposal x ∈ X
such that all agents in C approve x and none of the agents
not inC approve x. Then, a deliberation may take Ω(2

√
n/2)

2-compromise transitions.

Proof. Fix a coalition structure D. The property of the
deliberation space formulated in the statement of the
lemma implies that for every pair of deliberative coalitions
(A, x), (B, y) ∈ D and every C ⊆ A∪B we can find a pro-
posal z approved by agents inC (and no other agents). Thus,
in what follows, we can reason in terms of sets of agents
rather than deliberative coalitions. Consequently, to simplify
notation, we will write C ∈ D instead of (C, x) ∈ D.

We now prove that if the agents end up executing the
following types of 2-compromise transitions, then they will
take an exponential time to converge, starting from the coali-
tion structure where all the agents are in singleton coalitions.

1. Type 1. If there is a pair C,C ′ ∈ D such that |C| = |C ′|,
then make the following transition (expressed in terms of
coalition sizes):

(a) + (a) −→ (a+ 1) +

⌊
a− 1

2

⌋
+

⌈
a− 1

2

⌉
,

where a = |C| = |C ′|. The change in the potential func-
tion (as defined in (2)) for such a transition is

∆φ ≤ 2a+1 + 2b
a−1
2 c + 2d

a−1
2 e − 2 · 2a

= 2b
a−1
2 c + 2d

a−1
2 e ≤ 3

2
· 2a/2. (3)

(Note that ba−1
2 c and da−1

2 e may be zero, which implies
that the number of coalitions decreases, and therefore,
may contribute 1 to ∆φ due to change in |D |. However,
in that case the term 2b

a−1
2 c would not appear in ∆φ.)

2. Type 2. If there are no Type 1 transitions available, then
select two smallest coalitions C,C ′ ∈ D and make the
following transition:

(a) + (b) −→ (b+ 1) +

⌊
a− 1

2

⌋
+

⌈
a− 1

2

⌉
, (4)

where a = |C|, b = |C ′| and a ≤ b.
Now, if maxC∈D |C| ≤

√
n, then there must be at least

one pair of coalitions of the same size. If not, then
√
n∑

i=1

i =
√
n(
√
n+ 1)/2 = n/2 +

√
n/2 < n,

so for large enough n, we get a contradiction. Hence, only
Type 1 transitions are made until maxC∈D |C| exceeds

√
n.

From (3), until maxC∈D |C| ≤
√
n holds, we know that

the change in potential for Type 1 transitions is bounded by

∆φ ≤ 3

2
· 2a/2 ≤ 3

2
· 2
√
n/2.

We also know that if maxC∈D |C| goes above
√
n then the

value of φ must exceed 2
√
n−n, and the initial value of φ is

n. Hence, the number of transitions must be at least

2

3
· 2
√
n − 2n

2
√
n/2

=
2

3
·
(

2
√
n/2 − 2n

2
√
n/2

)
.

4.1 Hypercube Deliberation Spaces
In the next theorem, we apply Lemma 13 to hypercube de-
liberation spaces by constructing a family of deliberation
spaces that satisfies the required conditions for the lemma.
Theorem 14. There exists a family of hypercube delibera-
tion spaces where a 2-deliberation may take Ω(2

√
n/2) 2-

compromise transitions.

Proof. For every even d ≥ 2, we will construct an instance
with n = d/2 agents. All these agents have 0s in their first
d/2 dimensions and 1s in all but one (which is different for
each agent) of the last d/2 dimensions. In particular, the i-th
agent vi = (vi,j)j∈[d] has

vi,j =

{
0, if j ≤ d/2 or j − 1− d/2 = i

1, otherwise
.

Consider a set S of m < d/2 agents. They agree on
d/2−m 1s. Now consider a proposal that has d/2−m− 1
1s somewhere in the first d/2 dimensions and d/2 − m
1s in the dimensions where the agents in S agree on, and
0s everywhere else. Each agent in S is at a distance of
(d/2−m−1)+((d/2−1)−(d/2−m)) = d/2−2 from this
proposal, and at a distance of d/2−1 from the origin, so they
approve the proposal. However, an agent not in S is at a dis-
tance of at least (d/2−m−1)+((d/2−1)−(d/2−m−2)) =
d/2 from the proposal, so they do not approve the proposal.

Hence, for any subset of agents S, there is a proposal that
is approved exactly by the agents in S. Applying Lemma 13,
we obtain the desired result.

4.2 Euclidean Deliberation Spaces
As we did for hypercube deliberation spaces, we construct
a family of Euclidean deliberation spaces that satisfies the
required conditions for Lemma 13.
Theorem 15. There exists a family of Euclidean delibera-
tion spaces where a 2-deliberation may take Ω(2

√
n/2) 2-

compromise transitions.

Proof. For each d ≥ 2, we will construct an instance with d
agents. Let the agent vi ∈ V be positioned on the i-th axis
at a distance of 1 from the origin, i.e., agent v1 is located at
(1, 0, . . . , 0), agent v2 at (0, 1, 0, . . . , 0), and so on.
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For every S ⊆ V , let the point xS be defined as

xSi =

{
1/|S|, if vi ∈ S
0, otherwise

.

Observe that the distance of agent vi ∈ S from xS is
ρ(vi, x

S) = (1−1/|S|)2 +(1/|S|)2(|S|−1) = 1−1/|S| <
1, so agent vi prefers xS to the status quo. But, for an agent
vi /∈ S, the distance of vi from xS is 1 + |S|(1/|S|)2 =
1 + 1/|S| > 1. So, for any subset of agents S, there is a
proposal xS that is supported exactly by the agents in S.
Applying Lemma 13, we obtain the desired result.

5 Beyond Two-Way Compromises
Elkind et al. (2020) showed that, while in Euclidean deliber-
ation spaces 2-compromise transitions guarantee successful
deliberation, in hypercube deliberation spaces this is not the
case. Specifically, they proved the following result:
Theorem 16. (Elkind et al. 2020) There are d-hypercube de-
liberation spaces where d-compromise transitions are nec-
essary for a successful deliberation; on the other hand, in
every d-hypercube deliberation space, (2d−1 + (d+ 1)/2)-
compromise transitions are sufficient for a successful delib-
eration.

Theorem 16 leaves a big gap between the lower bound of
d and the upper bound of 2d−1 + (d+ 1)/2. We tighten this
bound by proving a lower bound of 2Θ(d).
Theorem 17. There are d-hypercube deliberation spaces
where 2Θ(d)-compromise transitions are necessary for a
successful deliberation.

The proof of Theorem 17 is given in the full version of
the paper. To prove that k-compromise transitions are nec-
essary for a successful deliberation, we need to describe a
deliberation space and a coalition structure, where:
1. The coalition structure is sub-optimal, i.e., there exists

a coalition structure with a larger coalition. One way to
prove this is to show that an `-compromise transition,
` ≥ k, from this coalition structure leads to a strictly
larger coalition. That is, we need to describe a partic-
ular proposal and a particular set of agents, and argue
that these agents support the new proposal, and the new
coalition is larger than the current coalitions of all these
agents.

2. Any `-compromise, for ` < k, does not lead to a strictly
larger coalition. First, there must be at least k coalitions
in the current coalition structure. Second, we need to
prove that for any proposal in the deliberation space, any
set of agents that supports this proposal and is contained
in fewer than k current coalitions is at most as large as
the current coalition of one of the members of this set.

If we focus on single-agent transitions, the second point
above says that, in the current coalition structure, any agent
in a (weakly) smaller coalition should not support the pro-
posal of a (weakly) larger coalition. So, the proposals of all
the coalitions should be different and should not be sup-
ported by any agent from an equal or smaller coalition. k-
compromise transitions include single-agent transitions and

other more complex transitions, and the construction should
address all of them. Elkind et al. (2020) constructed such an
example for k = d, we do this for

k =

(
(d− 1)/9

(d− 1)/27

)
− 1 ≥ 3(d−1)/27 − 1 = 2Θ(d).

6 Conclusions and Future Work
We have provided an in-depth investigation of the com-
plexity of deliberation in two models proposed by Elkind
et al. (2020), answering several open questions formulated
in that paper. Our results are mostly negative: in both mod-
els we have considered, identifying a successful proposal is
hard even for a centralized algorithm, and agents will find it
computationally challenging to discover feasible transitions
from the status quo. Moreover, a completely decentralized
deliberation procedure, in which groups of agents are free
to execute compromise transitions in any order, may take a
very long time to converge. Finally, while the Euclidean de-
liberation spaces have the attractive feature that a success-
ful deliberation is possible even if each transition only in-
volves agents from two coalitions, in hypercube spaces we
may need transitions that involve exponentially many coali-
tions, negating the benefits of a decentralized process.

Nevertheless, we do not feel that these negative results
mean that we should give up on this model of delibera-
tion. Rather, it would be interesting to identify ‘islands of
tractability’, i.e., additional conditions that make this model
tractable, both in terms of computational complexity and in
terms of the length of the deliberation process and the num-
ber of coalitions involved in each transition; our FPT and
XP results are a step in that direction. It would also be in-
teresting to complement our theoretical findings with empir-
ical work, checking if natural heuristics enable the agents to
quickly converge to good (even if not necessarily optimal)
outcomes.

There are several questions concerning the complexity of
deliberative coalition formation that are left open by our
work. For instance, while Theorem 15 shows that conver-
gence may be slow if the number of dimensions scales with
the number of agents, it is not clear if this remains true if the
number of dimensions is a fixed constant. Further, through-
out the paper, we assume that the space of feasible propos-
als is the entire metric space. A more general approach is
to assume that it is a proper subset of the metric space: this
subset can be described implicitly by constraints or, in case
it is finite, listed explicitly as part of the input. Of course,
the computational complexity questions become trivial if the
feasible proposals are listed explicitly, but it is not clear if
we can bound the length of deliberation as a polynomial
function of the number of proposals; on the other hand, the
lower bound arguments of Theorems 14 and 15 no longer ap-
ply. Finally, k-compromise transitions, as defined by Elkind
et al. (2020) can be viewed as better responses in the respec-
tive game; it would also be interesting to explore the speed
of convergence of best response dynamics, where a negotia-
tion among k coalitions always results in the largest possible
coalition that can be formed by their members.
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