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Abstract

We consider mechanisms for truthfully eliciting probabilis-
tic predictions from a group of experts. The standard ap-
proach — using a proper scoring rule to separately reward
each expert — is not robust to collusion: experts may col-
lude to misreport their beliefs in a way that guarantees them
a larger total reward no matter the eventual outcome. It is a
long-standing open question whether there is a truthful elici-
tation mechanism that makes any such collusion (also called
arbitrage) impossible. We resolve this question positively, ex-
hibiting a class of strictly proper arbitrage-free contract func-
tions. These contract functions have two parts: one ensures
that the total reward of a coalition of experts depends only on
the average of their reports; the other ensures that changing
this average report hurts the experts under at least one out-
come.

Introduction
Suppose that some person or entity (the principal) wishes
to elicit a probabilistic forecast from an expert: for example,
a local news organization may want to ask a meteorologist
for the probability that it will rain tomorrow. The principal
could incentivize the expert with a payment scheme that de-
pends on the expert’s report (in our example, the meteorolo-
gist’s stated probability) and the eventual outcome (whether
or not it rains). Such a payment scheme is called a scor-
ing rule, and a scoring rule is called proper if the expert’s
optimal strategy for maximizing expected payment is to re-
port their belief. A scoring rule is called strictly proper if
this is the expert’s unique optimal strategy, no matter their
belief. The space of all strictly proper scoring rules is very
large, but the most well-known and frequently used one is
Brier’s quadratic scoring rule (Brier 1950), which gives an
expert who reports p a reward of 1 − 2(1 − p)2 if the event
happens and 1 − 2p2 if it does not. This can be thought of
as penalizing the expert based on their report’s distance to
the “right answer” (see Equation 1). The logarithmic scor-
ing rule (Good 1952), which gives a reward of ln(p) if the
event happens and ln(1 − p) if it does not, is also strictly
proper and well known.

In many settings, the principal may wish to elicit fore-
casts from multiple experts, so as to get a better sense of
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expert opinion and the extent to which there is a consensus.
The principal could use the quadratic scoring rule (or any
other strictly proper scoring rule) to elicit each expert’s fore-
cast. If experts are not allowed to collude, then this strategy
is incentive-compatible; however, (French 1983) observed
that experts can collude in a way that increases the sum
total profit of all experts, no matter the final outcome. For
example, if three experts believe that there is a 40%, 50%,
and 90% chance of rain and are rewarded with the quadratic
scoring rule, then their total reward is 0.28 + 0.5 + 0.98 =
1.76 if it rains and 0.68 + 0.5 − 0.62 = 0.56 if it does
not; but if they collude to all report 60% then their reward is
0.68+0.68+0.68 = 2.04 if it rains and 0.28+0.28+0.28 =
0.84 if it does not. The experts can agree beforehand to a re-
distribution of their rewards in such a way that each expert
is guaranteed to be better off than if they had not colluded.

(Chun and Shachter 2011) called this phenomenon —
in which experts collude to misreport in a way where their
total reward is larger no matter the outcome — arbitrage.
They showed that every strictly proper scoring rule admits
arbitrage — indeed, that there is an arbitrage opportunity for
any group of experts so long as they do not all agree on the
probability of the event. Specifically, a coalition of experts
can risklessly make a profit by deviating to report an ag-
gregate of their beliefs (in the case of the quadratic scoring
rule, this aggregate is the arithmetic mean). (Neyman and
Roughgarden 2021) extends this observation to probability
distributions over more than two possible outcomes.

For many reasons, the expert may wish to make arbitrage
impossible. First, the principal may wish to know whether
the experts are in agreement: if they are not, for instance, the
principal may want to elicit opinions from more experts. If
the experts collude to report an aggregate value (as in our
example), the principal does not find out whether they orig-
inally agreed. Second, even if the principal only seeks to
act based on some aggregate of the experts’ opinions, their
method of aggregation may be different from the one that
experts use to collude. For instance, the principal may have
a private opinion on the trustworthiness of each expert and
wishes to average the experts’ opinions with corresponding
weights. Collusion among the experts denies the principal
this opportunity. Third, a principal may wish to track the ac-
curacy of each individual expert (to figure out which experts
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to trust more in the future, for instance), and collusion makes
this impossible. Fourth, the space of collusion strategies that
constitute arbitrage is large. In our example above, any re-
port in [0.546, 0.637] would guarantee a profit; and this does
not even mention strategies in which experts report different
probabilities. As such, the principal may not even be able
to recover basic information about the experts’ beliefs from
their reports.

As a practical example, a government may wish to spon-
sor several competing teams to forecast the weather as ac-
curately as possible, with the goal of hiring the best team.
To provide good incentives, it pays each team using a proper
scoring rule. A subset of the teams realize that they would
benefit from colluding: for example, if the quadratic scor-
ing rule is used, the experts may collude to all report the
average of their true predictions. This would interfere with
the government’s goal of finding the best team, so using an
arbitrage-proof mechanism would be desirable.

As another example, the U.S. Federal Reserve may wish
to elicit economic growth forecasts from several experts.
The Federal Reserve wants to know not just the experts’
consensus, but also how much the experts disagree: perhaps,
if the experts disagree substantially, they would want to
pursue the disagreement further and try to resolve it. If the
experts collude to report the same forecast, then the federal
reserve will not find out whether the experts disagree. Thus,
it may wish to instead use a arbitrage-proof mechanism to
reward the experts.

As we have discussed, preventing arbitrage is impossible
if the principal chooses a strictly proper scoring rule and
uses it to reward all of the experts. However, the principal
has more freedom than this: they may choose to make each
expert’s reward depend not only on that expert’s report but
also other experts’ reports. (Chun and Shachter 2011, §5)
ask whether there is any mechanism for rewarding experts
that makes arbitrage impossible, concluding that this “seems
unlikely”. (Freeman et al. 2020) explore this question fur-
ther, proposing a mechanism that prevents arbitrage if the
experts’ reports are guaranteed to be in the range [ε, 1−ε] for
some positive ε (though their mechanism may require very
large payments if ε is small). However, they leave open Chun
and Shachter’s question of whether an incentive-compatible,
arbitrage-free reward mechanism exists.

We resolve this question in the affirmative by exhibiting
a class of incentive-compatible mechanisms in which arbi-
trage from collusion is impossible. Our mechanism takes in-
spiration from Brier’s quadratic scoring rule, but modifies
it to take into account the aggregate performance of the re-
maining experts.

Related Work
(Freeman et al. 2020) explores the question of whether
strictly proper arbitrage-free mechanisms exist by proving
positive results under different relaxations of these con-
straints. Their main result is a strictly proper arbitrage-free
mechanism under the restriction that the range of allowed re-
ports is restricted to [ε, 1−ε]. However, their mechanism ne-
cessitates payments that are exponentially large in 1/ε. Al-

ternatively, these payments can be scaled down, but at the
expense of giving essentially zero reward to each expert on
the vast majority of the interval of possible reports, thus pro-
viding little incentive for truthful reporting. They also ex-
hibit a positive result if the properness criterion is somewhat
relaxed to allow for some contract functions that are proper
but not strictly proper.

(Chen et al. 2014) explore the different but related topic of
arbitrage-free wagering mechanisms. In a wagering mecha-
nism, each expert wagers a certain amount of money along
with their report, and the pool of wagers is redistributed
among the experts depending on each expert’s report and
wager and the eventual outcome. In this setting, they de-
fine arbitrage as any opportunity for an individual to risk-
lessly make a profit. That is, an arbitrage opportunity is one
in which an expert may unilaterally deviate by submitting a
report that guarantees a profit no matter the final outcome.
This differs from Chun and Shachter’s definition of arbi-
trage, which is concerned with riskless profit opportunities
stemming from collusion between experts.

The most well-known wagering mechanism is the
weighted score wagering mechanism, which rewards each
expert based on their performance compared to other experts
according to a strictly proper scoring rule. An expert may
risklessly profit from a weighted score wagering mechanism
by reporting an aggregate of other experts’ reports. This is
the same aggregate as the one that a coalition of experts who
are rewarded with a strictly proper scoring rule may report in
order to risklessly make a profit in our setting. Chen et al. de-
fine no-arbitrage wagering mechanisms, which modify the
reallocation rule of weighted score wagering mechanisms
to reward each expert based on their performance relative to
the performance of the aggregate of all other experts’ reports
(Chen et al. 2014, §4.1). No-arbitrage wagering mechanisms
can be re-interpreted in our setting as contract functions that
prevent the entire group of experts from colluding. However,
as we discuss in the next section, this is easy to accomplish;
we are instead faced with the challenge of preventing collu-
sion between any coalition of experts of any size. Thus, our
mechanism and theirs share some of the same spirit, but are
different mechanisms that solve different problems.

Finally, we note some superficial resemblances (e.g., the
use of proper scoring rules as a useful primitive) between the
present line of work and peer prediction (Miller, Resnick,
and Zeckhauser 2005), an area that studies how to solicit
honest opinions of subjective events. Contract functions
concern verifiable events and thus are much more closely
related to (generalizations of) scoring rules than to peer pre-
diction.

Preliminaries
We consider an event with n possible outcomes. The space
of possible probability distributions over these outcomes is
∆n, the standard simplex in Rn. We denote the vertices of
this simplex by δj for j ∈ [n] (δj is the vector whose j-th
coordinate is 1 and all of whose other coordinates are 0).

Scoring rules A scoring rule is any function that takes as
input a probability distribution over the n possible outcomes,
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and the eventual outcome, and outputs a reward. Formally, a
scoring rule is any function s : ∆n × [n] → R; if an expert
reports probability distribution p ∈ ∆n and the outcome is
j, then the expert receives reward s(p; j).

A scoring rule is proper if an expert with belief b max-
imizes their expected reward by reporting b. Formally, s is
proper if for all b,

∑
j bjs(x; j) is maximized at x = b.

We say that s is strictly proper if for all b, x = b is the
unique maximizer, i.e. that an expert does strictly worse by
misreporting their belief.

Brier’s quadratic scoring rule — mentioned in the intro-
duction — is the scoring rule

squad(p; j) := 1− (1− pj)2 −
∑
`6=j

p2
` .

It can be rewritten as

squad(p; j) = 1− ‖p− δj‖22 . (1)

Thus, the quadratic scoring rule can be thought of as penal-
izing the expert by the squared distance between their re-
port and the “omniscient” answer δj . The quadratic scoring
rule is strictly proper. In the case of n = 2 outcomes, the
quadratic scoring rule can be written1 as

squad(p; j) = 1− 2(1− pj)2.

Contract functions Contract functions, defined by (Chun
and Shachter 2011), generalize scoring rules to multiple ex-
perts. We say that there are m experts; for i ∈ [m], expert
i reports a probability distribution pi ∈ ∆n. We denote the
j-th coordinate of pi as pi,j .

A contract function is any function that takes as input the
m experts’ reports and the outcome, and outputs the reward
of each expert. Formally, a contract function is any function
Π : (∆n)m × [n] → Rm; if the experts report distributions
p1, . . . ,pm and the outcome is j, then the vector of expert
rewards is Π(p1, . . . ,pm; j). We let Πi(·) denote the i-th
coordinate of Π(·), i.e. expert i’s reward. We will generally
use P to denote the m-tuple of reports (p1, . . . ,pm).

A contract function is proper if for each i ∈ [m], ex-
pert i maximizes their expected reward by reporting their
belief bi, no matter the reports p−i of the other experts.
Formally, Π is proper if for all i ∈ [m], for all bi and all
p−i,

∑
j bi,jΠi(x,p−i; j) is maximized at x = bi. We say

that Π is strictly proper if x = bi is the unique maximizer,
i.e. that an expert does strictly worse by misreporting their
belief.

Our goal is to exhibit a strictly proper contract function
that does not permit arbitrage from collusion. We use the
definition of arbitrage given by (Freeman et al. 2020), which
was adapted from (Chun and Shachter 2011).

A contract function Π admits arbitrage if there is a coali-
tion (i.e. subset) C ⊆ [m] of experts and m-tuples of expert

1The quadratic scoring rule for two outcomes is more fre-
quently written as 1− (1− pj)2, but we choose to include a factor
of 2 to be consistent with the usual formula for n > 2 outcomes.
The usual form is the same as ours up to a positive affine transfor-
mation; such transformations preserve strict properness.

reports P and Q, with pi = qi for all i 6∈ C, such that∑
i∈C

Πi(Q; j) ≥
∑
i∈C

Πi(P; j)

for all j ∈ [n], and the inequality is strict for some j. We
say that Π is arbitrage-free if it does not admit arbitrage.
Intuitively, Π admits arbitrage if it is possible for a coali-
tion of experts to collude to misreport their values in such a
way that the total reward of the experts in the coalition ends
up larger, no matter the outcome. (Above, the misreport is
Q; the constraint that pi = qi for i 6∈ C means that only
experts in C change their reports.) If this is possible, then
the experts in C can commit beforehand to a redistribution
of the extra reward in a way that makes every expert in the
coalition better off no matter the eventual outcome j.

Remark 0.1. Positive affine transformations preserve both
strict properness and arbitrage-freeness. That is, if Π is
strictly proper then so is aΠ + b for any a > 0 and b, and
this is likewise true for arbitrage-freeness.

The question posed by (Chun and Shachter 2011) and ex-
plored by (Freeman et al. 2020), which we answer affirma-
tively in this work, is: Does there exist a strictly proper
arbitrage-free contract function?

In the case of m = 2 experts, there is a fairly straightfor-
ward solution:

Π(p1,p2; j) = (squad(p1; j)− squad(p2; j), squad(p2; j)− squad(p1; j)) .

(2)

This contract function is strictly proper because expert 1’s
reward is the (strictly proper) quadratic score of their re-
port plus a term that does not depend on their report, and
likewise for expert 2. It is arbitrage-free because the total
reward of the two experts is 0 no matter what. Indeed, this
contract function is arbitrage-free with any strictly proper
scoring rule in place of the quadratic scoring rule.

This idea does not extend to m > 2 experts, because an
arbitrage-free contract function must not admit arbitrage by
a coalition of experts of any size. While it is easy to con-
struct a contract function that does not admit arbitrage by a
coalition of sizem (by making the total reward always equal
to 0), this does not automatically make the contract function
free of arbitrage opportunities for coalitions of sizes between
2 andm−1. In the next section we address this challenge and
exhibit a strictly proper contract function that is arbitrage-
free for m > 2 experts.

A Class of Strictly Proper Arbitrage-Free
Contract Functions

Suppose that — as before — there are m ≥ 2 experts who
are forecasting an event with n ≥ 2 outcomes. Given experts
with reports P = (p1, . . . ,pm) and a nonempty subset S ⊆
[m] of the experts, we will let pS := 1

|S|
∑
i∈S pi be the

average of the experts’ reports. We will use p−i to denote
p[m]\{i}.

We now state our main theorem, which exhibits a class of
strictly proper, arbitrage-free contract functions.
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Theorem 0.2. Let α be a real number such that α < 0 or
α ≥ 2(m− 1)2n. Let Π be the contract function defined by

Πi(P; j) = squad(pi; j)− (m− 1)2squad(p−i; j) + αp−i,j

for each i, j. Then Π is strictly proper and arbitrage-free.

Note that in the case of m = 2, setting α = 0 yields
our aforementioned solution for two experts in Equation 2.
Unfortunately, setting α = 0 for m > 2 experts causes
arbitrage-freeness to fail in certain edge cases.

One can think of the contract function in Theorem 0.2
as having two parts. The first part, squad(pi; j) − (m −
1)2squad(p−i; j), ensures that any coalition’s total reward
depends only on the average of the coalition’s reports. In
effect this significantly limits the degrees of freedom that a
coalition has when colluding. The second part, αp−i,j , en-
sures that any deviation in this average report causes a de-
crease in total reward under at least one outcome.

In this section we focus on proving Theorem 0.2 for n = 2
outcomes, as this allows us to simplify notation without sac-
rificing the core ideas. We defer the proof for general values
of n to the appendix.

Proof of Theorem 0.2 for n = 2. First, note that Π is strictly
proper, because expert i’s reward is their quadratic score plus
a term that does not depend on their report. It remains to
show that Π is arbitrage-free.

Let C ⊆ [m] be a coalition of experts. Strict properness
entails that no expert can unilaterally find an arbitrage
opportunity, so we may assume that |C| ≥ 2.

For an outcome j and a subset S ⊆ [m], let pS,j :=∑
i∈S pi,j . The following fact follows from algebraic ma-

nipulations, which we defer to the appendix.

Lemma 0.3. The expression for Πi(P; j) is equal to

2(p[m],j − d− 1)(p[m],j − 2pi,j − d+ 1) + f(m,α), (3)

for some function f , where d = m− 1− α
4(m−1) .

Equation 3 makes it evident that rewards add nicely across
experts in a coalition C, as the first term of the product is the
same for all experts in C. We will use the notation ΠC(P; j)
to denote

∑
i∈C Πi(P; j). The key idea is that, as we are

about to show, if the reports of experts not in C are held
fixed, ΠC(P; j) depends only on pC,j . Thus, the experts in
C have only one degree of freedom available for colluding:
the sum of their reports.

We write C to mean [m] \ C. We have

ΠC(P; j) = 2
∑
i∈C

(p[m],j − d− 1)(p[m],j − 2pi,j − d+ 1)

+ |C| f(m,α)

= 2(pC,j + pC,j − d− 1)

· ((|C| − 2)pC,j + |C| (pC,j − d+ 1)) + |C| f(m,α)

= 2((|C| − 2)p2C,j + 2((|C| − 1)(pC,j − d) + 1)pC,j)

+ g(m,α, |C| , pC,j), (4)

for some function g. Now, recall the constraints on α in
Theorem 0.2, and note that α < 0 ⇔ d > m − 1 and
α ≥ 4(m − 1)2 ⇔ d ≤ 0. With this in mind, we now
prove the following claim, which is sufficient to complete
our proof.

Claim 0.4. If d ≤ 0, then for each j and for all possible
reports of experts not in C, ΠC(P; j) is a strictly increasing
function of pC,j . If d > m − 1, it is a strictly decreasing
function of pC,j .

By virtue of deriving Equation 4, we have already proven
the most difficult part of Claim 0.4, which is that ΠC(P; j)
is a function of (i.e. determined by) pC,j . Why is this func-
tion’s monotonicity sufficient to complete our proof of Theo-
rem 0.2? Since pC,1 +pC,2 = |C|, it follows from Claim 0.4
that for d ≤ 0 and d > m − 1, colluding in a way that
increases the total reward in the case of one outcome neces-
sarily decreases it in the case of the other outcome.

Proof of Claim 0.4. We first consider the case of |C| = 2.
In this case we have

ΠC(P; j) = 4(pC,j − d+ 1)pC,j + g(m,α, |C| , pC,j).

Now, 0 ≤ pC,j ≤ m − 2, which means that
1 − d ≤ pC,j − d + 1 ≤ m − 1 − d. If d ≤ 0, this
quantity is guaranteed to be strictly positive, so ΠC(P; j)
is a strictly increasing function of pC,j ; if d > m − 1,
it is guaranteed to be negative, so ΠC(P; j) is a strictly
decreasing function of pC,j .

Now assume that |C| > 2. In this case, it follows from
Equation 4 that ΠC(P; j) is a parabola with a minimum at

(|C| − 1)(d− pC,j)− 1

|C| − 2
.

We wish to show that if d ≤ 0 then this quantity is at most 0,
and that if d > m − 1 then it is at least |C| (since the range
of possible values of pC,j is [0, |C|]). If d ≤ 0 then, since
pC,j ≥ 0, we have

(|C| − 1)(d− pC,j)− 1

|C| − 2
≤ −1

|C| − 2
≤ −1

m− 2
≤ 0.

If d > m− 1 then, since pC,j ≤ m− |C|, we have

(|C| − 1)(d− pC,j)− 1

|C| − 2
≥ (|C| − 1)2 − 1

|C| − 2
= |C| .

Having proved the claim, we have completed the proof of
Theorem 0.2 for n = 2.

We note that setting α = 0 results in a contract func-
tion that is arbitrage-free except in one edge case: in the
event that all but two experts assign a probability of zero to
some outcome j, the remaining experts can collude to adjust
their probabilities — in particular, lowering the total prob-
ability they assign to outcome j — in a way that increases
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their total reward under outcome j and leaves the remain-
ing rewards unchanged. If we are willing to put this excep-
tion aside (e.g. if we only allow reports strictly between 0
and 1), then we may regard the resulting contract function
Πi(P; j) = squad(pi; j)−(m−1)2squad(p−i; j) as arbitrage-
free. This contract function has a natural interpretation: it
rewards an expert for the accuracy of their forecast but pe-
nalizes the expert if others are accurate in aggregate. This
rule is reminiscent of the no-arbitrage wagering mechanism
for the quadratic scoring rule given in (Chen et al. 2014),
except that the penalty is multiplied by a factor of (m− 1)2.

Future Directions in Arbitrage-Freeness
Having exhibited a strictly proper arbitrage-free contract
function, it is natural to ask about other (possibly stronger)
notions of arbitrage-freeness. Another natural notion is to
say that Π admits arbitrage if a coalition C of experts can
collude in a way that, in the opinion of every expert in C,
increases the expected total reward of the experts in C. For-
mally:

Definition 0.5. A contract function Π admits expected ar-
bitrage if there is a coalition C ⊆ [m] of experts and vec-
tors of reports P = (p1, . . . ,pm), Q = (q1, . . . ,qm), with
pi = qi if i 6∈ C, such that for all i ∈ C we have∑

j∈[n]

pi,j
∑
k∈C

Πk(P; j) ≤
∑
j∈[n]

pi,j
∑
k∈C

Πk(Q; j),

and the inequality is strict for some i. We say that Π is free
of expected arbitrage if it does not admit expected arbitrage.

Up to edge scenarios,2 if a contract function admits ar-
bitrage then it also admits expected arbitrage. On the other
hand, in the case of m > 2 experts, the scoring rules de-
scribed by Theorem 0.2 (which do not admit arbitrage) do
admit expected arbitrage. As an example, consider two out-
comes andm experts with beliefs ( 1

2 ,
1
2 ). If all experts report

their beliefs, then each expert’s reward is α2 + 1
2 (1−(m−1)2)

no matter the outcome. If all experts instead report (1, 0)
then each expert expects a reward of α2 , which is larger. This
raises the following question.

Question 0.6. Is there a strictly proper scoring rule that
does not admit expected arbitrage?

We hope that our work will spur research on stronger no-
tions of arbitrage-freeness, included but not limited to Defi-
nition 0.5.

Omitted Details
Proof of Lemma 0.3. Let d = m − 1 − α

4(m−1) . We use f0

and f to denote functions whose particular values do not
concern us. We have

Πi(P; j) = squad(pi; j)− (m− 1)
2
squad(p−i; j) + αp−i,j

2It is possible for a coalition of experts to collude in a way that
increases their total reward under an outcome to which they all
assign probability 0. If their reward in the case of all other outcome
is unchanged, such a deviation would constitute arbitrage but not
expected arbitrage.

= 1− 2(1− pi,j)
2 − (m− 1)

2

(
1− 2

(
1−

p−i,j

m− 1

)2)
+

α

m− 1
p−i,j

= −2(1− pi,j)
2

+ 2(m− 1− p−i,j)
2

+
α

m− 1
p−i,j + f0(m,α)

= −2(1− pi,j)
2

+ 2 (d− p−i,j)
2

+ f(m,α)

= 2 (d− p−i,j + (1− pi,j)) (d− p−i,j − (1− pi,j)) + f(m,α)

= 2(p[m],j − d− 1)(p[m],j − 2pi,j − d+ 1) + f(m,α),

as desired.

Proof of Theorem 0.2 for general n. First, note that Π is
strictly proper, because expert i’s reward is their quadratic
score plus a term that does not depend on their report. It re-
mains to show that Π is arbitrage-free.

Let C ⊆ [m] be a coalition of experts. Strict properness
entails that no expert can unilaterally find an arbitrage op-
portunity, so we may assume that |C| ≥ 2.

For an outcome j and a subset S ⊆ [m], let pS,j :=∑
i∈S pi,j . Let d = m−1− α

2(m−1) . We rewrite Πi(P; j) as
follows, using f0 and f to denote functions whose particular
values do not concern us.

Πi(P; j) = squad(pi; j)− (m− 1)2squad(p−i; j) + αp−i,j

= (m− 1)2
(

1− 1

m− 1
p−i,j

)2

− (1− pi,j)2

+
∑
` 6=j

(
(m− 1)2

(
1

m− 1
p−i,`

)2

− p2i,`

)
+

α

m− 1
p−i,j + f0(m,n, α)

= (d− p−i,j)
2 − (1− pi,j)2

+
∑
` 6=j

(
p2−i,` − p2i,`

)
+ f(m,n, α)

= (d− p−i,j + (1− pi,j))(d− p−i,j − (1− pi,j))

+
∑
` 6=j

(p−i,` + pi,`)(p−i,` − pi,`) + f(m,n, α)

= (p[m],j − d− 1)(p[m],j − 2pi,j − d+ 1)

+
∑
` 6=j

p[m],`(p[m],` − 2pi,`) + f(m,n, α).

We will use the notation ΠC(P; j) to denote∑
i∈C Πi(P; j). We also write C to mean [m] \ C

and PC to mean the collection of reports pi for i ∈ C. We
have

ΠC(P; j) =
∑
i∈C

(p[m],j − d− 1)(p[m],j − 2pi,j − d+ 1)

+
∑
`6=j

p[m],`(p[m],` − 2pi,`)

+ |C| f(m,n, α)

= (pC,j + pC,j − d− 1)((|C| − 2)pC,j + |C| (pC,j − d+ 1))

+
∑
`6=j

(pC,` + pC,`)(|C| pC,` + (|C| − 2)pC,`) + |C| f(m,n, α)

= (|C| − 2)p
2
C,j + ((2 |C| − 2)(pC,j − d) + 2)pC,j
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+
∑
`6=j

(
(|C| − 2)p

2
C,` + (2 |C| − 2)pC,`pC,`

)
+ g(m,n, α, |C| ,PC)

= (2− (2 |C| − 2)d)pC,j

+
∑
`

(
(|C| − 2)p

2
C,` + (2 |C| − 2)pC,`pC,`

)
+ g(m,n, α, |C| ,PC)

for some function g. Consider a different vector Q that
agrees with P on C.

Case 1: α < 0. In this case, 2 − (2 |C| − 2)d < 2 −
(2 |C| − 2)(m − 1). Let j̃ = arg max` qC,` − pC,`, and let
ε = qC,j̃ − pC,j̃ . We note that∑

`

q2
C,` − p2

C,` =
∑
`

(qC,` − pC,`)(qC,` + pC,`)

≤ ε
∑
`

(qC,` + pC,`) = 2ε |C| .

Thus, we have

ΠC(Q; j̃)−ΠC(P; j̃) = (2− (2 |C| − 2)d)ε

+
∑
`

(|C| − 2)(q2C,` − p2C,`) + (2 |C| − 2)(qC,` − pC,`)pC,`

≤ (2− (2 |C| − 2)d)ε+ (|C| − 2) · 2ε |C|
+ (2 |C| − 2)(m− |C|)ε

≤ (2− (2 |C| − 2)(m− 1))ε+ (|C| − 2) · 2ε |C|
+ (2 |C| − 2)(m− |C|)ε

= 2ε(1 + (|C| − 2) |C|+ (|C| − 1)(1− |C|)) = 0,

with equality in the second step only when ε = 0, i.e. qC,` =
pC,` for all `. Thus, either the total reward of the experts in
C is the same under Q as under P for every outcome, or it
is strictly smaller under Q in the case of outcome j̃.

Case 2: α ≥ 2(m−1)2n. In this case, 2− (2 |C|−2)d ≥
2+(2 |C|−2)(m−1)(n−1). j̃ = arg max` pC,`−qC,`, and
let ε = pC,j̃ − qC,j̃ . Since

∑
`(qC,` − pC,`) = 0, it follows

that qC,` − pC,` ≤ (n− 1)ε for all `. We note that∑
`

q2
C,` − p2

C,` ≤
∑
`

(qC,` + pC,`) max(qC,` − pC,`, 0)

≤ 2 |C|
∑
`

max(qC,` − pC,`, 0) ≤ 2 |C| (n− 1)ε.

We also have that∑
`

(qC,` − pC,`)pC,` ≤ (m− |C|)
∑
`

max(qC,` − pC,`, 0)

≤ (m− |C|)(n− 1)ε.

Therefore,

ΠC(Q; j̃)−ΠC(P; j̃)

= −(2− (2 |C| − 2)d)ε+
∑
`

(|C| − 2)(q2
C,` − p2

C,`)

+ (2 |C| − 2)(qC,` − pC,`)pC,`
≤ −(2− (2 |C| − 2)d)ε+ (|C| − 2) · 2 |C| (n− 1)ε

+ (2 |C| − 2) · (m− |C|)(n− 1)ε

= 2ε(−1− (|C| − 1)(m− 1)(n− 1)

+ (n− 1)(m(|C| − 1)− |C|))

= 2ε(−1− (n− 1)) = −2εn ≤ 0,

with equality in the last step only when ε = 0, i.e. qC,` =
pC,` for all `. As in the previous case, this means that either
the total reward of the experts in C is the same under Q as
under P for every outcome, or it is strictly smaller under Q
in the case of outcome j̃. This completes the proof.
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