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Abstract

We study multi-unit auctions in social networks, where each
buyer has a fixed budget and can spread the sale information
to the network neighbors. We design a mechanism encourag-
ing buyers to report their valuations truthfully and spread the
sale information. Our design uses the idea of the clinching
mechanism to decide the transaction price and can be viewed
as a network version of the mechanism. Most of the previous
clinching mechanisms search for the transaction prices by
increasing the current price. Our mechanism directly com-
putes the transaction prices in polynomial time. Furthermore,
the mechanism applies a technique to iteratively activate new
buyers in the network. This ensures utility preservations of
the buyers and benefits the seller. We prove key properties of
our mechanism, such as no-positive-transfers, individual ra-
tionality, incentive compatibility, non-wastefulness and social
welfare preservation.

Introduction
Mechanism design in social networks has become an ac-
tive research area [Li et al. 2017, 2018; Zhao et al. 2018;
Kawasaki et al. 2020; Xu and He 2020]. The classical
auctions only sell items to buyers directly connected to
the seller and do not consider spreading the commodity
information through the network links between buyers to
get possibly higher utilities [Nisan et al. 2007; Bajari and
Hortacsu 2003]. Auctions in social networks that attract
more participants seek mechanisms that encourage buyers
to diffuse the commodity information. This model is more
economically efficient in attracting audiences than advertis-
ing on TV, in newspapers, and search engines [Emek et al.
2011; Leskovec, Adamic, and Huberman 2007].

There is a series of interesting work on spreading influ-
ence through social networks [Kempe, Kleinberg, and Tar-
dos 2003; Emek et al. 2011; Borgatti et al. 2009]. However,
they do not consider auctions. Li et al. [2017] considered
auctions in social networks. They proposed a new auction
model under the structure of social networks ensuring that
the participants in the social network have an incentive to
invite their neighbors into the auction. For the case of sell-
ing one single item to one buyer, they gave a mechanism
IDM that can encourage participants to report both the bid
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and the neighborhood truthfully. Followed by this work,
several different auction models that diffuse commodity in-
formation through social networks have been studied. Zhao
et al. [2018] generalized IDM to the setting of selling multi
identical items to single-minded buyers. Takanashi et al.
[2019] noted that the generalized IDM is not strategy-proof
and proposed a strategy-proof design. In their mechanism,
however, the revenue of the seller can be negative. This
may discourage sellers’ participation in auctions. Recently,
Kawasaki et al. [2020] gave a strategy-proof mechanism for
this model that guarantees a non-negative revenue.

Most of the previous single-unit and multi-unit auctions
in social networks assume that each buyer has unit demand.
It is natural to study scenarios where buyers demand more
than one item. Under this setting, the following question
arises: how many units can each buyer get? Frequently
considered scenario is to set a budget for each buyer. For
example, budget constraints are often observed in public as-
set privatization auctions in Eastern Europe [Maskin 2000].
Classical auctions without networking structures under the
budget setting have widely been studied [Dobzinski, Lavi,
and Nisan 2012; Borgs et al. 2005; Abrams 2006; Dobzinski
and Leme 2014; Lu and Xiao 2015]. Addressing budgets
properly breaks down the usual quasi-linear setting on the
utility of the buyers, and because of this the well-known
VCG mechanism [Vickrey 1961; Clarke 1971; Groves 1973]
loses incentive compatibility property. The design of in-
centive compatible mechanisms becomes significantly more
involved [Dobzinski, Lavi, and Nisan 2012].

There are two widely studied models with the budgets.
In private budget models [Borgs et al. 2005; Feldman et al.
2008; Dobzinski, Lavi, and Nisan 2012], the budget is re-
ported by each buyer and incentive compatible mechanisms
encourage buyers to report their budgets truthfully. In public
budget models [Dobzinski, Lavi, and Nisan 2012; Dobzinski
and Leme 2014], budgets of the buyers are not considered in
the incentive compatibility, and they are regarded as known
information. Both models are natural. Here are some scenar-
ios for public budget models. Deposits [Mehta et al. 2007]
and bonds [Laffont and Robert 1996] are known forms of
public budgets. Before the start of an auction, all buyers
should deposit money or buy bonds (the public budget) in
the system. Also, some budgets reported by buyers can be
regarded as public budgets. For example, the budgets in the
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form of fixed assets can be checked by a system and used in
auctions. One original motivation for public budgets came
from ad-auctions [Dobzinski, Lavi, and Nisan 2008]. Ad-
auctions used by search engines, including Google’s Ad-
Words, are essentially large auctions where businesses place
bids for individual keywords, together with limits specifying
their maximum daily budget (that is regarded as the public
budget) [Mehta et al. 2007]. Auctions for spectrum licences
and for pollution permits [Dobzinski, Lavi, and Nisan 2008]
are natural applications in this case as well.

The two models are quite different in designing incen-
tive compatible mechanisms. For public budget models,
the adaptive clinching auction [Dobzinski, Lavi, and Nisan
2012] based on the idea of locking mechanism [Ausubel
2004] is well recognized. For private budget models, at
present no suitable deterministic mechanism guarantees
incentive compatibility or other desired properties. Most
known mechanisms [Lu and Xiao 2015; Abrams 2006;
Borgs et al. 2005] are based on the random sampling tech-
niques [Goldberg et al. 2006]. Private budget models need
to consider one more information - the budget, which makes
the auction design more difficult. However, in the auction
design of practical problems [Mehta et al. 2007; Colini-
Baldeschi et al. 2011; Goel, Mirrokni, and Leme 2015],
there is no definite conclusion which is better or worse
between private budget models and public budget models,
even when the budgets are reported by buyers.

In this paper, we study auctions with public budgets in
social networks. The public budget models in networks can
be used in many situations. Often the ad-auction scenar-
ios [Colini-Baldeschi et al. 2011; Goel, Mirrokni, and Leme
2015; Mehta et al. 2007] with public budgets also occur over
networks.

Our mechanism runs several rounds. In each round, some
units of a product are sold to a buyer with a transaction
price. An important step in the mechanism is to decide the
transaction price. Our rule to decide the transaction price
is inspired by the ‘clinching’ method [Dobzinski, Lavi, and
Nisan 2012; Roughgarden 2016; Ausubel 2004]. Clinching
methods form a powerful tool and have been extended to
various scenarios, e.g., online auctions [Goel, Mirrokni, and
Leme 2020], matching markets [Fiat et al. 2011], auction-
s under sponsored search setting [Colini-Baldeschi et al.
2011], and combinatorial and double auctions [Fiat et al.
2011; Freeman, Pennock, and Wortman Vaughan 2017]. Al-
most all clinching mechanisms search for critical prices by
continuously increasing the current price. In our mechanism,
we compute the critical prices in polynomial time. Further-
more, under the networking structure, our mechanism adopts
methods to explore the network by including new activated
buyers to the current auction. In this way our approach pro-
vides deeper insights into designing mechanisms for multi-
unit auctions in a network with budgets. Our contributions
advance the-state-of-the-art as follows:

• We propose the first mechanism for multi-unit auctions
in a social network with budgets, where buyers can only
get the information from their network neighbors.

• In contrast to the previous methods that find transaction

prices, which may skip over the solution or lead to ex-
ponential running time, we provide a polynomial-time
algorithm to compute the transaction prices directly.

• We analyze the properties of our method and prove that
our mechanism is individually rational, incentive com-
patible, non-wasteful, and has no-positive-transfers.

• We introduce and analyze the social welfare of the mech-
anism.

The Model and Standard Definitions
We consider the multi-unit auction in social networks with
budgets on buyers. A description of our model is the follow-
ing. There is a social network containing a seller s and n
agents (buyers) N = {1, 2, ..., n}. The seller s wants to sell
a set of m identical items (also called units) to buyers. We
postulate that the buyers can only get the sale information
from their neighbours in the network. This implies that two
non-adjacent agents in the network can not communicate
directly. Each buyer i has a budget bi and a valuation vi
for each unit. The seller s also has a valuation vs for the
unit. We assume that the valuations are additive, i.e., each
buyer values a collection of units as the sum of the unit
values from the collection. In an auction, we require that
buyer i’s total payment pi does not exceed the budget bi.
The buyer’s budget is public and not defined as part of the
reported information by the buyer. But the seller observes
each buyer’s budget only when the buyer becomes feasible
to the seller. In this setting described, our goal is to establish
an incentive and self-enforcing system to encourage agents
to spread the auction information to their neighbors and
report their private valuation truthfully.

For each buyer i ∈ N , the set of her neighbours is denoted
by ri. The seller’s neighbor set is denoted by rs. In an
auction, the agent i reports the valuation v′i and informs a
set of neighbors r′i of the sale, where the valuation v′i can be
different from the truthful private valuation vi but we require
that v′i ≤ bi and r′i is a subset of the truthful neighbor set ri.
The reason is that for a valuation v′i > bi we can simply
let v′i = bi and every buyer has no information about other
buyers she does not know.

With notations above, the agent i’s action profile is a pair
θ′i = (v′i, r

′
i). If θ′i = θi, where θi = (vi, ri), we say that

agent i is truthful. The profile θ′i = ∅ indicates that agent i
does not attend to or is not aware of the auction. The global
action profile is θ′ = (θ′i, i ∈ N). The global action profile
without the agent i is denoted by θ′−i = (θ′j , j ∈ N \ {i}).

Given a global action profile θ′, we build the following
directed graph on the set of all agents and the seller. There is
a directed edge from one agent i to another agent j if agent
i reports agent j as one of her neighbors. A pair of opposite
edges between two agents are allowed. An agent is available
if there is a directed path from the seller s to the agent in the
graph and unavailable otherwise. Only available agents in
an auction can get the commodity information.

A global action profile θ′ is feasible if θ′i = ∅ for each
unavailable agent i. Given an arbitrary global action profile,
we can obtain a corresponding feasible global action profile
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by letting θ′i = ∅ for all unavailable agents i in the social net-
work. In what follows all global action profiles are feasible.

Next, we give a formal description of (direct revelation)
mechanisms. The rules of the mechanism will be open for
all the participants, including the seller. A mechanism takes
a global action profile θ′ as the input and decides for each
agent how many units to acquire and how much to pay.
Definition 1. A mechanism M=(π, p) takes global action
profiles θ′ as inputs and consists of two components, the
allocation rule π(θ′) = (πi)i∈N and the payment rule
p(θ′) = (pi)i∈N , where πi is the number of items allocated
to agent i, and pi is the total payment of agent i.
Clearly, we should have πi ∈ {0, 1, . . . ,m} and pi ∈ R.
Definition 2. For a global action profile θ′, an allocation
π(θ′) = (πi)i∈N is feasible if πj = 0 for all unavailable
agents j and

∑
i∈N πi ≤ m; a payment p(θ′) = (pi)i∈N

is feasible if pi ≤ bi for all agents; and a mechanism is
feasible if it always maps a global action profile θ′ to a
feasible allocation and a feasible payment.
Definition 2 constraints the total payment pi of an agent. We
may also put a constraint on the payment for each item:
Definition 3. A mechanism is strongly feasible if it is fea-
sible and the payment p of each item sold to agent i is such
that vs ≤ p ≤ v′i.
Now we define utilities and social welfare.
Definition 4. Given a global action profile θ′ and a mecha-
nismM, the utility of buyer i is ui(θ

′,M) := πivi − pi.
The utility us(θ′,M) of the seller is

∑
i∈N (pi − πivs).

Definition 5. The sum of the utilities of the seller and of the
agents is called the social welfare: sw =

∑
i∈N πi(vi−vs).

The next are standard concepts in evaluation of mechanisms.
Definition 6. A mechanism M has no-positive-transfers if
for any feasible global action profile the utility of the seller
is non-negative, i.e., us(θ′,M) ≥ 0 for any feasible θ′.
Definition 7. A mechanism M is individually rational if
for each agent i, the agent’s utility is non-negative as
long as the agent reports the truthful action profile θi, i.e.,
ui((θi, θ

′
−i),M) ≥ 0 holds for any feasible θ′−i.

With the above two properties, the seller and agents will
have the willingness to attend the auction. For auctions with
budgets, the following incentive compatibility property is
more difficult to achieve [Dobzinski, Lavi, and Nisan 2012].
Definition 8. A mechanismM is incentive compatible if for
each agent i, reporting the truthful profile θi is a dominant
strategy, i.e., ui((θi, θ′−i),M) ≥ ui((θ′i, θ′−i),M) holds for
any feasible θ′i and θ′−i.

We also study the concept of non-wastefulness requiring
the mechanism to sell as many units as possible. In tradi-
tional auction scenarios, there is no network structure and
all buyers are aware of the sale. Hence, the concept of non-
wastefulness is not interesting. In contrast, under a network
structure, to protect the benefit of the buyers, we may hide
the sale information from their descendants. Kawasaki et al.
[2020] first considered non-wastefulness in social networks.
We will also define non-wastefulness in our setting.

Definition 9. Given a global action profile θ′, let N∗ be the
set of all available agents i in the social network with the
reported value vi ≥ vs. The basic demand is defined by

bd(θ′) :=
∑
i∈N∗
bbi/vsc.

The basic demand is an upper bound to the number of items
any feasible mechanism can sell to buyers.
Definition 10. A mechanism M is non-wasteful if for any
θ′, it holds that

∑
i∈N πi(θ

′) ≥ min{m, bd(θ′)}.

The Mechanism
We present the SNCA (Social Network Clinching Auction)
mechanism for multi-unit auctions in social networks with
budgets. The method is inspired by works on clinching
mechanisms in the literature. Even for the initial clinch-
ing mechanisms, there are several different versions, see
the versions in [Roughgarden 2016; Dobzinski, Lavi, and
Nisan 2012] that use various methods that handle critical
cases. Our design is unique even when there is no network
structure. We define two types of critical prices, analyze
their properties, and give an algorithm to compute them.
Moreover, our method explores the graph and adds new
buyers from the network to the auction.

Our mechanism allocates items to agents in rounds. In
each round, the auction has a set of fixed participants and
a fixed price of each unit. The price in one round can
differ from the price in the other round. Each round can be
regarded as a normal auction without social networks. We
define the concept of circumstance (N ′, p′) to characterize
the state of the auction in each round, where N ′ is the set
of current participating buyers and p′ is the current price of
each unit. The circumstance (N ′, p′) means that only agents
in N ′ participate in the auction and the price of each unit is
fixed to p′ now.

Initially, the circumstance (N ′, p′) is such that N ′ = rs
(all neighbors of the seller s) and p′ = vs. After allocating
items to agents (it is allowed to allocate nothing), the mech-
anism will change the circumstance by either extending N ′
(inviting more buyers to the current auction) or increasing
the current price p′. The price p′ will never decrease.

The rules that extend the participants set N ′ and increase
the price p′ are important ingredients of the mechanism. The
extension rule is this: once an agent i in N ′ is ‘exhausted’,
add all neighbors of the agent toN ′. Here ‘exhausted’ means
that the current price is higher than the agent’s budget bi or
reported private valuation v′i. This rule encourages agents to
report their neighborhood truthfully.

The rule that increases the price p′ is more complex and it
is based on the concept of critical price that we define later.
The critical price is related to the market supply and demand
under the given circumstance (N ′, p′):
Definition 11. The demand of agent i is

Di(N
′, p′) =

{
0, if i 6∈ N ′ or v′i < p′,
min{b bip′ c,m}, otherwise,

which is the maximum amount of the items the agent can get.
The total demand is D(N ′, p′) =

∑
i∈N Di(N

′, p′).
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Definition 12. We will call the market is undersupplying if
m < D(N ′, p′) and oversupplying if m ≥ D(N ′, p′).

Next, assume that in the circumstance (N ′, p′), the set N ′
can not be extended. We consider two cases:

Case 1: The market is oversupplying: m ≥ D(N ′, p′).
In this case, we do not increase the price and allocate
some items to buyers as follows. Find an agent i ∈ N ′

with the highest ‘priority γ1’ (see Definition 13) and assign
her Di(N

′, p′) items with price p′. After this, agent i is
exhausted and the mechanism has the new circumstance
(N ′ ∪ r′i, p′). The advantage of this operation is that it
encourages agents to report their neighborhoods truthfully.

Definition 13. Under the priority γ1, the priority of agent i
is higher than agent j if bi > bj , or bi = bj and |r′i| > |r′j |;
and for two agents i and j with bi = bj and |r′i| = |r′j |, ties
are broken arbitrarily.

Case 2: The market is undersupplying: m < D(N ′, p′).
In this case, we may increase p′ to a critical point and assign
some items with price p′. We have two critical prices. The
first is based on the idea of increasing the price p′ to the
highest price by still keeping the market undersupplying.

Definition 14. The circumstance (N ′, p∗) is I-critical, if

D(N ′, p∗) > m ≥ D(N ′, p∗ + ε), for any ε > 0,

and the price p∗ is called the I-critical price of N ′.

Interestingly, directly increasing p′ to the I-critical price
might fail the incentive compatibility property. Indeed, con-
sider the seller with 2 items, the reserve price vs = 2, and
two buyers 1 and 2 with (v1 = 3, b1 = 4) and (v2 =
3, b2 = 6). Assume that buyer 1 reports the truthful value
3 and buyer 2 reports v′2 with 3 ≥ v′2 ≥ 2. Then v′2 is an
I-critical price. If the mechanism increases the price from
2 to v′2, then buyer 2 gets the two items with price v′2 and
gets more utility by reporting v′2 = 2 instead of truthful
v′2 = 3. Thus, to ensure incentive compatibility, we need
to consider another kind of critical price using the idea of
important agent under (N ′, p′):

Definition 15. Agent i is important if we have

D(N ′, p′)−Di(N
′, p′) < m ≤ D(N ′, p′), (1)

and the importance number of agent i is defined as

IMPi = m− (D(N ′, p′)−Di(N
′, p′)).

Definition 16. Given a participant set N ′, the price p∗ is
called the II-critical price of N ′ if circumstance (N ′, p∗)
has no important agents and circumstance (N ′, p∗ + ε) has
some important agents for any ε > 0. The corresponding
circumstance (N ′, p∗) is called II-critical.

II-critical prices may not exist under some circumstances
but I-critical prices always exists. We will prove this when
we discuss how to compute I-critical and II-critical prices in
the next section.

Thus, in our mechanism, we consider the II-critical prices
first, and then move to the I-critical price. Based on this, here
is our description of the allocation rules.

Find an II-critical price p∗ not less than p′ (which might
not exist). Increase the current price from p′ to p∗ to get the
II-critical circumstance (N ′, p∗). Given the circumstance
(N ′, p∗), find an important agent i ∈ N ′ with the highest
priority γ1 and assign her IMPi number of items under
circumstance (N ′, p∗ + ε) with the price p∗. Update the
running variables m and bi, and execute the next round.

If no II-critical price ≥ p′ exists, find the I-critical price
(which always exist as we will prove this later). Increase the
current price from p′ to the I-critical price p∗ to get an I-
critical circumstance (N ′, p∗). Given the I-critical circum-
stance (N ′, p∗), select an agent i ∈ N ′ with the highest
‘priority γ2’ (see Definition 17) and assign her Di(N

′, p∗)
items with the price p∗. After this, agent i is exhausted.

Definition 17. Under the priority γ2, agents i with
Di(N

′, p′ + ε) > 0 have a higher priority than agents
j with Dj(N

′, p′ + ε) = 0; for two agents i and j such
that either min{Di(N

′, p′ + ε), Dj(N
′, p′ + ε)} > 0 or

Di(N
′, p′ + ε) = Dj(N

′, p′ + ε) = 0, the agent having the
bigger budget or the same budget but more neighbors has a
higher priority; ties are broken arbitrarily.

Algorithm 1 implements the ideas described above.

Example. Figure 1 shows how SNCA works. The vector
(v′i,bi) beside agent i denotes agent i’s reported value v′i and
the budget bi, and the information of r′i is given by the graph
structure (a direction from i1 to i2 means i2 ∈ r′i1 ).

s

A B C

D E F G

(2,9) (4,9) (5,9.5)

(7,7) (7,7)(8,21) (7,8)

Figure 1: An example

In Figure 1, m = 8 and vs = 1. The initial circum-
stance is (N ′ = {A,B,C}, p′ = 1). The set N ′ has no
exhausted agents and Steps 2-7 will not execute. Under
the current circumstance, the market is undersupplying as
D(N ′, p′) = 8 + 8 + 8 > 8 = m and has no important
agents. The mechanism executes Step 18. Now we compute
critical prices (this is shown in the next section). There
is an II-critical price 2: there is no important agent under
circumstance (N ′, 2), and C and B are important agents
under circumstance (N ′, 2 + ε). Agent C has a higher pri-
ority γ1 than agent B. In Step 21, the mechanism assigns
IMPC = 8 − (8 − 4) = 4 items with price 2 to agent C.
Then m becomes 4, the budget of agent C becomes 1.5, and
agent C is now exhausted. The mechanism goes to Step 2.
Two agents F and G are put into N ′. The new circumstance
is (N ′ = {A,B,C, F,G}, p′ = 2). The market is still
undersupplying. We find an II-critical price 3.5 and increase
the price to 3.5 in Step 20. There are two important agents
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Algorithm 1: The Social Network Clinching Auction Mech-
anism (SNCA)

1: Initialize the circumstance (N ′, p′) by letting N ′ = rs and
p′ = vs.

2: while there is an unmarked exhausted agent i ∈ N ′ do
3: Update N ′ by letting N ′ = N ′ ∪ r′i and mark the agent.
4: end while
5: if m = 0 or all agents in N ′ are marked and exhausted then
6: Terminate.
7: end if
8: if there are some important agents under the current circum-

stance (N ′, p′) then
9: (1) Assign the important number IMPi of items with

price p′ to agent i who is an important agent of the
highest priority γ1 in N ′.

10: (2) Update the running variables m and bi.
11: (3) Go to Step 2.
12: end if
13: if the market is oversupplying (i.e., m ≥ D(N ′, p′)) then
14: (1) Assign the demand number Di(N

′, p′) of items with
price p′ to agent i who is the agent of the highest priority
γ1 in N ′.

15: (2) Update the running variables (m← m−Di(N
′, p′)

and bi ← bi −Di(N
′, p′)p′).

16: (3) Go to Step 2.
17: end if
18: if the market is undersupplying (i.e., m < D(N ′, p′)) then
19: if there exists an II-critical price p∗ ≥ p′ then
20: (1) p′ ← p∗.
21: (2) Assign the important number IMPi of items with

price p′ to agent i who is an important agent of the
highest priority γ1 in N ′.

22: (3) Update the running variables m and bi.
23: (4) Go to Step 2.
24: end if
25: if there exists an I-critical price p∗ ≥ p′ then
26: (1) p′ ← p∗.
27: (2) Assign the demand number Di(N

′, p′) of items
with price p′ to agent i who is an agent of the highest
priority γ2 in N

′
.

28: (3) Update the running variables m and bi.
29: (4) Go to Step 2.
30: end if
31: end if

B and F now, where agent B has a higher priority γ1.
We allocate IMPB = 4 − (5 − 2) = 1 items to agent
B with price 3.5. The budget of agent B becomes 5.5, m
becomes 3, and agentA is now exhausted. In the next round,
agents {D,E} are put into N ′ in Steps 2-7. The current
circumstance becomes (N ′ = {A,B,C,D,E, F,G}, p′ =
3.5). The market is still undersupplying and there is an I-
critical price 7. Step 25 will be executed. Agent E has the
highest priority γ2, and DE(N ′, 7) = 3 items with price 7
are assigned to agent E. All eight items are allocated and
the algorithm terminates. Finally, agent C gets four items
with payment 8, agent B gets one item with payment 3.5,
and agent E gets three items with payment 21. Table 1
shows how the mechanism works. The numbers in the agent
columns are demands of the agents under the corresponding
circumstance. The empty units mean that the corresponding

agent is not activated under the circumstance.

Computing Critical Prices
In the SNCA mechanism, we need to compute the I-critical
and II-critical prices. This can be done by checking all
possible prices if the price domain is discrete; or search
by increasing the price in a searching interval each time if
the domain of the price is continuous. Most of the previous
clinching mechanisms use this type of simple search method
to find critical values. However, this method may lead to
exponential running time and may even skip over the solu-
tion. Here we first analyze the existence of the critical prices
and then introduce an algorithm to find our critical prices in
polynomial time. The following lemma is easy to prove.
Lemma 1. There is at most one II-critical price p1 and
exactly one I-critical price p2 for all participant sets N ′.
Furthermore, if the II-critical price p1 exists, then

p1 ≤ p2. (2)

Lemma 2. I-critical and II-critical prices are computed in
polynomial time.

Proof. We give an algorithm to compute the critical price
p∗ directly. Assume that N ′ = {1, 2, . . . , l} and i ∈ N ′.
Define change-points for agent i as values of p̂ between 0
and min{v′i, bi} such that Di(N

′, p̂) 6= Di(N
′, p̂ + ε) for

any ε > 0. Associate a change-value to each change-point
defined asDi(N

′, p̂)−Di(N
′, p̂+ε). Observe that for agent

i ∈ N ′, the sum of all her change-values equals Di(N
′, p′).

We claim that any critical price (I-critical or II-critical)
is a change-point for at least one agent in N ′. Indeed, for
any critical price p′′, we have D(N ′, p′′) 6= D(N ′, p′′ + ε).
Hence, Di(N

′, p′′) 6= Di(N
′, p′′ + ε) holds for at least one

agent i ∈ N ′.
Thus, to find critical prices we only need to check change-

points of the agents. Now note that for an agent i ∈ N ′, the
demand Di(N

′, p′) is an integer between 0 and m. There
are at most m + 1 possible values for Di(N

′, p′) and thus
each agent has at most m change-points. So, we compute
all the change-points (together with their change-values) not
greater than min{v′i, bi} for each agent i ∈ N ′ by using
Algorithm 2.

Algorithm 2: Computing change-points for agent i

1: Initially let x = Di(N
′, 0).

2: if x > 0 then
3: p̂← bi/x.
4: if p̂ < min{v′i, bi} then
5: Print p̂ as a change-point with the change-value

being 1 and let x = x− 1.
6: else
7: Print min{v′i, bi} as a change-point with the

change-value being x and let x = 0.
8: end if
9: end if

List all change-points in an increasing order L and com-
bine the same values into a single value with the change-
value being the sum of these change-values. These values
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m price p′ A B C F G D E

8 2 2 4 4 4 II-critical
2 + ε 0 4 4

4 3.5 3.5 0 2 0 2 2 II-critical
3.5 + ε 0 2 0 2 1

3 7 7 0 0 0 1 1 1 3 I-critical
7 + ε 0 0 0 0 0 0 2

Table 1: At II-critical price 2, four items are allocated to agent C with price 2; at II-critical price 3.5, one item is allocated to
agent B with price 3.5; at I-critical price 7, three items is allocated to agent E with price 7

will be used to check if a change-point is a critical price. In
total, there are at most m|N ′| ≤ mn change-points for all
agents, and then the ordering and combination can be done
in O(mn log(mn)) by using a standard sorting algorithm.

For each change-point in L, check in the increasing order
if it satisfies the conditions of I-critical or II-critical prices by
using the change-values. Note that the sum of all the change-
values of all agents isD(N ′, p′). The first change-point p̄ on
L such that the sum of the change-values of the agents on the
left of p̄ (including p̄) is at most D(N ′, p′)−m is I-critical.

There are at most mn change-points on L. For each
change-point checking if the point is critical takes O(|N ′|)
time by using the information given by the change-values.
Hence, the algorithm runs in O(mn2) time.

Remark. Algorithm 2 works for continuous price domains.
If the domain is discrete, then we need to round down to the
next discrete price. For the current circumstance (N ′, p′),
we will only consider critical prices not less than the current
price p′ in our algorithm. So we can also simply delete
change-points less than p′ directly.
Example. Consider the profile in Fig. 1, in the first
round we have (N ′ = {A,B,C}, p′ = 1). Consid-
er Algorithm 2 for agent A. Initially, DA(N ′, p′) = 8,
x = 8, and p̂ = 0. By Algorithm 2, we get change-
points LA = { 98 (1), 97 (1), 32 (1), 95 (1), 2(4)}, where in-
side the brackets are the corresponding change-values.
For agents B and C, Algorithm 2 outputs LB =
{ 98 (1), 97 (1), 32 (1), 95 (1), 94 (1), 3(1), 4(2)} and LC = {
9.5
8 (1), 9.57 (1), 9.56 (1), 9.55 (1), 9.54 (1), 9.53 (1), 9.52 (1),5(1)}. By

combining LA, LB and LC , we get the order L as shown in
Fig. 2, where we use Cp and Cv to denote change-points and
change-values, respectively. By checking each change-point
on L, we find the II-critical price 2. For the other rounds, the
critical prices are computed similarly.

L

8

9.5

7

9

7

9.5

6

9.5

2 1 2 1 2 1 2 1 4 1 1

2

3

5

9

5

59.
2

4

9

4

59.
3

3

59.
4

2

59.
5

1 1 2 1 1

8

9

Cv

Cp

Figure 2: An illustration of computing change-points (Cp)
and change-values (Cv)

Properties of SNCA Mechanism
We now address key properties of the SNCA mechanism.
Due to the space limitation, we may only give the outline of
some proofs.
Theorem 1. Any strongly feasible mechanism is no-
positive-transfers and individually rational.
Proof (Outline). The payment price of each item is at least
the reserving price vs of the seller and then the utility of
the seller is not negative. The payment p of an item sold to
buyer i is such that p ≤ v′i. If the buyer reports truthfully,
then p ≤ vi. So the buyer has no negative utility.
Theorem 2. The SNCA mechanism is strongly feasible.
Proof (Outline). The first two conditions of feasible mech-
anisms are easy to observe. At any round, x items are as-
signed to agent j if p ≤ v′j and xp ≤ bj . The total payment
of a buyer j does not exceed the initial budget bj . Hence,
SNCA is feasible. Also, the price never decrease. It is also
always the case that vs ≤ p. We know that vs ≤ p ≤ v′j .
Therefore, SNCA is strongly feasible.
Theorem 3. The SNCA mechanism is non-wasteful.
Proof (Outline). Assume that the market is undersupplying.
Then the market stays undersupplying. So, in this case, all
the items will be sold. If the market is never undersupplying,
then the price never changes. Hence, items will iteratively be
sold to buyers at price vs until no buyer can buy any more.
This shows that the SNCA mechanism is non-wasteful.
Theorem 4. The SNCA mechanism is incentive compatible.

Proof. We need to prove the following: (i) Agent i can not
get more benefit by reporting a proper subset of ri; (ii) Agent
i can not get more benefit by misreporting her value vi.

We prove (i). The mechanism extends the participant set
by including the neighbors of agent i to N ′ when the agent
cannot buy any item. So the crowd spread by an agent i will
not compete with herself. Also, reporting a proper subset of
ri may decrease her priorities. In the auction, both the set of
participants and the price will not decrease. So by reporting
a small subset of ri the agent can get neither items under a
smaller price nor more benefit.

We prove (ii). We have two cases for the value v′i.
Case 1: v′i > vi. No matter agent i reports a value v

′

i > vi
or the truthful value vi, the execution of the mechanism be-
fore the price exceeding vi would be identical. By reporting
v′i or vi, the allocations before the price exceeding vi are the
same. After this, allocation more items to agent i with the
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price greater than vi will hurt the benefit of the agent. So
reporting v′i higher than the truthful value is not beneficial.

Case 2: v′i < vi. Let I and I ′ be two instances where
agent i reports the truthful value vi and a value v′i < vi,
respectively. We compare them. Before the price reaches v′i,
the allocations of the two instances are the same. If v′i is
not a transaction price in I ′, then I ′ will miss some further
allocations to agent i with some price between v′i and vi,
compared to I . Then agent i may get less utility in I ′. Next,
we assume that v′i is a transaction price in I ′. We also assume
that in I ′ some items are allocated to agent i at the price v′i,
because if there is no allocation to agent i at price v′i, then
agent i also can not get any further utility in I ′. Since some
items are allocated to agent i at price v′i andDi(N

′, v′i+ε) =
0, we know that the price v′i can only be an II-critical price in
I ′. Furthermore, since agent i is selected to be allocated with
some items at the II-critical price v′i, we know that agent i
has a higher priority γ2 than other agents. ThenDj(N

′, v′i +
ε) = 0 holds for all other agents j. In I , only agent i holds
that Di(N

′, v′i + ε) > 0. So agent i will be allocated with
Dj(N

′, v′i) items at the price v′i. Thus, in I agent i still can
get at least as the same number of items at the price v′i.

No agent can get more utility by misreporting.

Social Welfare
In this section, we analyze the social welfare. Recall, see
Definition 5, that the social welfare is the sum of the utilities
of the seller and all buyers: sw =

∑
i∈N πi(vi − vs). This

only relates to the allocations (πi)i∈N but not the payments
(pi)i∈N . To obtain a greater social welfare, we need to sell
items to buyers with higher values vi. The optimal social
welfare, denoted by swo, is the maximum social welfare that
can be obtained by strongly feasible mechanisms. We can
compute swo as follows. List the buyers by their values vi
in descending order and sell as many items as possible to
buyer i at the lowest price vs according to this order, i.e.,
sell bbi/vsc items to buyer i. Let π∗ = (π∗1 , . . . , π

∗
n) denote

the assignment obtained by the above algorithm to maximize
the social welfare, which is also called the SW-optimal as-
signment. Thus, we have swo =

∑
i∈N π∗i (vi − vs). Recall

that rs is the set of buyers directly adjacent to the seller s in
the network. We define the “domination ratio”:

β =

∑
i∈rs π

∗
i (vi − vs)∑

i∈N π∗i (vi − vs)
.

With no network links, we regard rs = N and then β = 1.
The following results show incentive compatible mech-

anisms cannot guarantee optimality of social welfare. A
mechanism without payment to buyers means that in the
mechanism, the payment pi of each buyer i is nonnegative.

Theorem 5. No incentive compatible mechanism without
payment to buyers can guarantee a social welfare at least
min{swo, β · swo + ε} for any constant ε > 0.

Proof. We give an example to show that no incentive com-
patible mechanism can get that bound. In this example, there
are m = 3 items and three buyers {1, 2, 3}. Buyers 1 and 2
are directly adjacent to the seller, buyer 3 is only adjacent

to buyer 2. The reserve price vs is a positive value. We
have that v1 = b1 = 2vs, v2 = b2 = vs + ε/3 and
v3 = b3 = 2vs − ε/3.

If all buyers report the truth, then the SW-optimal assign-
ment will assign two items to buyer 1 and one item to buyer
3 at price vs, and it holds that swo = 2(v1−vs)+(v3−vs) =
3vs − ε/3. Note that βswo + ε = 2vs + ε > 2(v1 − vs) +
(v2 − vs). Any mechanism with the social welfare at least
βswo + ε must assign two items to buyer 1 and one item to
buyer 3, which means that buyer 2 will not get anything and
her utility is 0.

If buyer 2 does not report her neighbor buyer 3, then we
can regard it as an instance without a network. The SW-
optimal assignment will assign two items to buyer 1 and one
item to buyer 2, and the social welfare is 2(v1− vs) + (v2−
vs) = 2vs + ε/3. Any mechanism with the social welfare
at least min{swo, β · swo + ε} = swo will also assign one
item to buyer 2. Buyer 2 will get one item and her utility is
at least ε/3.

So buyer 2 can get more utility by misreporting. Then
no incentive compatible mechanism can guarantee a social
welfare at least min{swo, β · swo + ε}.

If payments to buyers are allowed, we may pay some to
buyers to encourage them to diffuse the information. For this
case, we have that

Theorem 6. No incentive compatible and no-positive-
transfers mechanism can guarantee a social welfare at least
min{swo, β · swo + ε} for any constant ε > 0.

We give the outline of the proof, which is to construct an
example based on the example in the proof of Theorem 5.
We add a long path P between buyer 2 and buyer 3 and the
buyers closer to buyer 3 will have a slightly higher value vi.
If all buyers report the truth, the SW-optimal assignment still
needs to assign one item to buyer 3. However, any buyer on
P (including buyer 2) can get more utility without reporting
the neighbour. If we give each buyer in P a payment (at
least as her utility without reporting her neighbour), the total
payment will be too large as the length of P is long and then
it will not be no-positive-transfers.

Discussion
In this paper, we first consider multi-unit auctions in social
networks with budgets on buyers. For private budgets, we
design a clinching-based mechanism that can encourage the
buyers to tell truthfully and also guarantee the benefit of the
seller. Different from previous clinching mechanisms, our
algorithm computes transaction prices in polynomial time
and it also works when there is no network. While we can
get a clean mechanism with neat results for the public bud-
get model, the private budget model becomes significantly
harder. For instance, it was mentioned in [Dobzinski, Lavi,
and Nisan 2012; Dobzinski and Leme 2014; Lu and Xiao
2015] that even if there is no network, the budgets are private
and buyers’ utility is additive, there is no truthful, incentive
compatible, and Pareto optimal mechanism. Furthermore,
no deterministic mechanisms have been found yet that can
guarantee the incentive compatibility for private budgets.
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