
Proportional Public Decisions

Piotr Skowron, Adrian Górecki
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Abstract

We consider a setting where a group of individuals make a
number of independent decisions. The decisions should pro-
portionally represent the views of the voters. We formulate
new criteria of proportionality and analyse two rules, Pro-
portional Approval Voting and the Metod of Equal Shares,
inspired by the corresponding committee election rules. We
prove that the two rules provide very strong proportionality
guarantees when applied to the setting of public decisions.

Introduction
We consider a model where a group of n individuals, here-
inafter called voters, needs to collectively make m indepen-
dent decisions. Each decision is binary—it can be either YES
or NO. This model describes numerous real scenarios, such
as negotiations within a group of people having conflicting
interests (in particular, negotiations between senators during
talks that precede formations of governing coalitions), or de-
cisions made by housing cooperatives. The same model has
been considered by Freeman, Kahng, and Pennock (2020)
in the context of selecting a subset of candidates, where for
each candidate the voters decide if the candidate should be
included in the selected subset.

Typically, such decisions are made via majority voting,
i.e., for each issue we count the number of YES and NO bal-
lots, and we choose the option that received more votes. This
allows even a small majority of voters to decide about all the
relevant issues. For example, if 51% of voters would like all
m decisions to be YES, and the remaining 49% would have
exactly opposite views, making decisions via majority vot-
ing would make 51% of voters fully satisfied, and 49% com-
pletely ignored. This is unfair and disproportional. Ideally, in
this example we would like roughly 51% of the decisions to
be YES and 49% to be NO.

Our Contribution
In this paper we propose new formal criteria of proportion-
ality that capture the following intuition: an α fraction of
voters shall be able to influence at least α fraction of deci-
sions. Thus, our criteria require that a rule used for making
decisions should respect minorities of voters to the extent
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proportional to their size. Similar criteria have been consid-
ered in the literature on committee elections (see the recent
survey by Lackner and Skowron (2020)). The main differ-
ence is that our concepts provide proportionality guarantees
for all groups of voters of sufficient size, while the prop-
erties formulated for committee elections typically provide
guarantees only for groups of voters which have very simi-
lar (cohesive) preferences. This difference is very important
since empirical studies suggest that groups of voters with co-
hesive preferences are rare (Bredereck et al. 2019), and thus
our axioms provide practically more powerful guarantees.

We explain how two rules known in the literature, Pro-
portional Approval Voting (PAV) and the Method of Equal
Shares (MES), apply in this setting. We prove they perform
very well from the perspective of proportionality.

Related Work
The model of public decisions has been considered
by Conitzer, Freeman, and Shah (2017). The authors have
also considered criteria of fairness, yet their axioms spec-
ify guarantees on satisfaction only for individual voters. Our
criteria provide guarantees also for groups of voters.

Our model and our criteria are inspired by the literature on
approval-based committee elections (Lackner and Skowron
2020). Specifically, the criteria of proportionality that we
consider in this paper are closely related to the notions of ex-
tended justified representation (EJR) (Aziz et al. 2017) and
proportionality degree (Sánchez-Fernández et al. 2017; Aziz
et al. 2018; Skowron et al. 2017; Skowron 2021). In commit-
tee elections the goal is to select a fixed-size subset of candi-
dates based on the voters’ preferences. This corresponds to
making multiple decisions—for each candidate we need to
decide whether to include this candidate in the winning com-
mittee or not—yet, there are additional constraints that spec-
ify the total number of “yes” decisions. This perspective has
been noticed by Freeman, Kahng, and Pennock (2020), who
refer to the setting of public decisions as to committee elec-
tions with variable number of winners (i.e., where the num-
ber of winning candidates is not fixed a priori). A number of
axioms that specify proportionality guarantees for groups of
voters with cohesive preferences have been proposed in the
literature on committee elections. In this paper we consider
axioms that guarantee fair treetment for all groups of voters,
not only the cohesive ones.
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In real life, many decisions happen sequentially. Lackner
(2020) initiated the study of models for long-term collec-
tive decision making. Our work complements this literature.
Alongside studies on the on-line model, it is important to
understand what can be achieved in the offline setting. For
example, it is typical to compare the qualities of online al-
gorithms to the optimal ones, which have access to the full
information at once. Further, we believe that examining our
setting can give hints on how to design rules which might
work well also in the on-line setting.

The literature on propositional belief merging (Konieczny
and Pino Pérez 2011; Konieczny, Lang, and Marquis 2004)
focuses on different aspects than those typically con-
sidered in the context of voting. A few notable excep-
tions include works that study belief merging with strat-
egyproofness (Chopra, Ghose, and Meyer 2006; Everaere,
Konieczny, and Marquis 2007; Haret and Wallner 2019) and
belief merging with proportionality (Haret et al. 2020). The
latter work is the most relevant, yet the proportionality ax-
ioms considered there are rather weak and apply only to
well-structured voters’ preferences.

We assume that the decisions are made over independent
issues. The literature on voting in combinatorial domains
deals with the case where relations between the decisions
are more complex. For a comprehensive overview of this lit-
erature we refer to a book chapter by Lang and Xia (2016).

In contrast to the vast literature on fairness in machine
learning (Caton and Haas 2020) our work does not concern
the problem of reducing existing biases, but rather on de-
signing impartial mechanisms. Our methods treat all groups
of voters equally, independently on the societal background.

Preliminaries
An election is a pair E = (A,N), where A =
{a1, a2, . . . , am} is an agenda of m issues, and N =
{1, 2, . . . , n} is a set of voters. For each voter i we given
two sets, Ri and Yi, such that Yi ⊆ Ri ⊆ A. The set Ri
contains issues which are relevant to voter i, i.e., those that
the voter is interested in—the voter would like the decisions
made on issues from Yi to be YES, and the decisions made
on issues from Ni = Ri \ Yi to be NO. We say an election
has no abstentions if for each voter i ∈ N we have Ri = A.

An outcome of an election is a set W ⊆ A; intuitively,
W contains issues on which the decision was set to YES.
Given an outcome W we define the utility of a voter i as
ui(W ) = |W ∩ Yi| + |(A \ W ) ∩ Ni|, that is the utility
of the voter is measured as the number of decisions that are
consistent with the voter’s preferences.

A decision rule is a function that takes an election as in-
put and returns an outcome. Let us now recall definitions of
two decision rules from the literature. Both rules have been
initially studied in the context of approval-based committee
elections, where they exhibit very good properties pertaining
to fairness (Lackner and Skowron 2020), yet their definitions
naturally extend to the setting of public decisions.

Proportional Approval Voting (PAV) (Thiele 1895) The
rule picks an outcome W maximising

∑
i∈N H(ui(W )),

where H(t) =
∑t
i=1

1/i for each t ∈ N.

Method of Equal Shares (MES) (Peters and Skowron
2020; Peters, Pierczynski, and Skowron 2021) (In the
early papers the method was also called Rule X.) We initially
assume that each voter is endowed with m dollars, and that
buying a candidate costs n dollars. The decisions are made
sequentially. At each step we look at issues for which we did
not yet make a decision. For each such an issue a and each
decision d ∈ {YES, NO} we calculate the minimum price
ρ(a, d) such that if each voter who wants d paid ρ(a, d) or
all the money she has left, then these voters would pay n
dollars in total. If such price does not exist (which happens
when the voters who want d have not enough money left),
we remove the pair (a, d) from further consideration. If all
pairs have been removed we finish. Otherwise, we pick the
issue and the decision with the minimal value of ρ(a, d), and
ask each voter who wants d to pay ρ(a, d) or all the money
left. We set the decision on issue a to d, and continue.

It might happen that after this procedure there are issues
for which the decision has not been set. In the second phase
we set the decisions for these issues arbitrarily (for instance,
using majority voting).

Proportionality of Aggregation Rules for
Elections without Abstentions

In this section we consider a model where the voters do not
abstain from voting, that is where Ri = A for all i ∈ N .
This model has been considered by Freeman, Kahng, and
Pennock (2020). Below we formally introduce our notions
of proportionality, provide their intuitive interpretation and
discuss their relation to the notions from the literature.
Definition 1 (Proportionality). A decision rule f is propor-
tional if for each election E = (A,N) and each subset
of voters V ⊆ N there exists a voter v ∈ V such that
ui(f(E)) > m/2 · |V |/n− 1.

Our intuitive interpretation of proportionality is the fol-
lowing: we would like each group of voters of size α · n,
α ∈ [0, 1], to be able to decide about α · m issues. How-
ever, such a requirement would be too strong since the vot-
ers within the group might disagree over the issues. Thus, we
must relax this condition by a multiplicative factor of 2. The
following example shows that any reasonably fair and sym-
metric rule cannot satisfy a variant of Definition 1 in which
the condition ui(f(E)) > m/2 · |V |/n− 1 is strengthened.
Example 1. Consider an election where the population of
voters is divided into two equal-size disjoint groups, N =
N1 ∪N2. For each voter i ∈ N1 we set Yi = A and Ni = ∅,
and for each i ∈ N2 we set the opposite preferences, Yi = ∅
and Ni = A. A symmetric rule should treat the voters from
N1 and N2 equally, and thus half of the decisions should
be set to YES and half to NO. Then, the utility of each voter
would equal to m/2, and so in the group of all voters (α = 1)
there would be no voter with utility greater than m/2 · |N |/n.

Freeman, Kahng, and Pennock (2020) considered a re-
lated axiom, called extended justified representation (EJR),
which requires that in each group of voters V ⊆ N
with |

⋂
i∈V Yi| + |

⋂
i∈V Ni| ≥ bm · |V |/nc there exists a

voter i with ui(f(E)) ≥ bm/2 · |V |/nc. The requirement that
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|
⋂
i∈V Yi|+ |

⋂
i∈V Ni| ≥ bm · |V |/nc is often called cohe-

siveness. In words, EJR says that a group should be guaran-
teed the right to decide about a certain number of issues only
if they full agree on that many decisions. The requirement of
cohesiveness is very strong and in practice very few groups
of voters are cohesive (Bredereck et al. 2019). To the best of
our knowledge, we provide the first definition of proportion-
ality that ensures guarantees to all groups of voters.

Definition 1 requires that in each group of voters of suf-
ficient size there must be at least one voter with sufficiently
high utility. Below we provide a related definition which fo-
cuses on the average utility within the group.

Definition 2 (Proportional Average Representation). Con-
sider a function d : [0, 1] → N. We say that a decision rule
f guarantees proportional average representation of d if for
each election E = (A,N), each α ∈ [0, 1], and each subset
of voters V ⊆ N with |V | ≥ αn we have:

1

|V |
∑
i∈V

ui(f(E)) > d(α).

We allow the proportional average representation to de-
pend on the number of issues, or the number of voters, but
for simplicity, we explicitly state only α as an argument of d.

There is a relation between the two properties. It is in-
structive to observe that Definition 1 applies (to some extent)
to all the voters from the group V . If we fix V , Definition 1
directly implies that there exists a voter i ∈ V with suffi-
ciently high satisfaction. Yet, it also applies to V \ {i}, and
ensures that there exists a voter j ∈ V \ {i} who is well-
represented. Then, we can apply Definition 1 to V \ {i, j},
etc. Consequently, this implies that, on average, the satisfac-
tion of the voters from V is high.

Proposition 1. Every decision rule with proportional aver-
age representation of d(α) = α/2 · m − 1 is proportional.
Every proportional decision rule has the proportional aver-
age representation of d(α) = α/4 ·m− 1.

We show that PAV has optimal proportionality guarantees.

Theorem 1. In the model with no abstentions PAV has pro-
portional average representation of d(α) = α/2 ·m− 1.

Corollary 1. With no abstentions PAV is proportional.

We omit the proof of Theorem 1, as it follows from a more
general result that we present in the subsequent section.

Let us now move to the analysis of the Method of Equal
Shares (MES). First we show that if there are no abstentions,
then MES in the first phase will not set the decision for at
most one issue. Thus, all but one decisions will be made
in a proportional fashion. This is different to the setting of
committee elections, where MES might select significantly
fewer candidates than required.

Proposition 2. In the model with no abstentions MES in the
first phase will not set the decision for at most one issue.

Proof. For the sake of contradiction assume that the rule did
not set the decision for at least two issues, a and a′. Then
the total amount of money left in the voters pockets equals
at least to 2n. Consider issue a and let us look at two groups

of voters: those who want a to be set YES and those who
want it to be set to NO. At least one of this groups has at
least n dollars left. Thus, the rule would set the issue to the
respective decision before moving to the second phase.

Theorem 2. With no abstentions MES is proportional.

Proof. Consider an election E = (A,N), and a group of
voters V ; we set n′ = |V |. Let ri denote the number of
issues that voter i agrees on with the outcome fMES(E).

Towards a contradiction assume that there does not exist
a voter i ∈ V for which ri ≥ m

2 · n
′
/n. Then for all voters

i ∈ V we have ri ≤ m
2 · n

′
/n− 1.

Now let us prove that there is no issue for which a voter
in V spent more than 2n/n′ dollars. For the sake of contra-
diction let us assume that this is not true and that such issues
exist. Let a and d be the first such issue and the correspond-
ing decision that has been bought. There must exist a set of
voters V ′ ⊂ V of size at least n′

/2 in which all voters support
YES or NO on a. Each voter in V ′ paid for at most m2 ·n

′
/n−1

decisions, thus before d has been bought she spend at most:(
m

2
· n
′

n
− 1

)
· 2n
n′

= m− 2n

n′
.

Consequently, each voter from V has at least 2n/n′ dollars
left. As a result, there exists a group of voters who could buy
a decision by paying at most 2n/n′ dollars, each. MES would
first make such a purchase, a contradiction.

Since for all voters in V we have that ri ≤ m
2 · n

′
/n − 1

and no voter spent more than 2n/n′ dollars on any decision,
each voter in V has at least 2n/n′ dollars left at the end of ex-
ecution of the first phase of MES. In total, these voters have
at least 2n dollars left, so at least 2 issues are left without
a decision. For each of these issues at least half of V will
support or oppose them and will have enough dollars to buy
one more decision, which contradicts the fact that the rule
has stopped, and completes the proof.

Proposition 1 implies that MES has also the proportional
average representation of d(α) = α/4 · m − 1. However,
below we will prove a stronger guarantee, which is the core
technical contribution of our work.
Theorem 3. With no abstentions MES has the proportional
average representation of dMES(α) >

α·(m+1)
3 − 1.

Proof. Consider an electionE = (A,N), a value α ∈ [0, 1],
and a group of voters V with |V | ≥ α · n. We set n′ = |V |.

Let us arrange the voters in V in the order v1, v2, . . . , vn′

such that v1 is the first voter in V that paid more thanm− 2n
n′

dollars for the purchases, v2 is the first from the remaining
voters that paid more than m − 2n

n′−1 dollars for the pur-
chases, . . ., vi is the first from the remaining voters that paid
more than m− 2n

n′−i+1 dollars for the purchases, etc.
The main strategy of the proof is as follows. Consider

purchases made by a voter vi until she spent more than
m − 2n

n′−i+1 dollars. We will show that for such purchases,
on average for each c dollars that voter vi spends the sum of
utilities of voters in group V increases by at least:

c · 2(n
′ − i) + 1

3n
.
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Consider a single such a purchase. Then, at least n′−i+1
voters have at least 2n

n′−i+1 dollars left—this follows from
how we arranged the voters in the order. Let us consider a
purchase of a decision in which x of those n′ − i+ 1 voters
participate. There are 2 possibilities: x ≤ n′−i+1

2 or x >
n′−i+1

2 . We start by considering the case where x ≤ n′−i+1
2 .

At least n′−i+1−x voters will vote for the opposite deci-
sions to the one that is currently being purchased. Thus, the
price for the decision cannot be larger than n

n′−i+1−x . Ac-
cording to our invariant, the total utility of the voters should
increase at least by

i+x−1∑
j=i

n

n′ − i+ 1− x
· 2(n

′ − j) + 1

3n
.

The utility increased by at least x, thus, in order to show our
invariant it suffices to prove that:

i+x−1∑
j=i

n

n′ − i+ 1− x
· 2(n

′ − j) + 1

3n
≤ x.

This is equivalent to:

i+x−1∑
j=i

(2(n′ − j) + 1) ≤ 3x(n′ − i+ 1− x) ⇐⇒

2n′x+ x− x(2i+ x− 1) ≤ 3x(n′ − i+ 1− x) ⇐⇒
2n′ − 2i− x ≤ 3n′ − 3i− 3x+ 3 ⇐⇒
2x ≤ n′ − i+ 3.

Thus, in case where x ≤ n′−i+1
2 the invariant is preserved.

Now, let us move to the second case. The price cannot be
higher than n/x. By analogous reasoning, we see that it is
sufficient to prove that:

i+x∑
j=i

n

x
· 2(n

′ − j) + 1

3n
≤ x+ 1.

This is equivalent to:

i+x∑
j=i

(2(n′ − j) + 1) ≤ 3(x+ 1)x ⇐⇒

2n′(x+ 1) + (x+ 1)− (x+ 1)(2i+ x) ≤ 3(x+ 1)x ⇐⇒
2n′ + 1− 2i− x ≤ 3x ⇐⇒
4x ≥ 2n′ − 2i− 1.

Which follows from the assumption that x > n′−i+1
2 .

Using our invariant, we get that the average utility of the
voters from V equals at least:

1

n′
·
n′∑
i=1

(
m− 2n

n′ − i+ 1

)
· 2(n

′ − i) + 1

3n

=
m

3nn′

n′∑
i=1

(2(n′ − i) + 1)− 1

n′

n′∑
i=1

4(n′ − i) + 2

3n′ − 3i+ 3

>
2mn′

3n
− 2m

3nn′

n′∑
i=1

i′ +
mn′

3nn′
− 4

3

. ≥ 2mn′

3n
− m(n′ + 1)

3n
+
m

3n
− 4

3

≥ mn′

3n
− 4

3
=
α ·m− 4

3

This completes the proof.

We conclude this section by looking at proportionality for
cohesive groups, as studied by Freeman, Kahng, and Pen-
nock (2020), and by improving upon their results.
Definition 3 (Proportional Average Representation for Co-
hesive Groups). We say that a group of voters V ⊆ N is
`-cohesive if |V | ≥ n · `m and |

⋂
i∈V Yi|+ |

⋂
i∈V Ni| ≥ `.

Consider a function d : N → N. We say that a decision
rule f gives proportional average representation for cohesive
groups of d if for each election E = (A,N), each ` ∈ [m],
and each `-cohesive group of voters V ⊆ N we have:

1

|V |
∑
i∈V

ui(f(E)) > d(`).

Freeman, Kahng, and Pennock (2020) have shown that
PAV does not have the proportional average representation
for cohesive groups of d(`) > `

2 . This result is however mis-
leading, since it may suggest that the guarantee of PAV is
worse than the expected optimum by a multiplicative fac-
tor of 1/2. We show, that if we admit an additive factor of
one (which commonly appears in the literature on commit-
tee elections), then the multiplicative factor improves to 3/4.
Theorem 4. With no abstentions PAV has proportional av-
erage representation for cohesive groups of d(`) > 3`

4 − 1.

Proof. Consider an election E = (A,N) and an `-cohesive
group of voters V . Let W be an outcome returned by PAV,
W = fPAV(E), and let ri = ui(W ). For the sake of contra-
diction assume that 1

|V |
∑
i∈V ui(W ) ≤ 3`

4 − 1.
From the inequality between the harmonic and arithmetic

mean, we get that:∑
i∈V

1

ri + 1
≥ |V |2∑

i∈V (1 + ri)
=

|V |2∑
i∈V ri + |V |

≥ |V |2

|V |( 3`4 − 1) + |V |
=
|V |
3`
4

=
4|V |
3`

≥
4n · `m
3`

=
4n

3m
.

Let swap(W,a) denote the change of the PAV score ofW
due to changing the decision for issue a to the opposite one.
Observe that voter i agrees with W on ri issues. For each
such an issue the change of the decision will cause the de-
crease of the PAV score by 1/ri. For the other issues changing
the decision will increase the score by 1/ri+1. Thus:∑
a∈A

swap(W,a) =
∑

i∈N : ri>0

(
−ri ·

1

ri
+
m− ri
ri + 1

)
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+
∑

i∈N : ri=0

(
(m− ri) ·

1

ri + 1

)
≥
∑
i∈N

(
m+ 1

ri + 1
− 2

)
.

Note that sinceW is the winning outcome, for each a ∈ A
it must hold that swap(W,a) ≤ 0. Consequently:∑

i∈N

m+ 1

ri + 1
≤ 2n.

Also, since the average utility of the group is lower than `,
there must exist an issue a such that the voters in V agree
on it, yet the decision on this issue is opposite to their views.
Since swap(W,a) ≤ 0, we get that:∑

i∈V

1

ri + 1
≤

∑
i∈N\V

1

ri
.

We continue our estimations:

2n ≥
∑
i∈N

m+ 1

ri + 1
=

∑
i∈N\V

m+ 1

ri + 1
+
∑
i∈V

m+ 1

ri + 1

>
∑

i∈N\V

m+ 1

ri + 1
+

4n

3
≥

∑
i∈N\V

(m+ 1)

2ri
+

4n

3

≥
∑
i∈V

(m+ 1)

2(ri + 1)
+

4n

3
>

2n

3
+

4n

3
= 2n.

This give a contradiction and completes the proof.

Proportionality in the Model with Abstentions
In this section we analyse the properties of decision rules
in the model, where the voters are allowed to abstain from
voting, i.e., we assume that the sets Ri can be strict subsets
of A. In this case our criteria of proportionality need adjust-
ment. Indeed, we cannot guarantee good satisfaction for the
groups irrespectively of their preferences. As an example,
consider an election where all voters abstain from voting for
all issues. Then, for any decision rule the utility of each voter
will equal to zero. Consequently, we formulate the following
axioms.

Definition 4 (Proportionality). A decision rule f is ε-
proportional if for each election E = (A,N) and each sub-
set of voters V ⊆ N there exists a voter v ∈ V such that

ui(f(E)) >

(
r

2
· |V |
n

)
(1− ε)− 1 where r = |

⋂
i∈V

Ri|.

If a rule is 0-proportional we simply say that it is propor-
tional.

In words Definition 4 provides similar guarantees to Def-
inition 1 capped to the extent to which the voters in a group
decide to participate in voting.

We adjust the definition of proportional average represen-
tation accordingly.

Definition 5 (Proportional Average Representation). Con-
sider a function d : [0, 1] × N → N. We say that a decision
rule f guarantees proportional average representation of d
if for each election E = (A,N), each α ∈ [0, 1], and each
subset of voters V ⊆ N with |V | ≥ αn we have:

1

|V |
∑
i∈V

ui(f(E)) > d

(
α, |

⋂
i∈V

Ri|

)
.

Below we prove that our strong guarantees for proportion-
ality of PAV still hold in the model with abstentions.

Theorem 5. PAV has proportional average representation
of dPAV(α, r) >

α·(r+1)
2 − 1− ε for each ε > 0.

Proof. Let us fix α ∈ [0, 1], an election E = (A,N), and a
group of voters V with |V | ≥ α·n. LetW be an outcome re-
turned by PAV,W = fPAV(E), and let ri denote the number
of issues on which voter i agrees with W .

For each issue a ∈ A by swap(W,a) we denote the
change of the PAV score of W due to changing the deci-
sion for a to the opposite one. Observe that voter i agrees
with W on ri issues; changing the decision for each such an
issue makes the voter decrease the score she assigns to W
by 1/ri. On the other hand, for each issue a for which i dis-
agrees withW (there are |Ri|−ri such issues), changing the
decision on a makes voter i increase the score she assigns to
W by 1/ri+1. Consequently:∑
a∈A

swap(W,a) =
∑

i∈N : ri>0

(
−ri ·

1

ri
+
|Ri| − ri
ri + 1

)
+

∑
i∈N : ri=0

(
(|Ri| − ri) ·

1

ri + 1

)
≥
∑
i∈N

(
|Ri|+ 1

ri + 1
− 2

)
.

By the fact that the PAV score of W is optimal, we get
that swap(W,a) ≤ 0 for each a ∈ A. As a result, we infer
that: ∑

i∈N

|Ri|+ 1

ri + 1
≤ 2n.

Let r = |
⋂
i∈V Ri|. Because |Ri| ≥ r for all i ∈ V :∑

i∈N

1

ri + 1
≤ 2n

r + 1
and so

∑
i∈V

1

ri + 1
≤ 2n

r + 1

From the inequality between the harmonic and arithmetic
mean, we get that:∑

i∈V

1

ri + 1
≥ |V |2∑

i∈V (1 + ri)
=

|V |2∑
i∈V ri + |V |

By combining the two inequalities, we get that:

2n

r + 1
≥ |V |2∑

i∈V ri + |V |
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After reformulation:

1

|V |
∑
i∈V

ri ≥
|V |(r + 1)

2n
− 1 ≥ α · (r + 1)

2
− 1.

This completes the proof.

Corollary 2. PAV is proportional.

Unfortunately, MES in its naive implementation is not
proportional in the model with abstentions, which is illus-
trated in the following example.

Example 2. Consider an election E = (A,N) and two
disjoint non-empty groups of voters, V1 and V2 such that
V1
⋃
V2 = N and |V1| > |V2|. Voters have following pref-

erences:

1. For each voter i ∈ N we have Ri = {a1, a2, . . . , am/2}.
2. For each voter i ∈ V1 we have Ni = Ri, Yi = ∅.
3. For each voter i ∈ V2 we have Yi = Ri, Ni = ∅.
Because V1 is the larger group, voters in V1 will pay lower
price for making decisions on issues, so their purchases will
be made first. Group V1 also consist of majority of voters,
so they can afford to buy decisions for all issues they are
interested in. Consequently, MES will choose NO for all is-
sues a1, a2, . . . , am/2 and the utility of all voters in V2 will
be equal 0, making MES not proportional.

We will now describe a new variant of MES which satis-
fies proportionality. The main idea is that we do not set the
prices of decisions to a fixed value but allow groups of voters
to bid for the decisions.

Definition 6 (Method of Coordinated Auctions with Equal
Shares (MeCorA)). Fix a constant ε > 0. At the beginning
the price of each issue is set to 0, and we fix the decisions to
arbitrary values. Each voter is given m dollars. We assume
that each decision can be changed to the opposite one, but
for that the voters need to propose a price that is higher by
at least ε from the current price of the issue. In such a case,
the price of the issue is raised to the new value.

We run the process of bidding as follows. At each step, for
each decision d which is not set (that is, the opposite deci-
sion is set) we compute the smallest possible value ρd such
that if all voters who support d pay ρd or the whole money
left, then they will collect the value required for changing
the decision. If such value does not exist we set ρd = ∞. If
for all decisions d we have ρd = ∞, then we stop, and re-
turn the current decisions. Otherwise, we pick the decision d
with the lowest value ρd, set it, update the price of the corre-
sponding issue, and return the money that was paid for the
decision opposite to d to the voters who paid for it.

Before we formally prove that MeCorA is proportional,
let us illustrate the difference in how proportionality is un-
derstood by MeCorA and PAV.

Example 3. Let us fix t ∈ N, and consider an election E =
(A,N), whereA = {a1, a2, . . . , a4t} andN = V1∪V2 with
V1 ∩ V2 = ∅ and |V1| = |V2| = t. For each i ∈ V1 we set
Ri = Ni = {a1, a2, . . . , a4t} and for each i ∈ V2 we set
Ri = Yi = {a1, a2 . . . a2t}.

YES
a1, . . . at

NO
(at+1, . . . a2t)

NO
(a2t+1, . . . a4t)

V1 V2

MeCorA

YES
a1, . . . at

YES
(at+1, . . . a2t)

NO
(a2t+1, . . . a4t)

V1 V2

PAV

Figure 1: Comparison of the behaviour of PAV and MeCorA
based on the instance from Example 3. The green colour rep-
resents that the group of voters is satisfied with the decision,
red that is not satisfied, and grey illustrates that the decision
is irrelevant for the group.

Let us first consider the behaviour of MeCorA. At first,
all issues could be set by voters from V1 to NO for the price
of ε dollars each. After that the voters from V2 will swap
a1, a2, . . . a2t to YES for 2ε dollars each. As a result, the
voters from V1 will gain their money back and will swap
those 2t issues back to NO for 3ε dollars each. The process
will repeat to a point where the total price of these issues
exceeds tm − ε, at which the swapping group of voters will
be able to afford to swap only 2t − 1 issues. Yet, still the
prices of all issues will be gradually increasing. At the time
when the total price of these issues will be roughly equal to
2mt the process will stop. Then one group will control half
of the decisions, paying for them roughly mt and the other
group will control the other half. The result will be that 75%
of issues will be set to NO, and 25% will be set to YES.

On the other hand, PAV will set decisions a1, a2 . . . a2t to
YES, and the decisions a2t+1, . . . a4t to NO.

This behaviour is illustrated in Figure 1.

Example 3 shows different behaviours of PAV and MeC-
orA. PAV equalises the utility of the two groups of voters.
MeCorA notices that half of the issues are relevant only to
one group of voters, so it sets the decisions on them accord-
ing to the will of those voters. The decisions on the remain-
ing issues which are relevant to all the voters are spilt pro-
portionally among the two groups of voters.

Theorem 6. MeCorA is ε-proportional.

Proof. Consider an election E = (A,N) and a group of
voters V ⊆ N . Let R =

⋂
i∈V Ri and r = |R|. For the

sake of contradiction, assume that each voter in V has utility
equal to at most ` = ( r2 ·

|V |
n )(1−ε)−1. For each issue from

R we pick the decision that is preferred by a majority of the
voters from V . Let us call the set of such decisionsD. In this
set of decisions let us pick those that have been set according
to the will of majority. Since the utility of each voter is at
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most `, we know there are at most 2` such decisions. Let us
call the set of the remaining decisions D′, |D′| ≥ r − `.

We will show that for the decisions in D′ the prices of the
corresponding issues need to be equal to at least m|V |`+2 −ε. In-
deed, let use consider two cases. First, assume that the high-
est price a voter from V pays for a decision is at most m

`+2 .
This means that each voter still has at least the following
amount of money left:

m− ` · m

`+ 2
=

2m

`+ 2
.

That is, for each decision from D′ the voters supporting this
decision would have at least m|V |`+2 money left. Since no such
decision from D′ is affordable, it means each such a deci-
sion must cost at least m|V |

`+2 − ε. Now, let us consider the
second case, where some voter from V paid for some candi-
date more than m|V |

`+2 . Let us consider the first moment when
such a purchase occurred. In that moment each voter from
V had at least 2m

`+2 money left, so the price of all issues cor-
responding to the decisions from D must have been at least
equal to m|V |

`+2 − ε.
Consequently, the total price of all issues corresponding

to the decisions from D′ must equal to at least:(
m|V |
`+ 2

− ε
)
· (r − `).

Since 2`+ 2 ≥ r we have:(
m|V |
`+ 2

− ε
)
· (r − `) >

(
m|V |
`+ 1

− ε
)
· (r − `− 1)

=

(
m|V |

( r2 ·
|V |
n )(1− ε)

− ε

)
·
(
r − r

2
· |V |
n

)
≥ 2mn · (1− 1

2
· |V |
n

)

= m · (2n− |V |) ≥ mn.

Yet, the voters have in total mn dollars, a contradiction.

Finally, we introduce one more axiom of proportionality.
Definition 7 (Proportionality for cohesive groups). A deci-
sion rule f is proportional if for each election E = (A,N)
and each subset of voters V ⊆ N there exists a voter v ∈ V
such that

ui(f(E)) > r · |V |
n
− 1 where r = |

⋂
i∈V

Yi|+ |
⋂
i∈V

Ni|.

Note that there are two differences between Definition 4
and Definition 7. In Definition 7 the group needs a stronger
cohesion in order to be guaranteed high utility. It must agree
not only on the issues on which they do not abstain, but also
on preferred decisions for those issues. Second, since Def-
inition 7 excludes certain disagreement within the group of
voters, we can provide a stronger guarantee of r · |V |/n − 1
instead of r/2 · |V |/n− 1.
Theorem 7. For a sufficiently small εMeCorA satisfies pro-
portionality for cohesive groups.

Proof. Consider an election E = (A,N) and a group of
voters V ⊆ N . Let r = |

⋂
i∈V Yi|+ |

⋂
i∈V Ni|. Towards a

contradiction, assume that each voter in V has utility equal
to at most ` = r · |V |n −1. Thus, there are at least r−r · |V |n +1
decisions on which the voters from V agree, but they do not
have money to change them according to their will.

For each such a decision the price of the corresponding
issue must be equal to at least m|V |`+1 . Indeed, let use consider
two cases. First, assume that the highest price a voter from
V pays for a decision is at most m

`+1 . This means that each
voter still has at least the following amount of money left:

m− ` · m

`+ 1
=

m

`+ 1
.

The voters from V would have in total m|V |
`+1 money left.

Since they cannot afford any decision it means each such a
decision must cost at least m|V |

`+1 . Now, let us consider the
second case, where some voter from V paid for some candi-
date more than m|V |

`+1 . Let us consider the first moment when
such a purchase occurred. In that moment the voters from V

had at least m|V |`+1 money left, so the price of all the consid-

ered issues must have been at least equal to m|V |
`+1 .

The total price of all these issues must equal to at least:

m|V |
`+ 1

· (r − r · |V |
n

+ 1) >
mn

r
· (r · n− |V |

n
)

= m(n− |V |).
These issues must have been paid only by voters fromN \V
who had in total m(n− |V |) dollars, a contradiction.

Conclusion
In this paper we have considered a setting, where a group
of individuals makes simultaneously a number of decisions.
We propose a number of axioms that capture the intuitive
idea of proportionality. Our results suggest that the two rules
that we analyse, Proportional Approval Voting and MES,
provide strong guarantees of proportionality. We have also
introduced a new variant of MES, MeCorA, which is im-
plemented through an auction. This new variant extends to
(and preserves good proportionality guarantees in) a more
general model, where the voters can abstain from voting.

We explain that while the two rules offer good proportion-
ality guarantees, they interpret proportionality differently.

There are a number of challenging open questions. We
do not know whether our bounds in Theorem 4 and Theo-
rem 3 are tight. We do not know what is the proportional av-
erage representation for cohesive groups for MES, nor what
is the proportional average representation of MeCorA in the
model with abstentions. Yet, in our opinion the main chal-
lenge lies in incorporating additional constraints (dependen-
cies between issues) to the model and building a theory of
fairness that would apply to such more general settings.
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