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Abstract

Bayesian persuasion is a model for understanding strategic
information revelation: an agent with an informational advan-
tage, called a sender, strategically discloses information by
sending signals to another agent, called a receiver. In algorith-
mic Bayesian persuasion, we are interested in efficiently de-
signing the sender’s signaling schemes that lead the receiver
to take action in favor of the sender. This paper studies al-
gorithmic Bayesian-persuasion settings where the receiver’s
feasible actions are specified by combinatorial constraints,
e.g., matroids or paths in graphs. We first show that constant-
factor approximation is NP-hard even in some special cases of
matroids or paths. We then propose a polynomial-time algo-
rithm for general matroids by assuming the number of states
of nature to be a constant. We finally consider a relaxed notion
of persuasiveness, called CCE-persuasiveness, and present a
sufficient condition for polynomial-time approximability.

Introduction
Information asymmetry is ubiquitous. For example, a seller
has more information about a product than a customer, and
a client sometimes knows more about a delegated task than
a worker. Such an agent with an informational advantage
often strategically discloses information to influence the re-
ceiver’s decisions. A fundamental question in information
economics asks how much influence an informational ad-
vantage has or what kind of information disclosure strategy
the sender should use.

Bayesian persuasion (Kamenica and Gentzkow 2011) is a
model for understanding strategic information disclosure. In
the standard setting, there are two agents called the sender
and the receiver. The sender, who has an informational ad-
vantage, strategically reveals information by sending a sig-
nal to the receiver. Then, according to the revealed informa-
tion, the receiver selects an action that maximizes his ex-
pected utility. The receiver’s action also affects the sender’s
utility, which is usually different from the receiver’s utility.
The sender’s goal is to design a strategy for information dis-
closure, called a signaling scheme, to lead the receiver to
select an action that is favorable for the sender. In this paper,
we are interested in the algorithmic aspect of Bayesian per-
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suasion: when can we efficiently compute (approximately)
optimal signaling schemes?

In many practical scenarios, the receiver’s actions are
specified by some combinatorial constraints. For example,
a receiver’s action may be a path in a network or a portfo-
lio of a limited number of stocks. In such cases, lists of the
receiver’s actions can be prohibitively large, making stan-
dard methods for computing the sender’s signaling schemes
impractical. To reveal when we can efficiently compute op-
timal signaling schemes in the presence of such combina-
torial actions is an important question, but it remains unex-
plored as mentioned in (Dughmi 2017, Open Question 2.8).
This paper addresses this open question and elucidates sev-
eral classes of problems for which we can/cannot efficiently
compute (approximately) optimal signaling schemes.

To motivate our work, we below give concrete situations
where the receiver’s actions are combinatorial. An important
application of Bayesian persuasion is financial advice. Sup-
pose the sender and the receiver to be a financial adviser and
an investor, respectively. The sender knows accurate predic-
tions on stock returns, which are unknown to the receiver.
Since the sender’s returns are not always aligned with those
of the receiver, the sender strategically reveals information
to increase her returns. After receiving a signal (advice) from
the sender, the receiver decides which stocks to buy. In prac-
tice, there are a huge number of stocks, and it is unrealistic
to assume that the receiver can hold a portfolio of arbitrarily
many stocks. Thus, a cardinality constraint is often imposed
when optimizing portfolios (Ito et al. 2018; Zhu et al. 2020).
In this situation, each receiver’s action is a combination of a
limited number of stocks.

More complicated combinatorial constraints can appear in
other applications. For example, let us imagine that a boss
(sender) asks a subordinate (receiver) to create a committee
by choosing a representative for each of several groups. An
action of the receiver is a set of people that contains a single
person from each group. In another example, the receiver is
a company that constructs an electrical grid connecting all
electricity consumers, and the sender is a government that
requests the construction. An action of the receiver is a tree
in a network that covers all electricity consumers.

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

5016



Our Results
We study Bayesian persuasion with combinatorial actions,
each of which is a subset of a finite set, denoted by E, and
satisfies some combinatorial constraints. We call each com-
ponent of E an element, i.e., an action is a combination of
some elements. Utility functions of the sender and the re-
ceiver are set functions defined on E. The main issue of this
setting is that there may exist exponentially many actions in
|E|. We aim to clarify under what conditions we can/cannot
compute (approximately) optimal signaling schemes effi-
ciently with respect to input sizes, including |E|.

First, we prove that it is NP-hard to achieve constant-
factor approximation even in some special cases of matroid
or path constraints. For partition matroid constraints, we uti-
lize a hardness result studied in public Bayesian persua-
sion with no externalities (Dughmi and Xu 2017). For other
combinatorial constraints, including uniform matroid con-
straints, graphic matroid constraints, and path constraints,
we construct reductions from an existing hard problem
called LINEQ-MA (Guruswami and Raghavendra 2009),
which asks to determine whether a large fraction of linear
equations can hold or even a small fraction cannot hold.
These reductions have connections to the NP-hardness proof
for the OPT-SIGNAL problem (Castiglioni et al. 2020) and,
as a by-product of our result on partition matroids, we obtain
a hardness result for the OPT-SIGNAL problem.

Next, we develop a polynomial-time algorithm for gen-
eral matroid constraints by assuming the number of states of
nature to be a constant (we explain what states and nature
are in the next section). We formulate the problem as an ex-
ponentially large linear program (LP) and then show that its
size can be reduced by enumerating only relevant variables
and constraints. To enumerate them efficiently, we utilize a
computational-geometric algorithm. For some special ma-
troids, we show that the LP size can be further reduced.

Finally, we consider a relaxed persuasiveness condition
called CCE-persuasiveness (Xu 2020; Celli, Coniglio, and
Gatti 2020), which is based on the concept of Bayes coarse
correlated equilibria. We provide a sufficient condition un-
der which a polynomial-time approximation algorithm ex-
ists. Specifically, if we can approximately maximize a sum
of the sender’s and receiver’s utilities so that only the
sender’s has an approximation factor, we can compute ap-
proximately optimal CCE-persuasive schemes in polyno-
mial time. This result is applicable to important cases where
the sender’s utility is a monotone submodular function.

Most of the proofs are provided in the appendices of the
full version (Fujii and Sakaue 2021).

Related Work
Kamenica and Gentzkow (2011) proposed the origi-
nal Bayesian-persuasion model. Utilizing the model, re-
searchers analyzed various social situations, including vot-
ing (Schnakenberg 2015; Alonso and Câmara 2016), finan-
cial sector stress tests (Goldstein and Leitner 2018), finan-
cial markets (Duffie, Dworczak, and Zhu 2017), routing
(Bhaskar et al. 2016), auctions (Dughmi, Immorlica, and
Roth 2014), and information spread (Arieli and Babichenko

2019). On the other hand, various algorithms have been de-
veloped for Bayesian persuasion with additional settings:
exponentially many states of nature (Dughmi and Xu 2016),
multiple receivers (Arieli and Babichenko 2019), secretary
problem (Hahn, Hoefer, and Smorodinsky 2020b), prophet
inequalities (Hahn, Hoefer, and Smorodinsky 2020a), and
payment (Dughmi et al. 2019).

The closest setting to ours is Bayesian persuasion with no
externalities (Babichenko and Barman 2017; Dughmi and
Xu 2017; Arieli and Babichenko 2019; Xu 2020; Castiglioni
et al. 2021). In this setting, there are multiple receivers,
and each one selects a binary action from {0, 1} to maxi-
mize his own utility, which does not depend on the other
receivers’ actions. This setting can be decomposed into two
subclasses: private and public. The former supposes that the
sender can send a signal to each receiver privately, while
the latter supposes that the sender sends a public signal to
all the receivers. As we prove in the hardness section, pub-
lic Bayesian persuasion with no externalities is equivalent to
our setting with a special partition matroid constraint. Our
study provides hardness results for other types of constraints
and algorithms for general matroid constraints, thus going
beyond the existing results on public Bayesian persuasion.

Some existing studies introduced constraints on Bayesian
persuasion. A series of studies (Dughmi, Immorlica, and
Roth 2014; Dughmi, Kempe, and Qiang 2016; Gradwohl
et al. 2021) considered a setting where the sender can use
only a limited number of bits for signaling. Babichenko,
Talgam-Cohen, and Zabarnyi (2021) considered ex ante and
ex post constraints, which restrict structures of posterior
distributions induced by the sender’s signals. Note that the
constraints considered in those studies are imposed on the
sender’s signaling scheme, while we consider combinatorial
constraints on the receiver’s possible actions.

Problem Settings and Preliminaries
This section provides problem settings of Bayesian persua-
sion with combinatorial actions. We first describe the ba-
sic setting, where sender and receiver maximize their util-
ity functions and the receiver’s actions are represented by a
matroid. We then present some basics and examples of ma-
troids. We finally describe the setting with path constraints,
where sender and receiver minimize their cost functions.

Notation. We denote the set of non-negative reals by R≥0.
For any set X , let ∆X := {p : X → R≥0 |

∑
i∈X p(i) = 1}

be the probability simplex over X .

Basic Setting
Let Θ be the family of states of nature. A state θ ∈ Θ
is drawn from a distribution µ ∈ ∆Θ, which is common
knowledge shared by the sender and the receiver. In the re-
mainder of this paper, we assume µ(θ) > 0 for all θ ∈ Θ. If
this does not hold, we can remove such θ from the problem.
The sender has the informational advantage of knowing the
realized state θ, while the receiver cannot access θ directly.

After observing the state of nature θ, the sender sends a
signal σ ∈ Σ to the receiver. The signals can be randomized,
that is, the sender can select any distribution φθ ∈ ∆Σ for
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each θ ∈ Θ and send signal σ randomly sampled from φθ
depending on the observed state θ. A tuple (φθ)θ∈Θ of prob-
ability distributions over Σ is called a signaling scheme. The
core assumption of Bayesian persuasion is the commitment
assumption, which compels the sender to publicly commit
to a signaling scheme before observing the state of nature
θ. Under this assumption, the process goes on as follows:
the sender publicly declares a signaling scheme (φθ)θ∈Θ,
then observes the state of nature θ sampled from µ, and then
sends signal σ to the receiver following the distribution φθ.

LetE be a finite set of n elements. A combinatorial action
is a combination of elements in E. Let I ⊆ 2E be the set
of all possible combinatorial actions the receiver can take.
After observing signal σ, the receiver takes a combinatorial
action S ∈ I. As a result of this action, the sender and the
receiver obtain utility values, which are specified by non-
negative set functions sθ : 2E → R≥0 and rθ : 2E → R≥0,
respectively, for each state of nature θ ∈ Θ. When receiving
signal σ ∈ Σ, the receiver’s belief on the state of nature is
represented by the posterior distribution ξσ ∈ ∆Θ such that

ξσ(θ) =
µ(θ)φθ(σ)∑

θ′∈Θ µ(θ′)φθ′(σ)
.

The receiver takes the best response according to this poste-
rior distribution, that is, he selects S∗σ ∈ I such that

S∗σ ∈ argmax
S∈I

∑
θ∈Θ

ξσ(θ)rθ(S).

If there are multiple best responses, we assume that
ties are broken in favor of the sender. Consequently,
the sender, who commits to the signaling scheme
(φθ)θ∈Θ, obtains the following payoff in expectation:∑
σ∈Σ

∑
θ∈Θ µ(θ)φθ(σ)sθ(S

∗
σ).

The revelation principle (Kamenica and Gentzkow 2011)
claims that to consider only direct and persuasive signal-
ing schemes is sufficient. A direct signaling scheme asso-
ciates each signal with an action, i.e., Σ = I, and recom-
mends action S ∈ I by sending the corresponding sig-
nal S ∈ Σ. A direct signaling scheme is persuasive if the
receiver has no incentive to deviate from recommendation
S ∈ I when receiving signal S ∈ Σ. The persuasive-
ness constraint requires signaling scheme (φθ)θ∈Θ to sat-
isfy

∑
θ∈Θ ξS(θ)rθ(S) ≥

∑
θ∈Θ ξS(θ)rθ(S

′) for every pair
S, S′ ∈ I, where ξS is the posterior distribution when the
receiver observes S ∈ Σ.

By considering the revelation principle, we can formulate
the problem of computing an optimal signaling scheme as

maximize
∑
θ∈Θ

µ(θ)
∑
S∈I

φθ(S)sθ(S)

subject to
∑
θ∈Θ

µ(θ)φθ(S)
(
rθ(S)− rθ(S′)

)
≥ 0 (S, S′ ∈ I)

φθ ∈ ∆I (θ ∈ Θ).

(1)

The first constraint is the persuasiveness constraint, under
which S must be one of the receiver’s best responses when
the sender sends signal S. The second constraint requires φθ
to be a probability distribution in ∆I for each θ ∈ Θ.

In general, the utility set functions (sθ)θ∈Θ and (rθ)θ∈Θ

do not have a polynomial-size representation in |E| and |Θ|.

In such cases, we assume that we have value oracles, i.e.,
sθ(S) and rθ(S) values are available for any given θ ∈ Θ
and S ⊆ E. Similarly, if the set I of the receiver’s actions
does not have a polynomial-size representation, we assume
access to an independence oracle, which returns whether
S ∈ I or not for any given S ⊆ E. These assumptions
are common in combinatorial optimization.

For the hardness results, we let (sθ)θ∈Θ and (rθ)θ∈Θ be
linear functions, i.e., sθ(S) =

∑
i∈S sθ({i}) and rθ(S) =∑

i∈S rθ({i}) for all S ⊆ E and θ ∈ Θ. Such (sθ)θ∈Θ and
(rθ)θ∈Θ have polynomial-size representations. We also use
sets I of actions that have polynomial-size representations.
Thus, our hardness results indeed come from computational
hardness, not from the hardness of representing problems.
For the polynomial-time algorithms for a constant number
of states, we assume (rθ)θ∈Θ to be linear but allow (sθ)θ∈Θ

to be a general set function. For the CCE-persuasiveness re-
sult, we allow both (sθ)θ∈Θ and (rθ)θ∈Θ to be general set
functions, while we impose an approximability assumption
as detailed later.

Matroids
Many of our results consider combinatorial constraints rep-
resented by matroids, which are useful to model various
combinatorial actions that appear in practice.

A pair (E, I) of a finite set E and a non-empty set family
I ⊆ 2E is called a matroid if the following conditions hold:

• S ⊆ T ∈ I implies S ∈ I.
• For any S, T ∈ I with |S| < |T |, there exists i ∈ T \ S

such that S ∪ {i} ∈ I.

A set S ⊆ E is called independent if S ∈ I holds. Given
a matroid (E, I) and a non-negative weight w(i) ∈ R≥0

for each element i ∈ E, a maximum weight independent
set S∗ ∈ argmaxS∈I

∑
i∈S w(i) can be found by using the

greedy algorithm, which starts with the empty set and, in
descending order of weights, adds elements that maintain
independence. Below, we introduce some special matroids
that are useful in practical scenarios.

Uniform matroids. A uniform matroid is a matroid with
I = {S ⊆ E | |S| ≤ k} for some integer k > 0. Under
a uniform matroid constraint, the receiver selects at most k
elements that yield the largest expected utility value. This
constraint fits the portfolio optimization scenario, where the
receiver selects k stocks expected to yield the largest return.

Partition matroids. Let E1, . . . , EP ⊆ E be a partition,
i.e., E1 ∪ · · · ∪EP = E and Ei ∩Ej = ∅ for every distinct
i, j ∈ [P ]. Assign some positive integer ki for each i ∈ [P ].
A matroid with I = {S ⊆ E | ∀i ∈ [P ], |S ∩ Ei| ≤ ki}
is called a partition matroid. Under a partition matroid con-
straint, the receiver selects at most ki elements from the ith
partition. This can model a scenario where the receiver cre-
ates a committee by choosing one person from each group.

Graphic matroids. Given an undirected graph (V,E), a
graphic matroid (E, I) is a matroid with I = {S ⊆ E |
S does not contain a cycle}. Any maximal independent set
of a graphic matroid forms a spanning tree (or a spanning
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forest if graph (V,E) is not connected). If E is a set of all
edges that can be used for constructing an electrical grid and
V is a set of all electricity consumers, a graphic matroid
constraint models the situation where the receiver constructs
an electrical grid covering all consumers.

Minimization Setting with Path Constraints
Given a directed graph G = (V,E) with origin vs ∈ V and
destination vt ∈ V , we consider a setting where the receiver
selects a vs–vt path S ⊆ E according to a signal from the
sender. This setting appears, for example, when the sender
is an association that manages traffic by recommending a
route, and the receiver is a taxi driver. In this setting, the
sender and the receiver usually aim to minimize their costs
rather than maximize utility functions. Thus, we focus on the
minimization setting regarding path constraints (we distin-
guish maximization and minimization settings since some of
our results concerning approximability cannot be translated
from one to the other). The problem of computing an opti-
mal signaling scheme can be formulated as a minimization
version of (1), where I is the set of all vs–vt paths. The re-
ceiver selects a path that minimizes his expected cost based
on the posterior distribution; therefore, we reverse the in-
equality sign of the persuasiveness constraint. The sender’s
goal is to minimize her expected cost.

Hardness Results
We show the NP-hardness of obtaining a constant-factor ap-
proximation for Bayesian persuasion with partition matroid,
uniform matroid, graphic matroid, and path constraints.
Throughout this section, we assume the utility functions of
the sender and the receiver to be linear.

Partition Matroid Constraints
We show that Bayesian persuasion with a partition ma-
troid constraint is intractable even in a special case where
each partition has two elements. We prove this via a reduc-
tion from public Bayesian persuasion with no externalities.
Dughmi and Xu (2017) proved that constant-factor approxi-
mation for public Bayesian persuasion with no externalities
is NP-hard even if we restrict the sender’s utility function to
sθ(S) = |S| for each θ ∈ Θ. By associating each partition
with a receiver of public Bayesian persuasion, we obtain the
reduction, thus proving the following hardness result.
Theorem 1. For any constant α ∈ (0, 1], it is NP-hard to
compute an α-approximate solution for Bayesian persua-
sion with a partition matroid constraint whose partitions are
of size two.
Remark 2. We can also construct a reduction for the op-
posite direction. Therefore, we establish an equivalence in
terms of the approximability between public Bayesian per-
suasion with no externalities and Bayesian persuasion with a
partition matroid constraint whose partitions are of size two.

As a by-product of Theorem 1, we can obtain a hard-
ness result on the OPT-SIGNAL problem (Castiglioni et al.
2020), which is a variant of Bayesian persuasion where the
receiver’s utility depends on a random type that is unknown
to the sender.

Uniform Matroid Constraints
We prove the NP-hardness of constant-factor approximation
for Bayesian persuasion with a uniform matroid constraint.
Our proof is inspired by that of the OPT-SIGNAL problem
(Castiglioni et al. 2020), which is equivalent to the special
case of partition matroid constraints, as mentioned above.
Note that a uniform matroid cannot be represented by the
special partition matroid with size-two partitions. Neverthe-
less, we can use a similar proof strategy to the one used for
the OPT-SIGNAL problem. Specifically, we construct a re-
duction from a variant of an existing hard problem called
LIENQ-MA (Guruswami and Raghavendra 2009), which
asks us to distinguish whether a linear system Ax = c has a
solution satisfying most of the equations or no solution sat-
isfies even a small fraction of the equations.
Theorem 3. For any constant α ∈ (0, 1], it is NP-hard to
compute an α-approximate solution for Bayesian persua-
sion with a uniform matroid constraint.

Graphic Matroid Constraints
The hardness result for Bayesian persuasion with graphic
matroid constraints can be proved in a similar way to that of
uniform matroid constraints, i.e., we construct a reduction
from the variant of the LINEQ-MA problem.
Theorem 4. For any constant α ∈ (0, 1], it is NP-hard to
compute an α-approximate solution for Bayesian persua-
sion with a graphic matroid constraint.

Path Constraints
Recall that in this setting, the sender and the receiver aim
to minimize their expected costs, while the above settings
consider maximizing utilities. Thus, the approximation ratio
for this problem is lower-bounded by 1, and a smaller value
implies a better approximation. The proof is similar to those
for uniform or graphic matroids.
Theorem 5. For any constant α ∈ [1,∞), it is NP-hard
to compute an α-approximate solution for Bayesian persua-
sion with a path constraint.

Polynomial-time Algorithm for Constant
Number of States

We present a polynomial-time algorithm for Bayesian per-
suasion with general matroid constraints by assuming the
number of states of nature to be a constant, i.e., |Θ| = O(1).
We denote by d the dimension of ∆Θ, i.e., d := |Θ| − 1.
Throughout this section, we assume the receiver’s utility
function to be linear, while the sender’s is a general set func-
tion, and we regard computation costs that depend only on d
as constants.

The main obstacle is the fact that the number of variables
and constraints in LP (1) is exponential in n := |E|. In the
case of matroid constants, however, we can show that only
a small number of variables can take non-zero values and
that a large fraction of constraints is unnecessary. Thus, if
we can efficiently enumerate all relevant variables and con-
straints, we can obtain a smaller LP that is equivalent to
the original LP (1) and can be solved more cheaply. This
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Erθ({1}) > Erθ({2})

Erθ({1}) < Erθ({2})Erθ({1}) < Erθ({3})

Erθ({1}) > Erθ({3})

Erθ({2}) < Erθ({3})Erθ({2}) > Erθ({3})

θ3 θ2

θ1

{1, 3} is
the best.

{1, 2} is
the best.

{2, 3} is
the best.

Figure 1: An illustration of cells for Bayesian persuasion
with a uniform matroid constraint, where the receiver se-
lects the top-2 elements from E = {1, 2, 3}. For each pair
of distinct i, j ∈ E, a hyperplane (a line) divides the proba-
bility simplex ∆Θ into the region where Eθ∼ξ[rθ({i})] >
Eθ∼ξ[rθ({j})] holds and the complement. The receiver’s
best response is identical within each cell.

approach is inspired by the one studied in public Bayesian
persuasion with no externalities (Xu 2020), which is equiva-
lent to Bayesian persuasion with a special partition matroid
constraint, as mentioned the hardness section. Our algorithm
can be seen as an extension of (Xu 2020) to the case of gen-
eral matroids. Below we present the technical details.

A key observation is that if d is small, the number of com-
binatorial actions that the receiver can take is also small. We
define the set I∗ of all combinatorial actions that can be the
best response for some posterior distribution as

I∗ =

{
S ∈ I

∣∣∣∣ ∃ξ ∈ ∆Θ : S ∈ argmax
S∈I

∑
θ∈Θ

ξ(θ)rθ(S)

}
.

By using this reduced set of combinatorial actions, we for-
mulate a smaller LP as follows:

maximize
∑
θ∈Θ

µ(θ)
∑
S∈I∗

φθ(S)sθ(S)

subject to
∑
θ∈Θ

µ(θ)φθ(S)
(
rθ(S)− rθ(S

′
)
)
≥ 0 (S, S

′ ∈ I∗)

φθ ∈ ∆I (θ ∈ Θ).

(2)

This LP formulation has variables φθ(S) only for S ∈ I∗,
and the first constraint exists only for S, S′ ∈ I∗. We can
show that this reduced LP formulation (2) is equivalent to
the original one (1).
Proposition 6. There is a bijection between the feasible re-
gions of (1) and (2) that does not change the objective value.

As illustrated in (Xu 2020, Example 1), if the receiver’s
expected utility has certain degeneracy, the receiver may
have exponentially many best responses, i.e., |I∗| = Ω(2n).
To exclude such troubling corner cases, we make a mild non-
degeneracy assumption regarding the receiver’s utility.
Assumption 7. For each i ∈ E, let ψi = (rθ({i}))θ∈Θ ∈
RΘ be a vector representing the utilities of the ith element.
We assume that, for any permutation π : {1, . . . , n} → E

Algorithm 1: Algorithm for Bayesian persuasion with a gen-
eral matroid constraint
Input: value oracles of sθ and rθ, independence oracle of I,
µ.
Output: signaling scheme (φθ)θ∈Θ.

1: Let H = {hij | i, j ∈ E, i 6= j} be the
set of hyperplanes, where hij = {ξ ∈ aff(∆Θ) |∑
θ∈Θ ξ(θ) (rθ({i})− rθ({j})) = 0}.

2: Obtain the set of all cells C of the arrangement of H by
using cell enumeration algorithm (Edelsbrunner 1987).

3: IC ← ∅.
4: for each cell C ∈ C do
5: Let ξ ∈ C be any interior point of C.
6: Apply the greedy algorithm to matroid (E, I) and

weights {Eθ∼ξ[rθ({i})]}i∈E to obtain the maximum
weight independent set and add it to IC .

7: Solve LP (2) with I∗ = IC and obtain solution (φθ)θ∈Θ.
8: return signaling scheme (φθ)θ∈Θ.

and any subset S ⊆ {1, . . . , n − 1} with |S| = |Θ|, vectors
(ψπ(i) − ψπ(i+1))i∈S are linearly independent.

Under this assumption, we develop a polynomial-time al-
gorithm, which first enumerates all combinatorial actions in
I∗ and then solves the reduced LP (2). We below describe
our algorithm for general matroids and then present faster
algorithms for some special matroids.

General Matroids
We explain how to enumerate I∗ ⊆ I in polynomial time
when (E, I) is a matroid. Let aff(∆Θ) = {ξ : Θ → R |∑
θ∈Θ ξ(θ) = 1} be the affine hull of ∆Θ, i.e., the smallest

affine space containing ∆Θ. We consider hyperplane hij =
{ξ ∈ aff(∆Θ) |

∑
θ∈Θ ξ(θ) (rθ({i})− rθ({j})) = 0} for

each pair of distinct i, j ∈ E. Each hyperplane hij divides
aff(∆Θ) into two halfspaces: the region where the i’s ex-
pected utility Eθ∼ξ[rθ({i})] =

∑
θ∈Θ ξ(θ)rθ({i}) is at least

that of j and the complement (see Figure 1). Thus, the set of
hyperplanes H = {hij | i, j ∈ E, i 6= j} divides aff(∆Θ)
into small pieces, which we call cells. Within each cell, the
descending order of expected utility values is identical.

Algorithm 1 presents the details of our algorithm. We first
enumerate all cells and then use the greedy algorithm to ob-
tain a maximum weight independent set for an interior point
of each cell. Although H has degeneracy, by using an algo-
rithm for constructing arrangements of hyperplanes (Edels-
brunner 1987), we can enumerate all cells. Finally, we solve
the reduced LP (2) where I∗ is replaced with the family of
obtained independent sets, denoted by IC .

Now, we show that IC obtained by the algorithm recov-
ers I∗, the family of possible best responses. The following
lemma guarantees that considering only interior points of
cells is sufficient for enumerating I∗ under Assumption 7,
i.e., we do not need to care about the boundaries of cells.
Lemma 8. Let ψ1, . . . , ψn ∈ RΘ be vectors that satisfy
Assumption 7. Then, for any permutation π, {ξ ∈ RΘ |
ψ>π(1)ξ ≥ · · · ≥ ψ>π(n)ξ and 1>ξ = 1} 6= ∅ implies
{ξ ∈ RΘ | ψ>π(1)ξ > · · · > ψ>π(n)ξ and 1>ξ = 1} 6= ∅.
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Therefore, we can enumerate all possible best responses
I∗ by collecting maximum weight independent sets returned
by the greedy algorithm, whose behavior depends only on
the descending order of the weights.
Theorem 9. Under Assumption 7, I∗ ⊆ IC holds. More-
over, |IC | = O(n2d).

Since |H| = O(n2), the cells can be enumerated in
O(n2d) time (Edelsbrunner 1987). The resulting LP (2)
has O(n2d) variables and O(n4d) constraints, which can be
solved in poly(nd) time.

Faster Algorithms for Special Matroids
As described above, our algorithm first enumerates every
combinatorial action that can be the receiver’s best response
for some ξ ∈ ∆Θ, and then solves the reduced LP. For sev-
eral special cases of matroids, we can use faster enumeration
algorithms and obtain better upper bounds on |I∗|.
Uniform matroids. In this case, a receiver’s action con-
sists of top-k elements, and thus we can enumerate all pos-
sible best responses I∗ in a simpler manner. We consider n
hyperplanes on ∆Θ associated with n expected utility val-
ues, and enumerate all combinations of k hyperplanes that
correspond to top-k elements for some ξ ∈ ∆Θ. The enu-
meration problem is closely related to a discrete-geometric
subject, called the k-level in an arrangement of hyperplanes.
By using an algorithm of (Mulmuley 1991) that enumerates
all faces of level at most k, we can enumerate all k-level
faces corresponding to I∗ in O(kd(d+1)/2enb(d+1)/2c) time
for d ≥ 3, and in O(kd(d+1)/2enb(d+1)/2c log(n/k)) time
for d ≤ 2. Moreover, Clarkson and Shor (1989) presented
an upper bound on the number of faces of level at most k,
which implies |I∗| = O(kd(d+1)/2enb(d+1)/2c).

Partition matroids. As with the case of general matroids,
we enumerate cells of the hyperplane arrangement, but the
number of hyperplanes can be reduced. A key observation is
that the maximum weight independent set is determined by
the order of weights of elements in each partition, not by the
order of weights of all elements. Therefore, it is sufficient to
enumerate all possible orders of weights in each partition.
Let n1 := |E1|, n2 := |E2|, . . . , nP := |EP | be the size of
each partition. For each p ∈ [P ], we consider hyperplanes
for all pair of distinct i, j ∈ Ep. As with the case of general
matroids, we can obtain IC ⊇ I∗ by enumerating the cells
of the arrangement of those hyperplanes. If n1 = · · · = nP ,
the number of hyperplanes is O(n2/P ). Therefore, in this
case, we have |I∗| = O(n2d/P d).

Graphic matroids. In this case, we need to enumerate all
spanning trees S ∈ I that can attain the maximum weight
for some ξ ∈ ∆Θ. To this end, we can use existing results
on the parametric spanning tree problem. When d = 1, by
using an algorithm of (Fernández-Baca, Slutzki, and Epp-
stein 1996), we can enumerate all the spanning trees I∗ in
O(|V ||E| log |V |) time. Moreover, when d = 1, it is known
that |I∗| = O(|E||V |1/3) holds (Dey 1998).
Remark 10. For path constraints, even if d = 1, the number
of paths that can be the shortest path for some ξ ∈ ∆Θ is

known to be nΩ(log n) in general (Carstensen 1983). Thus,
our approach, which enumerates every path that can be the
shortest path for some ξ ∈ ∆Θ, fails to run in polynomial
time even if d is a constant. We need a different approach
for obtaining an efficient algorithm for path constraints.

Polynomial-time Algorithm for
CCE-Persuasiveness

We present how to compute approximately optimal CCE-
persuasive signaling schemes for Bayesian persuasion with
combinatorial actions. To motivate us to study CCE-
persuasiveness, a relaxed notion of persuasiveness, in the
combinatorial setting, let us consider the following invest-
ment example. Let the receiver be an investor wondering
whether to buy an investment trust or build a portfolio by
himself. If the investor decides to buy an investment trust,
stocks are bought following a policy of a portfolio manager,
who is the sender. The sender wants to sell the investment
trust, and a signaling scheme corresponds to her portfolio-
management policy. The receiver buys the investment trust
if it is at least as beneficial as the portfolio built following his
prior belief. In this example, in contrast to the standard set-
ting, the sender’s recommendation is regarded as persuasive
if it is better than the best action taken based on the receiver’s
prior belief. This idea of persuasiveness can be modeled by
CCE-persuasiveness, as detailed below.

As pointed out by Bergemann and Morris (2016),
Bayesian persuasion is the problem of finding a Bayes cor-
related equilibrium that is optimal for the sender. By relax-
ing the condition of Bayes correlated equilibria, we can ob-
tain a broader class of equilibria called Bayes coarse cor-
related equilibria, as mentioned in several studies (Cai and
Papadimitriou 2014; Hartline, Syrgkanis, and Tardos 2015).
In a Bayes coarse correlated equilibrium, the receiver has
no incentive to ignore the signal, i.e., following the signal
is at least as beneficial as the best action selected based on
his prior distribution. Let C = maxS∈I

∑
θ∈Θ µ(θ)rθ(S)

be the receiver’s utility when he selects the best action based
on his prior distribution. The LP for computing an optimal
CCE-persuasive signaling scheme can be written as follows:

maximize
∑
θ∈Θ

∑
S∈I

µ(θ)φθ(S)sθ(S)

subject to
∑
θ∈Θ

∑
S∈I

µ(θ)φθ(S)rθ(S) ≥ C

φθ ∈ ∆I (θ ∈ Θ).

(3)

We present a sufficient condition for achieving a constant-
factor approximation for the above LP. For public Bayesian
persuasion, the equivalence between exact maximization of
certain set functions and computation of CCE-persuasive
schemes has been established in (Xu 2020, Theorem 5.1).
Compared with the existing result, ours is restricted to one
direction (maximization implies persuasion). However, it is
applicable to important cases where maximization can be
done only approximately. For example, we can allow the
sender’s utility to be a monotone submodular function, as
explained later. To prove the result, we carefully combine an
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Algorithm 2: Algorithm for CCE-persuasiveness
Input: value oracles of sθ and rθ, independence oracle of I,
α-approximation oracle, µ, vmin, vmax, ε.
Output: signaling scheme (φθ)θ∈Θ.

1: vl ← 0, vu ← vmax, v ← vl+vu
2 .

2: ε′ ← εvmin.
3: for t = 1, 2, . . . , dlog(vmax/ε

′)e+ 1 do
4: Apply the ellipsoid method with an α-approximate

separation oracle to dual LP (4) with additional con-
straint −C · y +

∑
θ∈Θ xθ ≤ v.

5: if v is approximately feasible then
6: vu ← v and v ← vl+vu

2 .
7: else /* v is infeasible */
8: vl ← v and v ← vl+vu

2 .
9: if vl = 0 then

10: return any signaling scheme.
11: Solve restricted primal LP to obtain solution (φθ)θ∈Θ.
12: return signaling scheme (φθ)θ∈Θ.

existing binary search framework for approximate separa-
tion oracles (Jansen 2003; Jain, Mahdian, and Salavatipour
2003) and the proof of (Xu 2020, Theorem 5.1). Throughout
this section, we do not make any assumption on the sender’s
and the receiver’s utility functions; instead, we assume that
an approximate maximization oracle, together with upper
and lower bounds on the optimal value, are available.

Theorem 11. Let α ∈ (0, 1]. For any y ≥ 0 and θ ∈ Θ,
assume that a polynomial-time α-approximation oracle that
returns S ∈ I with the following guarantee is available:
sθ(S) + y · rθ(S) ≥ α · sθ(S′) + y · rθ(S′) for any S′ ∈ I.
Moreover, assume vmin and vmax to be given as inputs such
that (i) OPT > 0 implies OPT > vmin and (ii) OPT <
vmax, where OPT is the optimal value. Then, for any ε ∈
(0, α), there is a polynomial-time algorithm that computes
an (α− ε)-approximate CCE-persuasive signaling scheme.

Proof. The dual of the LP (3) can be written with variables
{xθ}θ∈Θ and y ∈ R as follows:

minimize − C · y +
∑
θ∈Θ

xθ

subject to xθ − µ(θ)rθ(S) · y ≥ µ(θ)sθ(S) (θ ∈ Θ, S ∈ I)

y ≥ 0.

(4)

We consider applying the ellipsoid method to this LP. Here,
since we cannot directly use the α-approximation oracle as a
separation oracle, we employ a binary-search framework of
(Jansen 2003; Jain, Mahdian, and Salavatipour 2003), which
enables us to combine the ellipsoid method with the follow-
ing α-approximate separation oracle.

Lemma 12. Under the assumption of Theorem 11, there is a
polynomial-time α-approximate separation oracle such that
for any {xθ}θ∈Θ and y, it either returns a separating hyper-
plane or guarantees the feasibility of {xθ/α}θ∈Θ and y/α.

We perform a binary search on [0, vmax] to estimate the
optimal value of the dual LP (see Algorithm 2). Given an

estimated value v ∈ R, we add −C · y +
∑
θ∈Θ xθ ≤ v

to the constraints in (4) and check the feasibility of the re-
sulting inequality system using the ellipsoid method with
the α-approximate separation oracle. Note that since we can
use only an α-approximate separation oracle, the ellipsoid
method guarantees that the estimated value v is either ap-
proximately feasible or infeasible. The binary search con-
tinues until the interval becomes smaller than ε′ = εvmin.
Let v∗ be the smallest approximately feasible value found by
this binary search, and let ({x∗θ}θ∈Θ, y

∗) be its correspond-
ing solution. From Lemma 12, ({x∗θ/α}θ∈Θ, y

∗/α) satisfies
the constraints of the dual LP (4), and thus the optimal value
is at most v∗/α. Furthermore, since v∗− ε′ is infeasible, the
optimal value of the dual LP (4) is in (v∗ − ε′, v∗/α].

If the binary search does not find any infeasible v, then
v∗ ∈ [0, εvmin) and the optimal value is less than vmin. From
the assumption on vmin, the optimal value is 0. Thus, any
signaling scheme is optimal. Otherwise, to obtain a solution,
we construct a restricted version of the primal LP (3) as fol-
lows. When executing the ellipsoid method for the smallest
v such that v ≥ v∗ − ε′, we check polynomially many con-
straints, which are enough to conclude that the optimal value
of the dual LP is larger than v∗ − ε′. This process yields a
restricted dual LP with the polynomially many constraints,
each of which corresponds to a primal variable. By allowing
only those primal variables to be non-zero, we can obtain
a restricted primal LP. From the strong duality, the optimal
value of the restricted primal LP is also larger than v∗ − ε′.
On the other hand, the weak duality implies that the optimal
value of the (non-restricted) primal LP (3) is at most v∗/α.
Thus, by solving the restricted primal LP, we can compute
an (α− ε)-approximate solution in polynomial time.

For several classes of utility functions, we can implement
approximate separation oracles that run in polynomial time.
For example, we can exactly solve maxS∈I sθ(S)+y ·rθ(S)
if both sθ and rθ are linear and I is an independence system
of a matroid. When sθ is a monotone submodular function,
rθ is linear, and I is an independence system of a matroid,
the continuous greedy algorithm can be used as a (1− 1/e)-
approximation oracle (Sviridenko, Vondrák, and Ward 2017,
Theorem 1). Furthermore, when sθ is a monotone submod-
ular function, rθ is a gross substitute function, and I is
an independence system of a uniform matroid, a variant
of the continuous greedy algorithm serves as a (1 − 1/e)-
approximation oracle (Soma and Yoshida 2018). By consid-
ering the minimization version, we can use a shortest-path
algorithm as an exact separation oracle if both sθ and rθ are
linear and I is the set of paths on some graph.
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